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Abstract 
 
Inference for the difference of two independent normal means has been widely studied in staitstical literature. 
In this paper, we consider the case that the variances are unknown but with a known relationship between 
them. This situation arises frequently in practice, for example, when two instruments report averaged re-
sponses of the same object based on a different number of replicates, the ratio of the variances of the re-
sponse is then known, and is the ratio of the number of replicates going into each response. A likelihood 
based method is proposed. Simulation results show that the proposed method is very accurate even when the 
sample sizes are small. Moreover, the proposed method can be extended to the case that the ratio of the vari-
ances is unknown. 
 
Keywords: Behrens-Fisher Problem, Canonical Parameter, Exponential Family Model, Likelihood Based 

Inference, Modified Signed Log-Likelihood Ratio Statistic, Satterthwaite Method 

1. Introduction 
 
Inference for the difference of two independent normal 
means is omnipresent in statistical practice and is intro-
duced in most introductory staitstics texts. Typically, the 
variances are assumed to be unknown and must be esti-
mated. When we assume equal variances, then a pooled 
estimate of the common variance is used and the test 
statistic is exactly distributed as a t-distribution. How-
ever, without making the equality of variances assump-
tion, the problem is then the well-known Behrens-Fisher 
problem, where no exact distribution of the test statistic 
is available. Although there exists many approximate 
solutions for this problem, most statistical software 
packages use the Satterthwaite solution, where the test 
statistic is approximately distributed as a t-distribution. 
Maity & Sherman [1] considered the Behrens-Fisher 
problem with an additional assumption that one of the 
variances is known, and a Satterthwaite type solution is 
obtained. Wong & Wu [2] examined the problem con-
sidered by Maity & Sherman [1] and derived a likelihood 
based asymptotic solution, which has excellent coverage 
property. 

Schechtman & Sherman [3] also considered the Beh- 
rens-Fisher problem but with an assumption that the ratio 
of the two variances is known. This problem arises in 

many practical situations. For example, when two in-
struments report averaged responses of the same object 
based on a different number of replicates, the ratio of the 
variances of the response is then known, and is the ratio 
of the number of replicates going into each response. 
Schechtman & Sherman [3] showed that their proposed 
solution is equivalent to the one suggested by Sprott & 
Farewell [4]. 

In this paper, we followed the approach by Wong & 
Wu [2] and obtained a likelihood based asymptotic solu-
tion for the problem considered in Schechtman & 
Sherman [3]. The underlying theories of the proposed 
method are discussed in Wong & Wu [2]. Simulation 
results showed that the proposed solution has excellent 
coverage property even for small sample sizes. The pro-
posed method is then applied to the Behrens-Fisher 
problem. Again, simulation results showed the excellent 
coverage property of the proposed method. 

The structure of the paper is as follows. Likelihood 
based inference for a scalar canonical parameter of the 
exponential family model is presented in a step-by-step 
algorithm in Section 2. The proposed method is applied 
to obtain inference for the difference of two independent 
normal means with known ratio of variances in Section 3. 
Simulation results are also recorded in Section 3 to illus-
trate the coverage properties of the proposed method. 
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The proposed method is then applied to the Behrens- 
Fisher problem in Section 4. Simulation results recorded 
in Section 4 showed that the proposed method and the 
Satterthwaite method have similar coverage properties. 
Some concluding remarks are given in Section 5. 
 
2. An Algorithm to Obtain Confidence  

Interval for a Scalar Parameter of Interest 
 
Let 1= ( , , )nx x x  be a sample from an exponential 
family model with density  

( ; ) = exp{ ( ) ( ) ( )} ( )f x t x K h x      

where ( )   is the canonical parameter, and  is a 
minimal sufficient statistic. Also let 

( )t x
)= ( ,     where 

  is the scalar parameter of interest and   is the vec-
tor nuisance parameter. Two widely used methods for 
inference concerning   are based on the Wald statstic 
and the signed log-likelihood ratio statistic. It is 
well-known that ̂ , the maximum likelihood estimate of 
 , is asymptotically distributed as a normal distribution 
with mean   and that the asymptotic variance can be 
estimated by the inverse of either the expected Fisher 
information matrix or the observed information matrix 
evaluated at ̂ . Hence a (1 )100%  confidence in-
terval for ( )   based on the Wald statistic is  

 /2 /2
ˆ ˆ ˆˆ ˆ( ) , ( )z var z var  ˆ      

where  is the /2z (1 2)th  percentile of , (0,1)N
ˆ)ˆ = (   , and ˆˆ ( )var   is the estimated asymptotic 

variance of ̂ , which can be derived from the asymp-
totic variance of ̂  using the Delta method. Alterna-
tively, the signed log-likelihood ratio statistic  

