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Abstract 
 
Image encryption using chaotic maps has been established a great way. The study shows that a number of 
functional architecture has already been proposed that utilize the process of diffusion and confusion. How-
ever, permutation and diffusion are considered as two separate stages, both requiring image-scanning to ob-
tain pixel values. If these two stages are mutual, the duplicate scanning effort can be minimized and the en-
cryption can be accelerated. This paper presents a technique which replaces the traditional preprocessing 
complex system and utilizes the basic operations like confusion, diffusion which provide same or better en-
cryption using cascading of 3D standard and 3D cat map. We generate diffusion template using 3D standard 
map and rotate image by using vertically and horizontally red and green plane of the input image. We then 
shuffle the red, green, and blue plane by using 3D Cat map and standard map. Finally the Image is encrypted 
by performing XOR operation on the shuffled image and diffusion template. Theoretical analyses and com-
puter simulations on the basis of Key space Analysis, statistical analysis, histogram analysis, Information 
entropy analysis, Correlation Analysis and Differential Analysis confirm that the new algorithm that mini-
mizes the possibility of brute force attack for decryption and very fast for practical image encryption. 
 
Keywords: Chaotic Map, 3D Cat Map, Standard Map, Confusion and Diffusion 

1. Introduction 
 
With the fast development of image transmission through 
computer networks especially the Internet, medical im-
aging and military message communication, the security 
of digital images has become a most important concern. 
Image encryption, is urgently needed but it is a chal-
lenging task because it is quite different from text en-
cryption due to some intrinsic properties of images such 
as huge data capacity and high redundancy, which are 
generally difficult to handle by using conventional tech-
niques. Nevertheless, many new image encryption sche- 
mes have been suggested in current years, among which 
the chaos-based approach appears to be a hopeful direc-
tion. 

General permutation-diffusion architecture for chaos- 
based image encryption was employed in [1,2] as illus-
trated in Figure 1. In the permutation stage, the image 
pixels are relocated but their values stay unchanged. In 
the diffusion stage, the pixel values are modified so that 
a minute change in one-pixel spreads out to as many pix- 

els as possible. Permutation and diffusion are two dif-
ferent and iterative stages, and they both require scan-
ning the image in order to gain the pixel values. Thus, in 
the encryption process, each round of the permutation- 
diffusion operation requires at least twice scanning the 
same image.  

In this paper, we generate diffusion template using 3D 
standard map and rotated image by using vertically and 
horizontally red and green plane of the input image. We 
then shuffle the red, green, and blue plane by using 3D 
 

 

Figure 1. Permutation and diffusion based image crypto-
system. 
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Cat map and standard map. Finally the Image is en-
crypted by performing XOR operation on the shuffled 
image and diffusion template. The objectives of this new 
design includes: 1) to efficiently extract good pseudo-
random sequences from a cascading of 3D cat and stan-
dard map for color image and 2) to simultaneously per-
form permutation and diffusion operations for fast en-
cryption. 

The rest of this paper is organized as follows: Section 
2 focuses on the efficient generation of pseudorandom 
sequences. In Section 3, proposed algorithm is described 
in detail. Section 4 presents simulation results and per-
formance analyses. In Section 5, conclusions and future 
work. 
 
2. Efficient Generation of Pseudorandom 

Sequences 
 
The generation of pseudorandom is based on two cas-
caded chaotic maps behave as a single chaotic map in 
present case. The 3D cat map & 3D standard map are 
taken for encryption. The pseudorandom matrix gener-
ated by this method is given below. (The explanation for 
pseudorandom sequences generation is given in Section 
3). 

3. Proposed Algorithm 

The proposed algorithm are divided into several stages  

Table 1. Generation of pseudorandom values by proposed 
method. 

 

and explained below.  
 
3.1. Diffusion Template 
 
According to the proposal the diffusion template must 
have the same size as main image. Let the main image 
have m number of rows n number of columns then the 
diffusion template is created as follows 

  255
, , roundi j k j

n
  
 

           (1) 

where 1 i m  , 1 j n   and . 1 3k 
Equation (1) form the matrix with all rows filled with 

linearly spaced number in between 0 to 255. The se-
quence is randomized by 3D standard map in discrete 
form as given below. 

