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Abstract 
 
Polymorphic computing is widely seen as next evolutionary step in designing advanced computing architec-
tures. This paper presents a brief history of reconfigurable and polymorphic computing, and highlights the 
recent trends and challenges. A novel polymorphic architecture featuring programmable memory event trig-
gers and a new concept of control agents is proposed. This architecture can provide dynamic load balancing, 
distributed control, separated memory and processing fabrics, configurable memory blocks, and task-opti-
mized computation. 
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1. Introduction 
 
Microprocessor performance has advanced at a staggering 
pace during the past two decades. This can be attributed to: 

1) Circuit architectural improvements, 
2) Scaling of transistor sizes down, and 
3) Scaling of clock frequency up. 
Historically, each of the categories has contributed 

equally to the general performance increase [1]. Unfortu-
nately, the rate of improvement in all of these areas is 
slowing or showing signs of slowing. Continual innova-
tions in these areas are required to maintain the pace of 
improvement.  

Polymorphic computing is a circuit architectural im-
provement technique that promises to improve overall 
computing performance. This work presents a definition of 
polymorphic computing, a brief history of the field of po-
lymorphic computing, a summary of the current trends, a 
set of views on the current state of the field, and a novel 
polymorphic architecture. 

 
2. Definition and History of Polymorphic 

Computing 
 

The definition of a polymorphic computer is a computing 
machine that can dynamically arrange the underlying 
hardware computing architecture model in both time and 
space to match the computational demands of the mo-
ment. Figure 1 shows how polymorphic computing sits 

in the set of all types of computation. 
General computing is the set of all possible types of 

computation (i.e. any physical system that has a set of 
inputs and outputs). Static computing is the subset of 
general computing where the program (transfer function) 
is fixed in a device. Examples of static computing are 
simple NAND circuits, ASICs, and computers where the 
program is ROM’ed. On the other hand, programmable 
computing is composed of the set of computing devices 
where the program (transfer function) is intentionally 
changeable after manufacturing time. The programs may 
be hardware-based and/or software-based. Reconfigur-
able computing is the proper subset of general computing 
where the hardware configuration can be changed after 
manufacturing time. PLDs and FPGAs are the best ex-
amples of reconfigurable computing. Polymorphic com-
puting is the proper subset of reconfigurable computing 
that includes devices that can reconfigure their hardware 
in time and space during runtime. FPGAs that can be 
configured only at startup time are reconfigurable com-
puting devices, but not polymorphic computing devices. 
However, FPGAs that can be partially configured during 
runtime are both reconfigurable and polymorphic com-
puting devices. 

The history of polymorphic computing begins with the 
history of reconfigurable computing. The earliest 
thoughts for the creation of a reconfigurable computer 
were from Gerald Estrin of UCLA in 1960 [2]. His idea 
was to create a computer where the hardware could be  
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Figure 1. Categories of computing. 
 
reconfigured to match the computational demands of the 
program. (In those days, a single computer filled an en-
tire room and a single processor inhabited one or more 
equipment racks.) Research work on reconfigurable 
computing continued at UCLA under Estrin’s leadership 
through the 1960s and 1970s [3]. Estrin’s idea was about 
40 years before its time and pre-dates the invention of 
the microprocessor.  

The industrial origins of reconfigurable computing lie 
in the creation of programmable logic devices (PLDs) in 
the 1970s. These early devices were simply fixed arrays 
of AND and OR gates where the connections could be 
configured (usually just once) after manufacturing time. 
The key ideas that emerged from PLDs were that hard-
ware could be configured by the users rather than the 
manufacturer and that the configuration of the circuits 
could be generated using software. PALASM and ABEL 
are early examples of the languages and tools for gener-
ating custom circuits in PLDs [4].  

The next big advance in reconfigurable computing was 
the invention of the field programmable logic array 
(FPGA) in 1984 by Ross Freeman (one of the founders 
of Xilinx, Inc.) [5]. The important innovations were: 

1) a programmable signal routing fabric, 
2) a flexible logic cell that could perform any logic 

function, 
3) arranging the logic cells in a tiled manner, and 
4) configuration of the configurable logic at device 

start-up time. 
Freeman’s seminal observation was that the transistor 

density penalties of configurable logic devices would be 
more than offset by the transistor manufacturing density 
increases described by Moore’s law and the efficiencies 
realized in circuit design effort. FPGAs are the general 
template for reconfigurable computing and polymorphic 
computing devices.  

Polymorphic computing is the next logical step in the 
advancement of reconfigurable computing. Essentially, 
the hardware architecture can be deliberately modified 
during runtime to improve performance. The perform-
ance improvements all come from exploitations of paral-
lelization (coarse-grained and/or fine-grained parallel-
ism). A general trend (but not a rule) is that polymorphic 

computers are similar to FPGAs with small microproc-
essors in the place of configurable logic blocks.  