 1/2
ˆˆ= ( ) = ( ) 2 ( ) ( )r r sgn       

   

is also asymptotically distributed as  with (0,1)N   
being the constrained maximum likelihood estimate of 
  for a given  . Therefore a (1 )100%  confi-
dence interval for ( )   based on the signed log-like- 
lihood ratio statistic is  

/2{ :| ( ) | }r z    

In this paper, we consider the method discussed in 
Wong & Wu [2], which can be summarized into the fol-
lowing algorithm: 

Given:  
a) A sample 1= ( , , )nx x x  from an exponential 

family model. 
b) Log-likelihood function of the model is ( ) =   

( ; ) = ( ) ( ) ( )x a t x K   

Aim: Inference for = ( )   . 
Step 1: 
a) Obtain the overall maximum likelihood estimate 

ˆ ˆˆ= ( , )     by solving 
ˆ=

( )
= 0

 








. 

b) Obtain , the determinant of the observed in-
formation matrix evaluated at 

ˆ| |j
̂ , where  

2

ˆ=

( )ˆ =j
 


 




 


. 

c) Obtain the constrained maximum likelihood esti-
mate = ( , )      at a fixed   by solving  

=

( )
= 0

 





 


. 

d) Obtain , the determinant of the observed nui-
sance information matrix evaluated at 

| |j
 , where  

2

=

( )
=j

 


 




  

 . 

Step 2: Calculate the signed log-likelihood ratio statis-
tic  

 1/2ˆˆ= ( ) = sign( ) 2[ ( ) ( )]r r          

Under regularity conditions as given in DiCiccio et al 
[5],  is asymptotically distributed as  with 
order of convergence . Hence a 

r (0,1)N
(11/2(O n ) )100%  

confidence interval of   is { : /2| }z| ( )r  
(0,1)N

( )

, where 
 is the  percentile of . /2

Step 3: With the canonical parameter 
z (1 / 2) 100th

  , calculate 

a) 
( )

( ) =
  





 

b) 
( )

( ) =
  





 

c)  first row of ( ) =  1( )   
Step 4: Parameter of interest and its variance in ( )   

space are 
a) ˆ( )   calculated in ( )   space is ˆ(sign    

ˆ( ) () | ) |       where 
( )

( ) =
||

(
( ) ||





 
)  

 


  . 

b) ( )| ( )ˆ( ( ) ( )) =
ˆ| ( ) |

j
var

j





|
   









  where  ˆ| ( ) |j  =

2ˆ ˆˆ| ( ) |=| || ( ) |j j    
 and 1( ) ( ) |  ( )| ( ) |=| ||j j   

     . 

Step 5. The standardized maximum likelihood depar-
ture in ( )   space is  

ˆ| ( ) ( ) |ˆ( ) = = sign( )
ˆ( ( ) ( ))

Q Q
var

     
   









 

  where  is an additive 
constant that does not depend on 

a
 , and ( )   is the 

canonical parameter. 
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Step 6: The modified signed log-likelihood ratio sta-
tistic is 

* * 1
= ( ) = log

Q
r r r

r r
   

which is shown in Barndorff-Nielsen [6,7] and Wong & 
Wu [2] to be distributed as  with order of con-
vergence . Hence a 

(0,1)N
(13/2(O n ) )100%  confidence 

interval of   is { : . *| (  /2) |< }r z
 
3. Inference for the Difference of Two  

Independent Normal Means with a 
Known Ratio of Variances 

 
3.1. Proposed Likelihood Based Inference 
 
Let 1( , , )nx x

2( , )

 and  be samples from two 

independent normal distributions with mean and variance 
1( , , )my y

x x   and 2 )( ,y y   respectively. Assume 2
x  and 

2
y  are unknown parameters but 

2

2
=y

x

c



 is known. 

Schechtman & Sherman [3] showed that a (1 %)100  

confidence interval for = x y    can be obtained by  

1 1
( ) , ( )p p

c c
x y t s x y t s

n m n m

    
                 

  

where =1=
n

ii
x

x
n


, =1=

m

ij
y

y
m


, 

2
2 =1

( )
=

1

n

ii
x

x x
s

n






, 

2
=12

( )
=

1

m

jj
y

y y
s

m






, 
2 2

2 ( 1) ( 1)
=

2
x

p

n s m s
s

n m

  

 
y c

, and 

 is the  percentile of the t-distribution 

with  degrees of freedom. 

t (1 / 2)100th
( 2)n m 

The log-likelihood function can be written as  

2

2
2

=1 =1

( ) = log
2

1 1
          ( ) ( )

2

x

n m

i y j y
i jx

n m
a

x y
c

 