The 3D standard map randomizes the pixels by real-
locating it in new position by utilizing its property of one 
to one mapping. Figure 2 shows the final diffusion tem-
plate by using 3D standard map.  

 modi i j m               (2) 

1 sin mod
2

           

c
j j k K i

pi
n     (3) 

1 sin 2 sin mod
2 2

p p
k k K i K j p

pi pi

                   
 (4) 

where the K1, K2 are the integers, p = 3 for the case of 
color image and i′, j′, k′ shoes the transformed location of 
i, j, k. 

  diff diff, , , , I i j k I i j k     . 

 
3.2. Image Encryption 
 
Step 1. The main image is divided into three separate 
images IR, IG and IB as follows 

   , ,R ,1I x y I x y    , ,G , 2I x y I x y  

   , , ,3BI x y I x y  

where         1 x m   and 1 y n  . 

Step 2. The Red and Green image are transform verti-  

 

Figure 2. Diffusion template. 
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cally and hori lue image re-zontally respectively. The b
mains same and reconstructs the new image. 

 , m
2R R

m
od ,I x y I x m y      

 
  

 , m
2G R

n
odI x y I x y n

        
   , ,B B

  

I x y I x y     new , ,1 ,R I x y I x y  

  new , , 2 ,G I x y I x y    new , ,3 ,B I x y I x y . 

Step 3. Perform the first level confusion by usin 2D 
ca

w


where j′ and k′ are obtained by 2D cat map and p  q are 

erate Final confusion stage by two cascade 
3D



g 
t map. Slice the plane normal to R, G, B Planes by  

I′new(i, j, k) = I′SRGB(j′, k′) = Inew(i, j, k)  
here 1 i m  , 1 j n   and 1 3k  . 

k

 and

 mo



d m  

1 modk n  

x yr r p 

 r p q  

j j  

yk q j  

integer > 0 and rx, ry are offset integer such that 0 ≤ rx ≤ m, 
0 ≤ ry ≤ n. 

Step 4. Gen
 maps first by cat map then by standard map. So the 

transformation of location (i, j, k) into (i″, j″, k″) is per-
formed by following equations.  

 1     i a a b i a j

      mod


        

x z y z

y x z x y z ya a a a a a b k m
 

 



   +

   1 mod

z x y x z y z z z 1

   

   

y z x y z y z x z

y y

i b a b a a b b i a b

j a a a a a b b a a

a b k n

         

        

    

 
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          
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k a b b b i b j

a a b b a b a b k

  modi i k m       

 

yb

 

  

    od



   p
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2

n
j i j K i n

pi

             
 

1 sin
2

        2 sin mod
2

p
k k K i

pi

p
K j p

pi

          
 

     

 

   con , , , ,I f i j k I i j k      

where xa , ya , za , xb , yb , zb  and 1K , 2K  are 

n step is followed by diffusion obtained 

by

 

 
.3. Key Generation Process 

he proposed method has a large number of variables 

fling Ds = 8 bits. 

8 
ion template variables Dk1Dk2 = 8 + 8 = 

16
. Sliced RGB plane Shuffling = Ss = 8 bits. 

ts. 
 

bi
p 7. Final Confusion shuffling Cs = 8 bits. 

 8 + 8 + 
2 

onfusion cat map variables CaCb = 8 + 8 = 
16

0. Confusion offset of standard map Cx′Cy′Cz′ 
= 

dard map variables Ck1Ck2 = 8 
+ 

ructure  

k1Dk2SsSxSySpSq 

C   

To
  s. 

 
.4. Image Decryption  

tep 1. Generate the diffusion template in same way as 

mation of location is done by two 
ca

e re-transformation of location (i″, j″, k″) into (i, j, 
k)

integers >0. 

Each confusio

 EXOR operations performed between each pixels of 
Iconf and diffusion Idiff. The proposed image encryption 
architecture is given in Figure 3. 

= I I Iencp conf diff .