In the late 1990’s and early 2000’s, DARPA funded 
several promising polymorphic computing architectures: 
Raw, Smart Memories, TRIPS, and MONARCH. Of 
these, Raw and MONARCH have transitioned to com-
mercial products.  

The Raw architecture was developed at MIT and is a 
replicated series of identical tiles arranged in a grid [6] 
[7]. Each tile contains a programmable compute proces-
sor and programmable network interfaces. Of the four 
DARPA sponsored projects, Raw most resembles an 
FPGA with full processors in the place of logic blocks. A 
primary contribution of the architecture was to keep 
critical wire lengths small since the length of wires is not 
scaling down as quickly as transistor geometries and 
wire resistance increases as the wires get smaller [8]. 
This was accomplished by keeping the individual proc-
essors small and strictly limiting the network interfaces 
to only point-to-point connections between adjacent tiles. 
A company called Tilera now offers Raw architecture 
chips commercially. Thus far, the Tilera chips have seen 
success in network switches.  

Smart Memories is a polymorphic computing archi-
tecture from Stanford University [9,10]. Each tile con-
tains four processors. Each individual processor is paired 
with a private memory fabric that can be configured as 
standard addressable memory, cache, streaming memory, 
and (in a later version of the design) transactional mem- 
ory [11]. Different combinations of these configurations 
are available simultaneously. The primary contribution 
of this project was the notion that memories, as well as 
processing units, can be configured to exploit parallelism 
to improve performance.  

TRIPS is a polymorphic computing architecture from 
the University of Texas at Austin [12-14]. Its primary 
contributions were showing that a dataflow architecture 
[15] can be used as the basis of a polymorphic computer, 
showing how to implement a single processor in a fun-
damentally parallel fashion, and demonstrating that a von 
Neumann instruction set can co-exist with a dataflow 
instruction set. Dataflow instruction set architectures are 
an idea from the mid-1970’s that allows data to be exe-
cuted upon as soon as it is available. It inherently sup-
ports parallel execution. Dataflow is a concept that is still 
ahead of its time. It promises vast parallelization of pro-
grams, but no practical implementation of a dataflow 
machine has yet fully emerged.  

MONARCH is a combination of the University of 
Southern California’s Data IntensiVe Architecture (DIVA) 
RISC processor system [16-18] and Raytheon’s Field 
Programmable Compute Array (FPCA) [19-21]. The 
FPCA is essentially a systolic array of arithmetic and 
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memory units, and is the portion of the architecture that 
makes MONARCH a polymorphic computer. MON- 
ARCH’s primary contribution was the demonstration that 
a polymorphic computing fabric can be based on a sim- 
pler execution unit than a full microprocessor (like the 
other three DARPA funded architectures). MONARCH 
is currently in production and is used primarily for mili-
tary signal processing applications. For a list of other 
polymorphic architectures, see also Hartenstein [22]. 
 
3. Current Trends in Polymorphic  

Computing 
 

A study of the existing architectures reveals the following 
observations and trends in current polymorphic computer 
design: 

1) Polymorphic hardware architectures strongly tend to 
be tile based. This allows designs to be scaled up by sim-
ply adding more tiles. 

2) No clear “best processing cell” type has yet emerged. 
3) Critical circuit path lengths are intentionally limited 

to roughly the diameter of a tile. Smaller critical path 
lengths allow higher clock frequencies to be utilized. 

4) Network links tend to be point-to-point connections 
between only directly adjacent tiles. This is an easily 
scalable network strategy for tile based arrays. It also 
supports the trend of limiting the length of critical paths 
in the system. 

5) Processing elements are trending toward simpler de-
signs compared to today’s single-core and multi-core 
processors. 

6) Configurable memories are an emerging trend. 
7) Algorithms tend to be statically scheduled and placed 

in the computing fabric. Programs tend to be compiled and 
mapped to array elements at compile time, not runtime. 

8) Polymorphic architectures require extensive com-
piler and software support. 

9) Polymorphic computers support multiple different 
programming models. Their fabrics tend be configurable 
into SIMD units, pipelines, and systolic architectures. 

10) There is a clear trend towards hybrid computer ar-
chitectures. For example, Raw tiles are a combination of a 
compute processor and a network processor. MONARCH 
is a collection of RISC processors combined with a con-
figurable systolic array. 

11) Polymorphic architectures tend to have both cur-
rent and future scaling strategies. Most designs have cur-
rently available options to connect multiple chips together. 
Additionally, tiled designs scale up easily by adding more 
tiles. 
 
