
Circuits and Systems, 2011, 2, 358-364
doi:10.4236/cs.2011.24049 Published Online October 2011 (http://www.scirp.org/journal/cs)

Copyright © 2011 SciRes. CS

Polymorphic Computing: Definition, Trends, and a New
Agent-Based Architecture

David Hentrich, Erdal Oruklu, Jafar Saniie
Department of Electrical and Computer Engineering, Illinois Institute of Technology Chicago, Illinois, USA

E-mail: erdal@ece.iit.edu
Received May 22, 2011; revised June 15, 2011; accepted July 15, 2011

Abstract

Polymorphic computing is widely seen as next evolutionary step in designing advanced computing architec-
tures. This paper presents a brief history of reconfigurable and polymorphic computing, and highlights the
recent trends and challenges. A novel polymorphic architecture featuring programmable memory event trig-
gers and a new concept of control agents is proposed. This architecture can provide dynamic load balancing,
distributed control, separated memory and processing fabrics, configurable memory blocks, and task-opti-
mized computation.

Keywords: Polymorphic Computing, Reconfigurable Computing, Agents, Processing Fabric

1. Introduction

Microprocessor performance has advanced at a staggering
pace during the past two decades. This can be attributed to:

1) Circuit architectural improvements,
2) Scaling of transistor sizes down, and
3) Scaling of clock frequency up.
Historically, each of the categories has contributed

equally to the general performance increase [1]. Unfortu-
nately, the rate of improvement in all of these areas is
slowing or showing signs of slowing. Continual innova-
tions in these areas are required to maintain the pace of
improvement.

Polymorphic computing is a circuit architectural im-
provement technique that promises to improve overall
computing performance. This work presents a definition of
polymorphic computing, a brief history of the field of po-
lymorphic computing, a summary of the current trends, a
set of views on the current state of the field, and a novel
polymorphic architecture.

2. Definition and History of Polymorphic

Computing

The definition of a polymorphic computer is a computing
machine that can dynamically arrange the underlying
hardware computing architecture model in both time and
space to match the computational demands of the mo-
ment. Figure 1 shows how polymorphic computing sits

in the set of all types of computation.
General computing is the set of all possible types of

computation (i.e. any physical system that has a set of
inputs and outputs). Static computing is the subset of
general computing where the program (transfer function)
is fixed in a device. Examples of static computing are
simple NAND circuits, ASICs, and computers where the
program is ROM’ed. On the other hand, programmable
computing is composed of the set of computing devices
where the program (transfer function) is intentionally
changeable after manufacturing time. The programs may
be hardware-based and/or software-based. Reconfigur-
able computing is the proper subset of general computing
where the hardware configuration can be changed after
manufacturing time. PLDs and FPGAs are the best ex-
amples of reconfigurable computing. Polymorphic com-
puting is the proper subset of reconfigurable computing
that includes devices that can reconfigure their hardware
in time and space during runtime. FPGAs that can be
configured only at startup time are reconfigurable com-
puting devices, but not polymorphic computing devices.
However, FPGAs that can be partially configured during
runtime are both reconfigurable and polymorphic com-
puting devices.

The history of polymorphic computing begins with the
history of reconfigurable computing. The earliest
thoughts for the creation of a reconfigurable computer
were from Gerald Estrin of UCLA in 1960 [2]. His idea
was to create a computer where the hardware could be

D. HENTRICH ET AL. 359

Reconfigurable Computing

Polymorphic Computing

Programmable Computing

Static
Computing

General Computing

Figure 1. Categories of computing.

reconfigured to match the computational demands of the
program. (In those days, a single computer filled an en-
tire room and a single processor inhabited one or more
equipment racks.) Research work on reconfigurable
computing continued at UCLA under Estrin’s leadership
through the 1960s and 1970s [3]. Estrin’s idea was about
40 years before its time and pre-dates the invention of
the microprocessor.

The industrial origins of reconfigurable computing lie
in the creation of programmable logic devices (PLDs) in
the 1970s. These early devices were simply fixed arrays
of AND and OR gates where the connections could be
configured (usually just once) after manufacturing time.
The key ideas that emerged from PLDs were that hard-
ware could be configured by the users rather than the
manufacturer and that the configuration of the circuits
could be generated using software. PALASM and ABEL
are early examples of the languages and tools for gener-
ating custom circuits in PLDs [4].