3
 
T
which can be used as key parameters but to avoid the 
exceptionally large key and decreased key sensitivity, the 
parameter which does not having great affects on en-
cryption are avoid or scaled. The selected key parameters 
and their length are given below 

Step 1. Diffusion template shuf
Step 2. Diffusion template offset value DxDyDz = 8 + 

+ 2 = 18 bits. 
Step 3. Diffus
 bits. 
Step 4
Step 5. Sliced RGB plane offset values SxSy = 8 bi
Step 6. Sliced RGB Plane Variables SpSq = 8 + 8 = 16
ts. 
Ste
Step 8. Confusion offset of cat map CxCyCz =

= 18 bits. 
Step 9. C
 bits. 
Step 1
8 + 8 + 2 = 18 bits. 
Step 11. Confusion stan
8 = 16 bits. 
Final key st

DsDxDyDzD
sCxCyCzCaCbCx’Cy’Cz’Ck1Ck2

tal bits = 8 + 18 + 16 + 8 + 8 +16 + 8 
          + 16 + 16 + 18 + 16 = 148 bit

3
 
S
in encryption section. 

Step 2. Re-transfor
scaded 3D maps firstly by standard map then by cat 

map.  
So th
 is performed by following equations 

  modi i k m       

1 sin mod
2

j i j k i n
pi

           
  

n  
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Figuer 3. Image encryption by using confusion and diffusion.   
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          
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 
       1 mod

x x y y x

x y x y x x y y

k a b b b i b j

a a b b a b a b k p

         
         

 

Iretransf (i, j, k) = Iencp (i, j, k)  
where xa , ya , za , xb , yb , zb  and ,  are 
integers > 0. 

Each confusion step is followed by diffusion obtained 
by EXOR operations performed between each pixels of 
Iretrnsf and diffusion Idiff  

1K 2K

dencp retrnsf diffI I I   . 

Step 3. Performing inverse of First level confusion.  
Slicing the plane normal to R, G, B Planes 

,  SRGB dencp, ,I j k I i j k    

for each value of i, j changed from 0 to m, k changed 
from 0 to 3. 

De-shuffling the sliced plane 

  DRGB SRGB, ,I j k I j k  

where j′ and k′ are obtained by 2D cat map given below 

m

n   

where p and q are integers > 0, and rx, ry are offset inte-
gers such that 0 ≤ rx ≤ m and 0 ≤ ry ≤ n. 

Recombining the planes for forming 3D matrix for next 
operation 



 modx yj j r r p k       

  1 myk q j r p q k       od

  DRGB, , ,I i j k I j k  . 

Step 4. Re-rotating the image planes 
Dividing main image into three separate images IR, IG 

and IB as follows 

  , ,R ,1I x y I x y    , ,g , 2I x y I x y  

   , , ,3BI x y  I x y   

where 1 x m   and 1 y n  . 
d plane verticallyScro  lling the re

 , m
2R R

m
od ,I x y I x m y

       
. 

Scrolling the green plane horizontally 

 , m
2G R

n
odI x y I x y n

       
. 

Blue plane remain intact. 

  , ,B B I x y I x y . 

Step 5. Next recombination of planes are performed to
form final decrypted image 

 

   , ,1 ,final RI x y I x y     , , 2 ,final GI x y I x y  

   3 ,B, ,finalI x y I x y  

 
4. Performance Analysis 
 
4.1. Key Space Analysis 
 
The strong point of the proposed algorithm is the genera-
tion of the permutation sequence with the chaos se-
quence. The key space should also be suitably large to 
make brute-force attack not feasible. In the proposed 
algorithm, we use 148 bit key (37 Hex number) is used. 
It has been observed in Figures 4(a) and (b) that with 
slightly varying the initial condition of the chaotic se-
quence. It has been almost impossible to decrypt the im- 
age. 
 
4.2. Statistical Analysis 
 
It is well known that passing the statistical analysis on 
cipher-text is of crucial importance for a cryptosystem 
actually, an ideal cipher should be strong against any 
statistical attack. In order to prove the security of the 
proposed image encryption scheme, the following Statis-
tical tests are performed. 
 
4.2.1. Histogram Analysis 
To prevent the access of information to attackers, it is 
important to ensure that encrypted and original images 
do not have any statistical similarities. The histogram 
analysis clarifies that, how the pixel values of image are 
distributed. A number of images are encrypted by the 
encryption schemes under study and visual test is per-
formed. 