4. Issues and Views 
 
With regards to current polymorphic architectures, the 

authors perceive that: 
1) Dynamic processing balancing is not addressed by 

current architectures. Process mapping is currently han-
dled as a design-time and compile-time problem. 

2) Performance monitoring capabilities in current ar-
chitectures are lacking. Monitoring is necessary in order 
to perform dynamic load balancing. 

3) Processing control is either centralized or determined 
pre-runtime. These are generally non-scalable techniques. 
As systems get larger, centralized control will become a 
bottleneck. Distributed control will become necessary. 
Additionally, dynamic control will require runtime deci- 
sions. 

4) The rule, “direct communication links are strictly 
limited to only between directly adjacent tiles” is too re-
strictive. This rule is in place in tiled architectures be-
cause it fits nicely with the tiling scalability strategy and 
it helps limit the length of critical path wire lengths. 
However, this can route some communication through 
disinterested tiles and increase communication latencies. 
This rule could be relaxed to allow direct communication 
between neighboring, non-adjacent tiles. 

5) The single processors at the heart of the tiles may be 
too complicated. Most processing elements are pipelined. 
This could prove to be too complicated for processing 
elements. 

6) Pure meshes of processor may not necessarily scale 
with mesh size. The current square array tiling strategy 
cannot be efficiently scaled indefinitely. All inputs and 
outputs must enter and exit, respectively, through the 
edges of the array. It is conceivable that arrays could be 
scaled so large that it would be rare for execution graphs 
to penetrate very far into the array before completing and 
being routed back out. Interior array elements may be 
underutilized. Other array geometries should be consid-
ered, such as rectangular arrays. 

7) Debugging strategies must be built into polymor-
phic systems. Polymorphic computing systems are un-
avoidably complex. The ability to view machine state 
and capture problems as they occur is vital. 

 
5. A New Polymorphic Architecture 

 
Given the trends and views in the current state of poly-
morphic computing, a new polymorphic computing ar-
chitecture is proposed (shown in Figure 2) in this work. 
At a high level, the architecture is partitioned into a con-
figurable processing fabric and a configurable memory 
fabric connected via a crossbar bus. The crossbar con-
tains a large number of channels and provides connec-
tivity for the entire system, including external processors 
and the interrupt/event controller. In addition, the cross-
bar arbiter provides the ability to “park” channels on 
particular connections between the processing fabric and 
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Figure 2. Proposed polymorphic architecture. 
 
the memory fabric to support consistent and determinis-
tic memory access times. 
 
5.1. Memory Fabric 
 
The memory fabric is composed of two types of compo-
nents: independent, configurable memory banks and 
event triggers. Each memory bank has its own inde-
pendent connection to the crossbar. In addition, each 
memory bank is associated with its own set of event 
triggers. From a configuration perspective, each memory 
bank can be selected as a traditional addressable memory, 
a streaming memory (FIFO and burst modes), a transac-
tional memory [11], or a combination of the different 
modes. Caching has intentionally been omitted as an 
operational mode for deterministic memory access per-
formance reasons. It is also expected that if a “wider” 
data path is needed, that the memory banks could be 
ganged together into a single “wider” memory bank.  

The event triggers are mechanisms that associate arbi-
trary addresses within a memory bank with system 
events. They are akin to trace points and data breakpoints 
in modern embedded microprocessors. These enable 
writes to a particular memory location to be detected and 

communicated to interested entities throughout the sys-
tem. The event triggers are a unique contribution of this 
work. 
 
5.2. Processing Fabric 
 
The processing fabric is abstracted into two partitions: a 
compute fabric and a layer of agents between the com-
pute fabric and the rest of the system (i.e. the bus and the 
memories). The compute fabric is composed of a regular 
array of processing elements. These can be arithmetic 
logic units or simple microprocessors. The role of an 
element in the compute fabric is to receive operands, 
perform arithmetic operations upon them, and output the 
results. Memory accesses are not an intended role for 
compute fabric elements. The processing elements are 
intended to be workers with only a very local view of the 
system. They should only know how to do their assigned 
jobs, know on which of their ports to receive inputs, and 
know upon which of their ports to place their outputs. 

The agents have a more global view of the system. 
They are the “department managers” in the overall com-
putational enterprise. Their duties are to monitor for 
events that are relevant to their assignments, perform 
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relevant memory accesses (both input and output), de-
liver/sequence inputs into the compute fabric, receive 
outputs from the compute fabric, perform their own 
transform functions to the data, and route the results to 
the appropriate system location (which could be the 
memory fabric, another agent, or an external location 
accessible via the crossbar). The agents are expected to 
be full microprocessors with their own local memories.  