The next big advance in reconfigurable computing was
the invention of the field programmable logic array
(FPGA) in 1984 by Ross Freeman (one of the founders
of Xilinx, Inc.) [5]. The important innovations were:

1) a programmable signal routing fabric,
2) a flexible logic cell that could perform any logic

function,
3) arranging the logic cells in a tiled manner, and
4) configuration of the configurable logic at device

start-up time.
Freeman’s seminal observation was that the transistor

density penalties of configurable logic devices would be
more than offset by the transistor manufacturing density
increases described by Moore’s law and the efficiencies
realized in circuit design effort. FPGAs are the general
template for reconfigurable computing and polymorphic
computing devices.

Polymorphic computing is the next logical step in the
advancement of reconfigurable computing. Essentially,
the hardware architecture can be deliberately modified
during runtime to improve performance. The perform-
ance improvements all come from exploitations of paral-
lelization (coarse-grained and/or fine-grained parallel-
ism). A general trend (but not a rule) is that polymorphic

computers are similar to FPGAs with small microproc-
essors in the place of configurable logic blocks.

In the late 1990’s and early 2000’s, DARPA funded
several promising polymorphic computing architectures:
Raw, Smart Memories, TRIPS, and MONARCH. Of
these, Raw and MONARCH have transitioned to com-
mercial products.

The Raw architecture was developed at MIT and is a
replicated series of identical tiles arranged in a grid [6]
[7]. Each tile contains a programmable compute proces-
sor and programmable network interfaces. Of the four
DARPA sponsored projects, Raw most resembles an
FPGA with full processors in the place of logic blocks. A
primary contribution of the architecture was to keep
critical wire lengths small since the length of wires is not
scaling down as quickly as transistor geometries and
wire resistance increases as the wires get smaller [8].
This was accomplished by keeping the individual proc-
essors small and strictly limiting the network interfaces
to only point-to-point connections between adjacent tiles.
A company called Tilera now offers Raw architecture
chips commercially. Thus far, the Tilera chips have seen
success in network switches.

Smart Memories is a polymorphic computing archi-
tecture from Stanford University [9,10]. Each tile con-
tains four processors. Each individual processor is paired
with a private memory fabric that can be configured as
standard addressable memory, cache, streaming memory,
and (in a later version of the design) transactional mem-
ory [11]. Different combinations of these configurations
are available simultaneously. The primary contribution
of this project was the notion that memories, as well as
processing units, can be configured to exploit parallelism
to improve performance.

TRIPS is a polymorphic computing architecture from
the University of Texas at Austin [12-14]. Its primary
contributions were showing that a dataflow architecture
[15] can be used as the basis of a polymorphic computer,
showing how to implement a single processor in a fun-
damentally parallel fashion, and demonstrating that a von
Neumann instruction set can co-exist with a dataflow
instruction set. Dataflow instruction set architectures are
an idea from the mid-1970’s that allows data to be exe-
cuted upon as soon as it is available. It inherently sup-
ports parallel execution. Dataflow is a concept that is still
ahead of its time. It promises vast parallelization of pro-
grams, but no practical implementation of a dataflow
machine has yet fully emerged.

MONARCH is a combination of the University of
Southern California’s Data IntensiVe Architecture (DIVA)
RISC processor system [16-18] and Raytheon’s Field
Programmable Compute Array (FPCA) [19-21]. The
FPCA is essentially a systolic array of arithmetic and

Copyright © 2011 SciRes. CS

D. HENTRICH ET AL.

Copyright © 2011 SciRes. CS

360

memory units, and is the portion of the architecture that
makes MONARCH a polymorphic computer. MON-
ARCH’s primary contribution was the demonstration that
a polymorphic computing fabric can be based on a sim-
pler execution unit than a full microprocessor (like the
other three DARPA funded architectures). MONARCH
is currently in production and is used primarily for mili-
tary signal processing applications. For a list of other
polymorphic architectures, see also Hartenstein [22].

3. Current Trends in Polymorphic

Computing

A study of the existing architectures reveals the following
observations and trends in current polymorphic computer
design:

1) Polymorphic hardware architectures strongly tend to
be tile based. This allows designs to be scaled up by sim-
ply adding more tiles.

2) No clear “best processing cell” type has yet emerged.
3) Critical circuit path lengths are intentionally limited

to roughly the diameter of a tile. Smaller critical path
lengths allow higher clock frequencies to be utilized.

4) Network links tend to be point-to-point connections
between only directly adjacent tiles. This is an easily
scalable network strategy for tile based arrays. It also
supports the trend of limiting the length of critical paths
in the system.