An example is shown in Figure 5. In Figure 5 shows 
histogram analysis on test image using proposed algo-
rithm. The histogram of original image contains great 
sharp rises followed by sharp declines as shown in Fig-
ure 5 and the histograms of the encrypted images for 
different round as shown in Figures 5(a)-(f) have uni-
form distribution which is significantly different from 
original image and has no statistical similarity in ap-     

Copyright © 2011 SciRes.                                                                                   JIS 



K. GUPTA  ET  AL. 144 

   

 
(a) 

 

1010110D2833020202 and Decrypted by 0304002030402030- 
 03040020304020301011010110D2833040404 and Decrypted 

(b) 

Figure 4. (a) Input image encrypted with 0304002030402 030101
with

pe
tistical attack. The encrypted image histogram, 

approximated by a uniform distribution,  quite different 
fr
 

very good correla on among adjacent pi els in 
the digital image [3]. Equation (5) is used to study the 

djacent pixels in horizontal, 

 

1011010110D2833020203; (b) Input lenna image encrypted 
by 03040020304020301011010110D2833040405. 

arance. So, the surveyed algorithms do not provide any 
clue for sta

 is
om plain-image histogram. 

4.2.2. Correlation Analysis 
There is a ti x

Correlation between two a
vertical and diagonal orientations. This is shown in Fig-
ure 6.  

x and y are intensity values of two neighboring pixels 
in the image and N is the number of adjacent pixels se-
lected from the image to calculate the correlation. 1000 
pairs of two adjacent pixels are selected randomly from 
image to test correlation. The correlation coefficient be-       

 

   
1 1 1

2
2

1 1j

N N

j jj j

N N

jj j

x y

N y y

 

 

 

   
 

 

 
                     (5)

2
2

1 1j

N

j jj

N N

jj j

N x y

N x x



 



  
 



 
rc 
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(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 5. (a) Histogram for red, green and blue plane of original and encrypted image for R = 1; (b) Histogram for red, green 
and blue plane of encrypted image for R = 2; (c) Histogram for red, green and blue plane of encrypted image for R = 4; (d) 
Histogram for red, green and blue plane of encrypted image for R = 8; (e) Histogram for red, green and blue plane of en-
crypted image for R = 16; (f) Histogram for red, green and blue plane of encrypted image for R = 32. 

 

Figure 6. Correlation for horizontal, vertical and diagonal. 

tween original and cipher image is calculate in Table 6. 
 
4.3. Key Space Analysis 
 
Key space size is the total number of different keys that 
can be used in the cryptography. Cryptosystem is totally 
sensitive to all secret keys. A good encryption algorithm 
should not only be sensitive to the cipher key, but also the 
key space should be large enough to make brute-force at-
tack infeasible. The key space size for initial conditions and 
control parameters is over than 2148. Apparently, the key 

space is sufficient for reliable practical use. 
 
4.4. Differential Analysis 
 
In general, a desirable characteristic for an encrypted 
image is being sensitive to the little changes in plain- 
image (e.g. modifying only one pixel). Adversary can 
create a small change in the input image to observe 
changes in the result. By this method, the meaningful 
relationship between original image and cipher image
can be found. If one little change in the plain-image can 
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cause a significant change in the cipher-image, with re-
spect to diffusion and confusion, then the differential 
attack actually loses its efficiency and becomes almost 
useless. There are three common measures were used for 
differential analysis: MAE, NPCR and UACI. Mean Ab- 
solute Error (MAE). The bigger the MAE value, the bet-
ter the encryption security. NPCR means the Number of 
Pixels Change Rate of encrypted image while one pixel 
of plain-image is changed. UACI which is the Unified 
Average Changing Intensity, measures the average in-
tensity of the differences between the plain-image and 
Encrypted image. 

Let C(i, j) and P(i, j) be the color level of the pixels at 
the ith row and jth column of a W × H cipher and plain- 
image, respectively. The MAE between these two images 
is defined in 

   
1 1

1
MAE , ,

W H

j i

c i j p i j
W H  

 
  .  

er two cipher-images, C1 and C2, wh

   (6) 

Consid ose cor-
responding plain-images have only one pixel difference. 

The NPCR of these two images is defined in 

 ,
,

NPCR 100%i j
D i j

W H
 




       (7) 

where W and H are the width and height of the image 
and D(i, j) is defined as 

    
   

0, if 1 , 2 ,
, .