One of the reasons for distinguishing between agents 
and processing elements is to recognize the distinction 
between I/O bound algorithms and compute-bound algo-
rithms. The act of memory accesses (I/O) and the act of 
computation are fundamentally different operations. Load/ 
store computing architectures (RISC) have long recog- 
nized this distinction by providing completely separate 
instructions for memory accesses and arithmetic opera- 
tions. For example, search algorithms are typically 
memory-bound operations and matrix operations are 
typically compute-bound algorithms. Concurrent execu- 
tion opportunities in both algorithm types can usually be 
exploited to realize performance gains. In the case of a 
search algorithm, most of the effort is in the memory 
accesses. The search can typically be partitioned into 
smaller concurrently executing jobs with an agent as- 
signed to each independent search effort. In this case, 
there is typically little reason to involve the processing 
elements. The search may be executed with only a col- 
lection of agents. On the other hand, matrix operations 
require more arithmetic operations than memory accesses 
and are easily parallelized. In this example, it is expected 
that there would be one or more agents assigned to the 
memory accesses and quite a few processing elements 
assigned to exploit concurrency in the arithmetic. 

Another reason for distinguishing between agents and 
processing elements is geometric. Most processing ele-
ments are typically buried in the interior of a compute 
fabric. They tend to be relatively distant from the memo-
ries and memory access mechanisms (buses). The ele-
ments that are in the most convenient place to access 
memory are the elements on the edge of a compute fabric. 
Consequently, the edge elements need to be burdened 
with memory access circuitry. However, interior ele-
ments don’t necessarily need to be burdened with mem-
ory access circuitry if they are directly given their inputs 
by neighboring elements. In this case, interior elements 
can be made smaller and simpler than the fabric periph-
ery elements.  

Yet another reason for distinguishing between agents 
and processing elements is managerial. A polymorphic 
system is expected to dynamically monitor loading and 
algorithmic demands, and continually adjust its architec-
ture appropriately. Agents participate in this activity in a 
distributed manner. However, not every element in the 

fabric needs to participate in this activity and be bur-
dened with this capability (i.e. extra circuitry).  

The compute fabric itself (not including the agents) is 
composed of two types of elements: processing elements 
and network switches. Within the compute array itself, 
the roles of processing and routing are logically sepa-
rated. Consequently, there are two types of elements 
within the array: processing elements and network ele-
ments. (Note, the agents are considered part of the over-
all processing fabric, but they are not included in the 
compute fabric subset.)  

 
5.3. Data and Control Networks 

 
There are two classes of networks within the compute 
fabric: a data network and a control network. All proc-
essing data are intended to be transmitted on the data 
network and all configuration, management, monitoring, 
and debug information are intended to be transmitted on 
the control network.  

The data network is a configurable routing fabric 
composed of one or more channels that may be either 
circuit-switched or packet-switched depending on the 
implementation. All data network routing is performed 
by the network switches. The data network connectivity 
strategy is shown in Figure 3. The network switches are 
connected with their neighboring network switches and 
neighboring processing elements. However, processing 
elements are only connected with the neighboring net-
work switches in the north and south directions. Proc-
essing elements are not directly connected together be-
cause they do not participate in data network routing. 

The control network is a static network composed of 
individual buses terminated on the system crossbar (see 
Figure 4). Collectively, the buses map all agents, net-
work switches, and processing elements into a global 
address space. Each “column” in the processing fabric 
will get its own control bus with the agent acting as the 
bus arbiter. 
 
5.4. Polymorphism 
 
The proposed system is polymorphic because the agents 
and processing elements can be reconfigured into differ-
ent models. For instance, a pipelined processor might be 
created with an agent and a single column of processing 
elements; a SIMD unit could be created by arranging 
several agents and processing units together in a parallel 
fashion; and a systolic array could easily be configured 
from the processing fabric. Collectively, the array could 
be configured to cooperatively work on a single problem, 
or partitioned into independent subunits to work on dif-
ferent problems utilizing different processing models. 
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Figure 3. Data network. 
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Figure 4. Control Network. 
 

The monitoring and load balancing capabilities of the 
system are largely software-based. However, a series of 
programmable counters are also built into the agents and 

processing elements to facilitate system monitoring. 
 
6. Conclusions 
 
Overall, this work presents a definition of polymorphic 
computers, briefly sketches the history and development 
of the field, presents a list of trends occurring in the field, 
lists a series of views on the current state of field, and 
presents a novel polymorphic architecture. The signifi-
cant contributions of the architecture are a clean parti-
tioning between memory and computation, a method for 
globally detecting system events (the triggers), the con-
cept of an agent, and a clear division of roles between 
agents and processing elements. 
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