5) Processing elements are trending toward simpler de-
signs compared to today’s single-core and multi-core
processors.

6) Configurable memories are an emerging trend.
7) Algorithms tend to be statically scheduled and placed

in the computing fabric. Programs tend to be compiled and
mapped to array elements at compile time, not runtime.

8) Polymorphic architectures require extensive com-
piler and software support.

9) Polymorphic computers support multiple different
programming models. Their fabrics tend be configurable
into SIMD units, pipelines, and systolic architectures.

10) There is a clear trend towards hybrid computer ar-
chitectures. For example, Raw tiles are a combination of a
compute processor and a network processor. MONARCH
is a collection of RISC processors combined with a con-
figurable systolic array.

11) Polymorphic architectures tend to have both cur-
rent and future scaling strategies. Most designs have cur-
rently available options to connect multiple chips together.
Additionally, tiled designs scale up easily by adding more
tiles.

4. Issues and Views

With regards to current polymorphic architectures, the

authors perceive that:
1) Dynamic processing balancing is not addressed by

current architectures. Process mapping is currently han-
dled as a design-time and compile-time problem.

2) Performance monitoring capabilities in current ar-
chitectures are lacking. Monitoring is necessary in order
to perform dynamic load balancing.

3) Processing control is either centralized or determined
pre-runtime. These are generally non-scalable techniques.
As systems get larger, centralized control will become a
bottleneck. Distributed control will become necessary.
Additionally, dynamic control will require runtime deci-
sions.

4) The rule, “direct communication links are strictly
limited to only between directly adjacent tiles” is too re-
strictive. This rule is in place in tiled architectures be-
cause it fits nicely with the tiling scalability strategy and
it helps limit the length of critical path wire lengths.
However, this can route some communication through
disinterested tiles and increase communication latencies.
This rule could be relaxed to allow direct communication
between neighboring, non-adjacent tiles.

5) The single processors at the heart of the tiles may be
too complicated. Most processing elements are pipelined.
This could prove to be too complicated for processing
elements.

6) Pure meshes of processor may not necessarily scale
with mesh size. The current square array tiling strategy
cannot be efficiently scaled indefinitely. All inputs and
outputs must enter and exit, respectively, through the
edges of the array. It is conceivable that arrays could be
scaled so large that it would be rare for execution graphs
to penetrate very far into the array before completing and
being routed back out. Interior array elements may be
underutilized. Other array geometries should be consid-
ered, such as rectangular arrays.

7) Debugging strategies must be built into polymor-
phic systems. Polymorphic computing systems are un-
avoidably complex. The ability to view machine state
and capture problems as they occur is vital.

5. A New Polymorphic Architecture

Given the trends and views in the current state of poly-
morphic computing, a new polymorphic computing ar-
chitecture is proposed (shown in Figure 2) in this work.
At a high level, the architecture is partitioned into a con-
figurable processing fabric and a configurable memory
fabric connected via a crossbar bus. The crossbar con-
tains a large number of channels and provides connec-
tivity for the entire system, including external processors
and the interrupt/event controller. In addition, the cross-
bar arbiter provides the ability to “park” channels on
particular connections between the processing fabric and

D. HENTRICH ET AL. 361

Configurable
Compute Fabric. . .

. . .

Agents

. . .

. . .

Crossbar Bus
Arbiter +
Address
Decoder

External
Interface

Configurable
Memory
Fabric

Event/
Interrupt

Controller

External Events

Trig Trig Trig Trig Trig Trig Trig TrigTriggers

Configurable
Processing

Fabric

Config-
urable
RAM
Bank

Config-
urable
RAM
Bank

Config-
urable
RAM
Bank

Config-
urable
RAM
Bank

Config-
urable
RAM
Bank

Config-
urable
RAM
Bank

Config-
urable
RAM
Bank

Config-
urable
RAM
Bank

. . .

..
.

..
.

..
.

Processing
Element

=

Network
Switch

=

Figure 2. Proposed polymorphic architecture.

the memory fabric to support consistent and determinis-
tic memory access times.

5.1. Memory Fabric

The memory fabric is composed of two types of compo-
nents: independent, configurable memory banks and
event triggers. Each memory bank has its own inde-
pendent connection to the crossbar. In addition, each
memory bank is associated with its own set of event
triggers. From a configuration perspective, each memory
bank can be selected as a traditional addressable memory,
a streaming memory (FIFO and burst modes), a transac-
tional memory [11], or a combination of the different
modes. Caching has intentionally been omitted as an
operational mode for deterministic memory access per-
formance reasons. It is also expected that if a “wider”
data path is needed, that the memory banks could be
ganged together into a single “wider” memory bank.