1, if 1 , 2 ,

   

C i j C i j
D i j

C i j C i j
 



Another measure, UACI, is defined by the following 
formula: 

   
,

1 , 2 ,1
UACI 100%

255i j

c i j c i j

W H

 
    

 .  (8) 

Tests have been performed on the encryption schemes 
on a 256-level color image of size 256 × 256 shown in 
Figures 5(a)-(f). The MAE, NPCR and UACI experi-
ment result is shown in Tables 4 and 2. The Tables 3 
and 5 compare the result of Yo
based on chaotic map and our. Results obtained from 

to 
ttle changes in the input image is under 0.01%. Ac-

ation result, the rate influ- 
nce due to one pixel change is very low. The results 

demonstrate that a swiftly change in the original image 
will result in a negligible change in the ciphered image. 
 
4.5. Information Entropy Analysis 
 
It is well known that the entropy H(m) of a message 
source m can be measured by 

ng previous related work 

NPCR show that the encryption scheme’s sensitivity 
li
cording to the UACI estim
e

     
1

0

1
log

m

i
i i

H m p m
p m





           (9

where M is the total number of symbols mi ∈ m; p(mi) 
represents the probability of occurrence of symbol mi 
and log denotes the base 2 logarithm so that the entropy 
is expressed in bits. For a random source emitting 256 
symbols, its entropy is H(m) = 8 bits. This means that the 
cipher-images are close to a random source and the pro-
posed algorithm is secure against the entropy attack. The 
test result on different image for different round is de-
fined in Table 7. 
 
4.6. Speed Analysis 

cesses. In general, en-
cryption speed is highly dependent on the CPU/MPU 
structure, RAM size, Operating System platform, the 
programming language and also on the compiler options. 
So, it is senseless to compare the encryption speeds of 
two ciphers image.  

Without using the same developing atmosphere and 
optimization techniques. Inspire of the mentioned diffi-
culty, in order to show the effectiveness of the proposed 
image encryption scheme over existing algorithms. We  

Table 2. NPCR, UACI and Entropy for key sensitivity test. 

Lenna Error 
Image 

R = 2 R = 3 R = 4 

) 

 
Apart from the security consideration, some other issues 
on image encryption are also important. This includes the 
encryption speed for real-time pro

NPCR 99.5966593424 99 8836263 99.651082356 .609

UACI 52.5394813687 51.6816741344 50.603535970 

Entropy 7.99913068980 7.99912231127 7.9991865161 

NPCR 99.6103922526 99.5905558268 99.599711100 

8581327550 48.719709807 

Entropy 7.99901078968 7.99905756543 7.9991734549 

Baboon Error Image 

UACI 46.9998348460 47.

 

Table 3. Comparison of NPCR 

Name of image  R = 1 

and UACI with Yong Wong et al. 

R = 2 R = 3 

 Our Yong Wang et. al Our Yong Wang et. al Our Yong Wang et al.

NPCR 99.62 97.621 Airplane 

UACI 33.19 32.909 

99.60 99.637 99.62 99.634 

33.10 33.575 33.35 33.580 
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eren

 = 4 R = 8 R = 10 R = 16 R = 32 

Table 4. NPCR and UACI for diff

Image  R = 1 R = 2 R = 3 

t round on different color image. 

R

NPCR 99.55 99.57 99.59 99.59 99.61 99.60 99.60 99.61 
Baboon 

UACI 37.17 38.68 39.00 

 MAE 71.65 74.52 75.29 

NPCR 99.63 99.64 99.59 
Lenna 

UACI 28.87 27.51 27.33 

38.78 38.69 38.88 39.03 38.89 

75.18 75.23 75.37 75.34 75.50 

99.62 99.62 99.61 99.62 

UACI 38.05 38.26 37.99 

 MAE 75.20 74.68 

99.61 99.59 99.60 

33.28 33.32 33.31 

99.59 

27.42 27.43 27.64 27.51 27.37 

77.58 77.76 77.84 77.67 77.54 

99.58 99.63 99.62 99.62 99.62 

38.03 38.34 38.20 38.33 38.11 

74.48 74.89 74.62 74.62 74.61 

9.62 99.63 

 MAE 80.84 77.24 77.46 

NPCR 99.62 99.62 99.58 
Pepper 

74.27 

NPCR 99.62 99.60 99.59 
Airplane 

33.35 

9

UACI 33.19 33.10 33.27 33.329 

 
Table 5. The round number of scanning-imag
tion and diffusion to achieve NPCR > 0.996 a

 NPCR UACI 
No. of Round for Confusion 

and Diffusion 

e, permuta-
nd UACI > 

0.287. 

