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Abstract 
 
In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop 
simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived test is 
designed for growing p and fixed n where the conventional F-test is no longer appropriate. The asymptotic 
distribution of the proposed test statistic under the null hypothesis is obtained. 
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1. Introduction 
 
Some high dimensional data, such as gene expression 
datasets in microarray, exhibits the property that the 
number of covariates greatly exceeds the sample size. 
The discovery of “large p, small n” paradigm brings 
challenges to many traditional statistical methods, and 
thus the asymptotic properties of various estimators 
when p goes to infinity much faster than n have been 
discussed (see [1-3]). Reference [1] considered uniform 
convergence for a large number of marginal discrepancy 
measures targeted on univariate distributions, means and 
medians. Reference [3] proposed a two sample test on 
high dimensional means. Both of these aforementioned 
articles considered testing under “large p, small n” 
without a regression structure, which the present article 
concentrates on.  

Zhong and Chen in [4] proposed a test statistic for 
testing the regression coefficients in linear models when 
p/n → ρ in (0,1). As in microarray data, the number of 
genes (p) is in the order of thousands whereas the sample 
size (n) is much less, usually less than 50 due to 
limitation for replications. The fact results in p going to 
infinity and thus I think the consideration of p going to 
infinity and n remains constant is more practical.  

Covariate selection for high dimensional linear regres- 
sion has received considerable attention in recent years. 
Penalizing methods are alternatives to the traditional 
least squares estimator for shrinkage estimation as in [5, 
6]. Shao and Chow in [7] proposed a variable screening 
method using ridge estimators as both p and n go to 
infinity. In contrast to the assumptions in the literature, I 

consider “large p, fixed n” setting in linear models for 
variable selection. Testing hypothesis on the regression 
coefficients is critical in determining the effects of 
covariates on certain outcome variable. Motivated by the 
latest need in biology to identify significant sets of genes, 
rather than individual gene, I aim at developing simultan- 
eous tests for coefficients in linear regression models.  

The partial linear models have been extensively 
studied. They have a wide range of applications, from 
statistics to biomedical sciences. In these models, some 
of the relations are believed to be of certain parametric 
form while others are not easily parameterized. Several 
approaches have been developed to construct estimators. 
A profile likelihood approach was used in [8,9]. In this 
article, I apply a difference based estimation method in 
the partial linear models. The method of taking differ- 
ences to eliminate the effect of the unknown nonpa- 
rametric component has been used in both nonparametric 
and semiparametric settings. Rice in [10] first introduced 
a differencing estimator of the residual variance. Horo- 
witz and Spokoiny in [11] used the differencing method 
to test between a parametric model and a nonparametric 
alternative. After taking the differences to eliminate the 
bias induced from the nonparametric term, I concentrate 
attention on estimating the linear component and then 
formulate the test statistic for testing the linear compo- 
nents.  

The article begins with the conventional F-test. I will 
then discuss the efficiency of ridge estimator and pro- 
pose a new test statistic for “large p, fixed n” setting. The 
asymptotic distribution of the proposed test statistic 
under null hypothesis is established. Extensions to partial 
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linear models are then made in Section 3. 
 
2. Test Statistics 
 
Consider a linear regression model 

Y = Xβ + ε              (1) 

where X = (X1, X2, ..., Xn)' are independent and identi- 
cally distributed observation matrix, covariates Xi1, Xi2,..., 
Xip are uncorrelated, Y = (Y1, Y2, ..., Yn)' are in- de-
pendent responses, β is the p × 1 vector of regression 
coefficients, and  2N 0, p nI   I am interested in test- 
ing a high-dimensional hypothesis  

0 0 1H :   vs  H : 0            (2) 

for a specific β0 in Rp. 
 
2.1. F-Test for “Large n, Small p” 
 
I will start from reviewing the F-test for hypothesis (2) 
by Rao in [12]. When we have a large sample size, we 
can use least squares method to estimate the coefficients. 
The least squares estimator is   = (X'X)–1X'Y. The 
conventional test for (2) is given by  

   
     

0 0

,

X X

Y X Y X
n p

p
F

n p

   

 

  


  

 

 
     (3) 

As proven in [12], under H0, Fn,p ~ Fp,n-p. Hence, an α- 
level F-test rejects H0 if Fn,p > Fp,n-p;α, the upper α- 
quantile of the Fp,n-p distribution. The F statistic is a 
monotone function of the likelihood ratio statistic and is 
distributed as a noncentral F distribution under the alter- 
native (see [13]). 
 