The event triggers are mechanisms that associate arbi-
trary addresses within a memory bank with system
events. They are akin to trace points and data breakpoints
in modern embedded microprocessors. These enable
writes to a particular memory location to be detected and

communicated to interested entities throughout the sys-
tem. The event triggers are a unique contribution of this
work.

5.2. Processing Fabric

The processing fabric is abstracted into two partitions: a
compute fabric and a layer of agents between the com-
pute fabric and the rest of the system (i.e. the bus and the
memories). The compute fabric is composed of a regular
array of processing elements. These can be arithmetic
logic units or simple microprocessors. The role of an
element in the compute fabric is to receive operands,
perform arithmetic operations upon them, and output the
results. Memory accesses are not an intended role for
compute fabric elements. The processing elements are
intended to be workers with only a very local view of the
system. They should only know how to do their assigned
jobs, know on which of their ports to receive inputs, and
know upon which of their ports to place their outputs.

The agents have a more global view of the system.
They are the “department managers” in the overall com-
putational enterprise. Their duties are to monitor for
events that are relevant to their assignments, perform

Copyright © 2011 SciRes. CS

D. HENTRICH ET AL.362

relevant memory accesses (both input and output), de-
liver/sequence inputs into the compute fabric, receive
outputs from the compute fabric, perform their own
transform functions to the data, and route the results to
the appropriate system location (which could be the
memory fabric, another agent, or an external location
accessible via the crossbar). The agents are expected to
be full microprocessors with their own local memories.

One of the reasons for distinguishing between agents
and processing elements is to recognize the distinction
between I/O bound algorithms and compute-bound algo-
rithms. The act of memory accesses (I/O) and the act of
computation are fundamentally different operations. Load/
store computing architectures (RISC) have long recog-
nized this distinction by providing completely separate
instructions for memory accesses and arithmetic opera-
tions. For example, search algorithms are typically
memory-bound operations and matrix operations are
typically compute-bound algorithms. Concurrent execu-
tion opportunities in both algorithm types can usually be
exploited to realize performance gains. In the case of a
search algorithm, most of the effort is in the memory
accesses. The search can typically be partitioned into
smaller concurrently executing jobs with an agent as-
signed to each independent search effort. In this case,
there is typically little reason to involve the processing
elements. The search may be executed with only a col-
lection of agents. On the other hand, matrix operations
require more arithmetic operations than memory accesses
and are easily parallelized. In this example, it is expected
that there would be one or more agents assigned to the
memory accesses and quite a few processing elements
assigned to exploit concurrency in the arithmetic.

Another reason for distinguishing between agents and
processing elements is geometric. Most processing ele-
ments are typically buried in the interior of a compute
fabric. They tend to be relatively distant from the memo-
ries and memory access mechanisms (buses). The ele-
ments that are in the most convenient place to access
memory are the elements on the edge of a compute fabric.
Consequently, the edge elements need to be burdened
with memory access circuitry. However, interior ele-
ments don’t necessarily need to be burdened with mem-
ory access circuitry if they are directly given their inputs
by neighboring elements. In this case, interior elements
can be made smaller and simpler than the fabric periph-
ery elements.

Yet another reason for distinguishing between agents
and processing elements is managerial. A polymorphic
system is expected to dynamically monitor loading and
algorithmic demands, and continually adjust its architec-
ture appropriately. Agents participate in this activity in a
distributed manner. However, not every element in the

fabric needs to participate in this activity and be bur-
dened with this capability (i.e. extra circuitry).

The compute fabric itself (not including the agents) is
composed of two types of elements: processing elements
and network switches. Within the compute array itself,
the roles of processing and routing are logically sepa-
rated. Consequently, there are two types of elements
within the array: processing elements and network ele-
ments. (Note, the agents are considered part of the over-
all processing fabric, but they are not included in the
compute fabric subset.)

5.3. Data and Control Networks

There are two classes of networks within the compute
fabric: a data network and a control network. All proc-
essing data are intended to be transmitted on the data
network and all configuration, management, monitoring,
and debug information are intended to be transmitted on
the control network.

The data network is a configurable routing fabric
composed of one or more channels that may be either
circuit-switched or packet-switched depending on the
implementation. All data network routing is performed
by the network switches. The data network connectivity
strategy is shown in Figure 3. The network switches are
connected with their neighboring network switches and
neighboring processing elements. However, processing
elements are only connected with the neighboring net-
work switches in the north and south directions. Proc-
essing elements are not directly connected together be-
cause they do not participate in data network routing.