Our >0.996 >0.287 1 

Ref. [3] >0.996 >0.333 2 

Ref. [4] >0.996 >0.333 18 

Ref. [5] >0.996  5 

Ref. [6] >0.996 >0.333 6 

Ref. [7] >0.996 >0.333 6 

 
evaluated the performance of encryption schemes with 
an un-optimized MATLAB 7.0 code. Performance was 
measured on a machine with Intel core 2 Duo 2.00 GHz 
CPU with 2 GB of RAM running on Windows XP. The 
time for encryption and decryption is measured for dif-
ferent round is shown in Tables 8 and 9.  
 
4.7. FIPS 140 Testing 
 
We also s r proposed algorithm pass the FIPS 
14 ss tests There are four tes ono-bit, 
Poker, Runs tests and L ng run tes ach
was  to test the randomness of a sam -
quence length of 20,0  as follo

how that ou
0-2 randomne . ts: M

o ts. E  of the tests 
designed ple se

00 bits ws: 

4.7.1. The Monobit Test 
1) Calculate x which is the number of ones in the 

20,000 bit stream. 
2) The test is passed if 9725 < x < 10,275. 

 
4.7.2. The Poker Test 

1) Divide the 20,000 bit stream into 5000 contiguous 4 
bit segments. Count and store the number of occurrences 
of each of the 16 possible 4 bit values. Denote g(i) as the 
number of each 4 bit value i where 0 - 15. 

2) Calculate x by 

 
15

2

0

5000
5000 i

X g i


          (10) 
16

t is  if 2.16 < 6.17. 
 
4.7 e R

un m c -
tiv f a e en f 
all lengths in the s ld be counted and 
sto

 te if of runs is each 
 c in d e 

. 

4.7.4. The L g Run Test 
1) Find ngest run in the 20,000 

e nge n in f 
20 both nd z  smaller , the 
test is passed.   

3) The tes passed x < 4

.3. Th uns Test 
1) A r represents a aximal sequen e of consecu
e bits o ll ones or all z ros. The incid ces of runs o

ample stream shou
red. 
2) The st is passed  the number 

w
10

ithin the orresponding terval specifie  below Tabl

 
on

 the lo bits. 
2) If th  length of the lo st ru the bit stream o
,000 bit (  of one a ero) is than 26
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Correlation coef of pla e orrelati icient of image 

Table 6. Correlation coefficient for plain and cipher image. 

 ficient in imag C on coeff  Cipher 

Images Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Baboon 8646  0.81 0.007 0.

.9156 0.8603 0.006 0.091 

Pepper 0.9376  0.89 0.006 0.

0. 0.8293 14 0.004 037 

Lena 0 0.8808 

0.9364

0.001 

0.005 35 023 

Table 7. Entropy test for different color image. 

Im R = 1 R = 2 R = 3 R = 4 R = 8 R = 10 R = 16 R = 32 Yong Wang et al. [7]age 

Our Scheme  

Baboon 7.9988 7.9990 7.9991 7.9992 7.9990 7.9990 7.9990 7.9991 - 

Lenna 7.9981 7.9991 7.9991 7.9992 7.9991 7.9990 7.9990 7.9990 7.9990 

Pepper 7.9987 7.9991 7.9991 7.9989 7.9989 7.9992 7.9992 7.9992 7.9990 

Air 7.9989 7.9989 7.9991 7.9991 7.9991 7.9991 7.9991 7.9992 

Boat 7.9986 7.9992 7.9991 7.9990 7.9990 7.9990 7.9991 7.9991 

plan - 

- 

Table 8. ptio in se or dif round.

Image R 3 R = 4 R = R = R

 Encry n time cond f ferent  

 = 1 R = 2 R =  8  10  = 16 R = 32 

Our Scheme 

Baboon 0.510 0.87 1.20 1.56 2.94 3.65 5.73 11.24 

561 5.697 11.225 

per 0.521 0.87 1.197 1.561

Airplan 0.521 0.87 1.197 1.561 11.225 

B at 21 0.8 1.561 5.697 11.225 

Lenna 0.521 0.87 1.197 1.