2.2. A New Test Statistic for “Large p, Fixed n” 
 
I have seen a limitation with the F-test defined in Equa- 
tion (3): it can not be applied to large p and small n. As 
more and more datasets exhibit larger dimension than 
sample size, we are in need to formulate a test statistic to 
suit the large “p and small n” paradigm. Because least 
squares estimator   is inappropriate when p > n, I 
modify the F-statistic in two aspects. One is to replace 
the least squares estimator with an appropriate estimator 
of β. The second is to find the asymptotic distribution of 
the new test statistic.  

To overcome the singularity of X'X when p > n in 
model (1), consider using penalizing methods. The ridge 
estimator ̂  of β in [14] is  

̂  = (X'X + p ph I )–1·X'Y         (4) 

where hp is the regularization parameter. Luo in [15] 
proved that the ̂  in Equation (4) is mean squared er- 

ror consistent of β under certain conditions. More re- 
cently, Luo in [16] proved the mean squared error con- 
sistency under less restrictive conditions. The assump- 
tions and the results in [16] are given below.  

Assumption A. 1/hp = o(1). For sufficiently large p, 
there is a vector bp×1 such that β = X'Xb. Furthermore, 
there exists a constant ε > 0 such that each component of 
bp×1 is  1O 1 p  .  

Assumption B. σp and hp are chosen such that p–ε·hp = 
o(1) and σp =o(hp

0.5).  
It was proven in [16] that under the Assumption A and  

B,      2ˆbias O o 1p pj h    and  

     2ˆvar O o 1i p ph   . In this article, I will take  

the opportunity to explore more concise asymptotic re-
sults about ̂  under Assumption A and B. Because 
X'X can have at most n positive eigenvalues, without 
loss of generality, let λip be the ith nonzero eigenvalue of 
X'X and assume λip > 0 for all i = 1, 2, ..., n. Let Г = 
(τij)p×p be an orthogonal matrix such that 

X'X = Г
   

     

n p n n p n

p n n p n p n

O

O O

   

    

 
 
  

Г' 

where Λn×n is a diagonal matrix with elements λip, i = 1, 
2, ..., n.  

Theorem 1. Under Assumption A and B, given that 
the p covariates are uncorrelated, if hp is chosen such that 
p–ε/2hp/σp = o(1) and λip = o(hp) for all i =1, 2, ..., n, I have 

    n
ˆ N 0,diag X Xp

p

h
 


   

where diag(X'X) means the diagonal matrix with diago- 
nal elements of X'X. 

Proof. 
Because the random error ϵ is multivariate normal, ̂  

is a multivariate normal.  

     
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     

-

 

where A = (
X X

ph


 + pI )–1 is a diagonal matrix with i = 1, 

2, ..., n as first n diagonal elements, and the rest (p – n) 
diagonal elements all equal to 1. So 
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 
 

2 2
2

2 21
ˆvar

np p
j iji

p p ip

h

h h

 
 







 ip  

for all j = 1, 2, ..., p. 
Under the assumption λip = o(hp) for all i = 1, 2, ..., n,  

 
2

2
lim 1p

p
p ip

h

h 



for all i = 1, 2, ..., n.  

Notice that 2
1

n
i ij ip   λip is the jth diagonal element of 

X'X, we have  

   
2

2
ˆlim var diag X Xp

j jp
p

h



  for all j = 1, 2, ..., p. 

where diag(X’X)j means the jth diagonal element of X’X. 
Given that the p covariates are uncorrelated, I conclude  

  
2

2
ˆlim cov diag X Xp

p
p

h



          (5) 

As in [16], the bias( ˆ
j ) = O(p–εhp) = o(1), the assump- 

tion that p–ε/2hp/σp = o(1) guarantees bias( ˆ
j )hp/σp = o(1). 

Along with result in (5), that completes the proof for 
Theorem 1.  