The control network is a static network composed of
individual buses terminated on the system crossbar (see
Figure 4). Collectively, the buses map all agents, net-
work switches, and processing elements into a global
address space. Each “column” in the processing fabric
will get its own control bus with the agent acting as the
bus arbiter.

5.4. Polymorphism

The proposed system is polymorphic because the agents
and processing elements can be reconfigured into differ-
ent models. For instance, a pipelined processor might be
created with an agent and a single column of processing
elements; a SIMD unit could be created by arranging
several agents and processing units together in a parallel
fashion; and a systolic array could easily be configured
from the processing fabric. Collectively, the array could
be configured to cooperatively work on a single problem,
or partitioned into independent subunits to work on dif-
ferent problems utilizing different processing models.

Copyright © 2011 SciRes. CS

D. HENTRICH ET AL. 363

Network
Switch

Network
Switch

Network
Switch

Network
Switch

Network
Switch

Network
Switch

Processing
Element

Network
Switch

Network
Switch

Network
Switch

Network
Switch

Network
Switch

Network
Switch

Agent Agent Agent

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Figure 3. Data network.

Network
Switch

Processing
Element

Network
Switch

Processing
Element

Network
Switch

Processing
Element

Agent

System Crossbar
Crossbar
Interface

Shared
Bus with
Address,
Data, and
Control

lines

Network
Switch

Network
Switch

Processing
Element

Network
Switch

Processing
Element

Network
Switch

Processing
Element

Agent

Crossbar
Interface

Network
Switch

Network
Switch

Processing
Element

Network
Switch

Processing
Element

Network
Switch

Processing
Element

Agent

Crossbar
Interface

Network
Switch

Figure 4. Control Network.

The monitoring and load balancing capabilities of the
system are largely software-based. However, a series of
programmable counters are also built into the agents and

processing elements to facilitate system monitoring.

6. Conclusions

Overall, this work presents a definition of polymorphic
computers, briefly sketches the history and development
of the field, presents a list of trends occurring in the field,
lists a series of views on the current state of field, and
presents a novel polymorphic architecture. The signifi-
cant contributions of the architecture are a clean parti-
tioning between memory and computation, a method for
globally detecting system events (the triggers), the con-
cept of an agent, and a clear division of roles between
agents and processing elements.

7. References

[1] D. Harris, “Skew-Tolerant Circuit Design,” Morgan Kau-

fmann Publishers, Waltham, 2001.

[2] G. Estrin, “Organization of Computer Systems—The
Fixed Plus Variable Structure Computer,” Proceedings of
the Western Joint Computer Conference, New York, 3-5
May 1960, pp. 33-40.

[3] G. Estrin, “Reconfigurable Computer Origins: The UCLA
Fixed-Plus Variable (F+V) Structure Computer,” IEEE
Annals of the History of Computing, Vol. 24, No. 4, 2002,
pp. 3-9. doi:10.1109/MAHC.2002.1114865

[4] M. A. Baker and V. J. Coli, “The PAL20RA10 Story—
The Customization of a Standard Product,” IEEE Micro,
Vol. 6, No. 5, 1986, pp. 45-60.
doi:10.1109/MM.1986.304713

[5] R. Freeman, Configurable Electrical Circuit Having Con-
figurable Logic Elements and Configurable Interconnects,
US Patent No. 4,870,302, 26 September 1989.

[6] A. Agarwal, “Raw Computation,” Scientific American, Vol.
281, No. 2, pp. 60-63.
doi:10.1038/scientificamerican0899-60

[7] M. B. Taylor, et al., “The Raw Microprocessor: A Com-
putational Fabric for Software Circuits and General-
Purpose Programs,” IEEE Micro, Vol. 22, No. 2, 2002,
pp. 25-35. doi:10.1109/MM.2002.997877

[8] R. Ho, K. W. Mai and M. A. Horowitz, “The Future of
Wires,” Proceedings of the IEEE, Vol. 89, No. 4, 2001,
pp. 490-504. doi:10.1109/5.920580

[9] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally and
M. Horowitz, “Smart Memories: A Modular Reconfigur-
able Architecture,” Proceedings of the 27th International
Symposium on Computer Architecture, Vancouver, 14
June 2000, pp. 161-171.