Pep

 2.933 3.662 

 2.933 3.662 5.697 11.225 

2.933 3.662 5.697 

o 0.5 7 1.197  2.933 3.662 

Table 9. De ption time in se

Im × 25  = 1 R = 2 R = 

cry cond for different round. 

4 R = 8 R = 10 R = 16 R = 32 age 256 6 R R = 3 

Our Scheme 

Baboon .43 0.77 1.12 1.470 2.85 3.55 5.62 11.17 

 429 0.77 137 1.471 2.869 3.548 5.618 

r 430 0.78 139 1.472 2. 11.22 

Airplan 0.429 0.77 1.137 1.471 2. 11.20 

41 .523 5.594 11.15 

0

Lenna 0. 1. 11.20 

Peppe 0. 1. 869 3.549 5.619 

869 3.548 5.618 

Boat 0.434 0.722 1.065 1. 4 2.807 3

 
We need to change the testing algorithm to suit to im- 

age data so we randomly chose 100 streams of 20,000 
consecutive bits from the ciphered images of image A. 
Then we find statistics of the randomly chosen 100 

reams for each test and compared them to the accep-
ow the numbers of the samples 

mong 100 randomly chosen samples, which passed the 

places the tradi-

 better encryption using cascading of 3D standard 
an

orizontally red and green plane of the input image. 
e then shuffle the red, green, and blue plane by using 

ap. Finally the Image is en-
cr the shuffled 
im

ut, both confirming that the new cipher  

st
tance ranges. Table 11 sh
a
Mono-bit, Poker, Long run tests and run tests. 
 
5. Conclusions 
 
This paper presents a technique which re

tional preprocessing complex system and utilizes the 
basic operations like confusion, diffusion which provide 
same or

d 3D cat map. We generate diffusion template using 
3D standard map and rotate image by using vertically 
and h
W
3D Cat map and standard m

ypted by performing XOR operation on 
age and diffusion template. Completion of the design, 

both theoretical analyses and experimental tests have 
een carried ob  
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Length of the run 3 ≥6 

 
Table 10. FIPS-140 test range. 

1 2 4 5 

Re erval 5 86 3 1quired int 2315 - 268 1114 - 13 527 - 72 240 - 384 03 - 209 103 - 209 

Table 11. FIPS-140  pass, F = f

Name of image  R = 1 R = 2 R = 3 R = 4 R = 8 R = 10 R = 16 R = 32 

 test P = ail. 

runs 10P, 10P 12P, 12P 16P, 12P 17P, 14P 11P, 12P 13P, 15P 12P, 14P 15P, 11P 

pocke

mono 1008

r 374. 4P 3P  13.644P 678P 556P 

1P 9913P 

 P  , 12P , 13P P, 20P P, 12P 

  P 0P 856P 1.558P 2P  

 P P 38P 054P 900P 2P 

 P 3P  , 13P , 13P P, 11P P, 14P 

   P 7P 454P 0.227P .929P r 

mono 10085P 9982P 10001P 9967P 10048P 9994P 9913P 10036P 

runs 12P, 10P 5P, 12P 12P, 13P 12P, 11P 

pocker 880.25F 30.016P 13.504P 12.134P 16.761P 20.108P 12.800P 9.568P Airplan 

m 10030P 10075P 9975P  40P 1P P 

7F 

2P 

9.894

9975P 

15.44 12.985P

9952P 

8. 12. 12.556P 

2P 

Baboon 

9969P 

5P 

9990P 1003 1003

runs 10P, 11P 13P, 15 13P, 1 17P, 13P 12P 13P  15 12

pocker 317.4F 24.30P 14.022 8.992 18.227P 21.  1 18.75Lenna

mono 9956P 10025P 10103 9967 99 10 9 1011

runs 12P, 16P 13P, 15 12P, 1 12P, 14P 12P 13P  13 14

pocker 138.41F 13.196P 12.057 13.33 18.227P 20.  1 27Peppe

14P, 13P 17P, 23P 12P, 14P 14P, 13P 1

ono  9996P 99 1007 9946 9973P 

 
pos high s y and fast encryptio eed. In
conclusion, therefore, the new cipher indeed has excel-
lent potential for practical imag ption applications.
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