Now I can modify the Fn,p to a test statistic for “large p, 
fixed n” paradigm. Define  

   
      

,
12

0

ˆ ˆ

ˆ ˆdiag X X
n p

p

Y X Y X
G

h

 

   


 


  0 p
.  (6) 

Under assumption A and B, as p → ∞, ̂  in Equation 
(4) is mean squared error consistent of β which implies 
̂  converges in probability to β. Apply the continuous 
mapping theorem,  

   

   

2

2 2

ˆ ˆ
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ˆ ˆ
            

p

p p
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which is χn
2 distribution. Under H0

 as p → ∞, by Theo- 
rem 1,  

      
2

1

0 02
ˆ ˆdiag X Xp

p

h
  




    

converges to χp
2 distribution. By Law of large numbers,  

      
2

1

02
ˆ ˆdiag X Xp

p

h
p   




  0  

converges to 1. Apply the Slutsky’s theorem, I conclude 
that under H0, test statistic Gn,p in Equation (6) converges 

in distribution to χn
2 as p → ∞ and n is a fixed constant. 

Hence, an α-level Gn,p statistic rejects H0 if Gn,p > χn;α
2, 

the upper α quantile of the χn
2 distribution. 

 
3. Extension to Partial Linear Models 
 
Partial linear models are more flexible than standard 
linear models. They can be a suitable choice when one 
suspects that the response Y linearly depends on X, but 
Y is nonlinearly related to Z. Consider a fix design 
version of the partial linear model which has the matrix 
form 

Y = Xβ + f(Z) + ϵ           (7) 

where Y = (Y1, Y2, ..., Yn+1)', X is a (n + 1) × p matrix 
whose ith row is given by xi, the p covariates of xi are 
uncorrelated and ϵ = (ϵ1, ϵ2, ..., ϵn+1)' is normally 
distributed with a mean vector 0 and covariance matrix 

2
1p nI  . Estimators of the linear component for n > p 

situation have been discussed in [17-19]. The methods 
are not applicable for p > n, I propose the following 
procedure to obtain a statistic for hypothesis (2) in partial 
linear model (7). Assume the sequence {zi}→ c0 as p → 
∞, for all i = 1, 2, ..., n + 1, where c0 is a finite constant. 
The unknown function f is continuous at point c0. 

Consider  

yi+1 – yi = (xi+1 – xi)β + f(zi+1) – f(zi) + ϵi+1 – ϵi. 
(8) 

Since zi → c0 for all i = 1, 2, ..., n + 1, for any ψ > 0, 
there exists a large enough p value so that we have 

1 1 0max i n iz c      . 
Function f is continuous at point c0, so for a large 

enough p, we have  

   1 1 0max i n if z f c      , 

which implies that for a finite n,   

   1 0
1
max (1)i

i n
f z f z o 

          (9) 

Define a matrix 



1 1 0 0 0

0 1 1 0 0
D 1

0 0 0 1 1

n n

 
     
 
 

 







.   (10) 

We now consider the matrix form of Equation (8), 
which is  

DY = DXβ + Df(Z) + Dϵ.        (11) 

Because of Equation (9), I can ignore the presence of 
nonparametric part in model (11). Thus, (11) becomes  

DY = DXβ + Dϵ             (12) 
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where matrix D is given in (10). Luo in [20] examined 
the asymptotic distribution of ridge estimator of β in (12). 
Obviously the random errors Dϵ are not independent and 
thus the following procedure is crucial for the extension 
of previous results. Without loss of generality, assume 
sample size n is even. Define (see Equations (13) and 
(14)). 

So Equation (12) becomes 

D1Y = D1Xβ + D1ϵ            (15) 

and  

D2Y = D2Xβ + D2ϵ.            (16) 

Notice that D1ϵ ~ N(0, σp
2In/2) and D2ϵ ~ N(0, σp

2In/2). 
Now I can apply the results in Section 2.2 in model (15) 
and model (16). It follows that the two statistics for 
testing hypothesis (2) in model (15) and (16) are given 
by 

   
      

1 1 1 1 1 11
, 1

2
1 0 1 1 1 0

ˆ ˆD Y D X D Y D X
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n p

p

G
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 

   


 


  ˆ P
 

and  
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2 2 2 2 2 22
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2
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  ˆ P
 

where 1̂  = (X'D1'D1X + p ph I )–1X'D1'D1Y and 2̂  = 

(X'D2'D2X + p ph I )–1X'D2'D2Y. When all assumptions 

for Theorem 1 hold, under H0, both  and  

converge in distribution to χn
2 as p → ∞. Hence, the de-  

1
,n pG 2

,n pG

cision rule is we reject H0 if min( , ) > 1
,n pG 2

,n pG
2

;
2

n    

and otherwise, fail to reject H0. 
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