[10] A. Firoozshahian, A. Solomatnikov, O. Shacham, Z. As-
gar, S. Richardson, C. Kozyrakis and M. Horowitz, “A
Memory System Design Framework: Creating Smart
Memories,” Proceedings of the 36th Annual International
Symposium on Computer Architecture, New York, 2009,
pp. 406-417.

Copyright © 2011 SciRes. CS

http://dx.doi.org/10.1109/MAHC.2002.1114865
http://dx.doi.org/10.1109/MM.1986.304713
http://dx.doi.org/10.1038/scientificamerican0899-60
http://dx.doi.org/10.1109/MM.2002.997877
http://dx.doi.org/10.1109/5.920580

D. HENTRICH ET AL.

Copyright © 2011 SciRes. CS

364

[11] M. Herlihy and J. E. B. Moss, “Transactional Memory:
Architectural Support for Lock-Free Data Structures,”
Proceedings of the 20th Annual Symposium on Computer
Architecture, San Diego, 16-19 May 1993, pp. 289-300.
doi:10.1109/ISCA.1993.698569

[12] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L.
K. John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald
and W. Yoder, “Scaling to the End of Silicon with EDGE
Architectures,” IEEE Computer, Vol. 37, No. 7, 2004, pp.
44-55.

[13] R. McDonald, D. Burger, S.W. Keckler, K. Sankaralin-
gam and R. Nagarajan, “TRIPS Processor Reference
Manual,” Technical Report, Department of Computer
Sciences, The University of Texas at Austin, Austin,
2005.

[14] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P.
Gratz, M. Marino, N. Ranganathan, B. Robatmili, A.
Smith, J. Burrill, S. W. Keckler, D. Burger and K. S.
McKinley, “An Evaluation of the TRIPS Computer Sys-
tem (Extended Technical Report),” Technical Report
TR-08-31, Department of Computer Sciences, The Uni-
versity of Texas at Austin, Austin, 2008.

[15] J. B. Dennis and D. P. Misunas, “A Preliminary Archi-
tecture for a Basic Dataflow Processor,” Proceedings of
the 2nd Annual Symposium on Computer Architecture
New York, 1975, pp. 126-132.
doi:10.1145/642089.642111

[16] J. Draper, J. Sondeen, S. Mediratta and I. Kim, “Imple-
mentation of a 32-Bit RISC Processor for the Data-Inten-
sive Architecture Processing-in Memory Chip,” Pro-
ceedings of the IEEE International Conference on Appli-

cation-Specific Systems, Architectures, and Processors,
San Jose, 17-19 July 2002, pp. 163-172.
doi:10.1109/ASAP.2002.1030716

[17] J. Draper, J. Sondeen and C. W. Kang, “Implementation
of a 256-Bit Wide-Word PROCESSOr for the Data-In-
tensive Architecture (DIVA) Processing in Memory (PIM)
Chip,” Proceedings of the 28th European Solid-State
Circuits Conference, Florence, 2002, pp. 77-80.

[18] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. La-
Coss, J. Granacki, J. Shin, C. Chen, C. W. Kang, I. Kim
and G. Daglikoca, “The Architecture of the DIVA Proc-
essing-in-Memory Chip,” Proceedings of the 16th Inter-
national Conference on Supercomputing 2002, New York,
2002, pp. 14-25.

[19] J. Granacki, and M. Vahey,” MONARCH: A Morphable
Networked Micro-ARCHitecture,” Technical Report,
USC/Information Sciences Institute and Raytheon, Ma-
rina del Rey, May 2003.

[20] J. J. Granacki, “MONARCH: Next Generation SoC (Su-
percomputer on a Chip),” Technical Report, USC/Infor-
mation Sciences Institute, Marina del Rey, February 2005.

[21] K. Prager, L. Lewins, M. Vahey and G. Groves, “World’s
First Polymorphic Computer—MONARCH,” 11th An-
nual High Performance Embedded Computing Workshop
2007, 2007.
http://www.ll.mit.edu/HPEC/agendas/proc07/agenda.html

[22] R. Hartenstein, “A Decade of Reconfigurable Computing:
A Visionary Retrospective,” Proceedings of the Confer-
ence on Design, Automation and Test in Europe 2001,
Munich, 13-16 March 2001, pp. 642-649.
doi:10.1109/DATE.2001.915091

http://dx.doi.org/10.1109/ISCA.1993.698569
http://dx.doi.org/10.1145/642089.642111
http://dx.doi.org/10.1109/ASAP.2002.1030716
http://dx.doi.org/10.1109/DATE.2001.915091