  


   
 


    


 



2 



 (1) 

where 2= ( , ) = ( , , )y x        . Following the algo-
rithm given in Section 2, we have: 

Step 1: 

a) 2ˆ ˆ ˆ ˆ= ( , , )y x      where ˆ = x y  , ˆ =y y , and 
2 2

2 ( 1) (n s m

n m

  



1)
ˆ = x y

x

s c
 . 

b) 
8

( )ˆ| |=
ˆ2 x

nm n m
j

c


 

c) 2= ( , , )y x        where =y

cnx my cn

cn m

  


  

and 
2 2

=12 =x
=1

( ) ( )
n m

i y j yi j
x y c

n m

  


 


  


 

. 

d) 
6

( )(
| |=

2 x

cn m n m
j

c
 


)

. 

Step 2: = ( )r r   can be obtained. 
Step 3: For this problem, the canonical parameter is 

2 2 2

1
( ) = , ,y y

x x x

  
 

  
 


 

 . Hence, we have 

a) 

2 2 4

2 4

4

1 1

1
( ) = 0

1
0 0

y

x x x

y

x x

x



 
  


 

 



 
 

 
 
 
 
 
  
 

. 

b) 

2 4

2 4

4

1

1
( ) =

1
0

y

x x

y

x x

x



 
 


 

 



 
 

 
 
 
 
 
  
 

. 

c)  2 2 2( ) = , ,x x x
      . 

The rest of the steps can be obtained from the above 
information. Hence (1 )100%  confidence interval 
can be obtained from the modified signed log likelihood 
ratio statistic. 
 
3.2. Simulation Study 
 
To compare the accuracy of the proposed method with 
the signed log likelihood ratio method, and the Schecht-
man & Sherman [3] method, Monte Carlo simulation 
studies were conducted. We generated 10,000 simulated 
samples for some combinations of the parameters. For 
each simulated sample, we calculate the 95% confidence 
intervals for   obtained by the proposed method 
( ) with the signed log-likelihood ratio method 
( ), and the Schechtman & Sherman [3] method ( ). 
For each simulated setting, we report the proportion of 

Propose
r SS

  that falls outside the lower bound of the confidence 
interval (lower error), the proportion of   that falls 
outside the upper bound of the confidence interval (upper 
error), and the proportion of   that falls within the 
confidence interval (central coverage). The nominal val-
ues for the central coverage, and the lower and upper 
errors are 0.95, 0.025, and 0.025 respectively. The simu-
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lation standard errors for these three quantities are 
0.0022, 0.0016 and 0.0016 respectively. Results are re-
corded in Tables 1-3. It is clear that the results from 
signed log-likelihood method are not satisfactory espe-
cially when the sample sizes are small. Results from the 
Schechtman & Sherman [3] method and the proposed 
method are almost indistinguishable even for small sam-
ple sizes (they are all within 3 simulated standard errors). 
The major difference between the two methods is that 
Schechtman & Sherman [3] method is tailor-made for 
this problem and cannot be applied when  is unknown; 
whereas the proposed method can be applied to the  is 
unknown case. 

c
c

Table 1. , = 0x = = 1  x y , , 2 = 1 x
2 2= y xc ,  

 and . 

n

= 10 0= 1m

c  (known) Method Lower Error Upper Error Central Coverage

0.5 r  0.0360 0.338 0.9312 

 SS  0.0278 0.0245 0.9477 

 Propose  0.0279 0.0247 0.9474 

1 r  0.0367 0.0336 0.9297 

 SS  0.0282 0.0250 0.9468 

 Propose  0.0283 0.0252 0.9465 

4 r  0.0354 0.0356 0.9290 

 SS  0.0277 0.0261 0.9462 

 Propose  0.0277 0.0265 0.9458 

8 r  0.0352 0.0366 0.9282 

 SS  0.0266 0.0272 0.9462 

 Propose  0.0275 0.0278 0.9447 

Table 2. , = 0x = = 2  x y , , 2 = 1 x
2 2= y xc ,  

 and .  

n

= 20 0= 1m

c  (known) Method Lower Error Upper Error Central Coverage

0.5 r  0.0318 0.0293 0.9389 

 SS  0.0261 0.0247 0.9492 

 Propose  0.0261 0.0247 0.9492 

1 r  0.0336 0.0299 0.9365 

 SS  0.0272 0.0253 0.9475 

 Propose  0.0272 0.0254 0.9474 

4 r  0.0316 0.0305 0.9379 

 SS  0.0282 0.0252 0.9466 

 Propose  0.0282 0.0252 0.9466 

8 r  0.0320 0.0309 0.9371 

 SS  0.0262 0.0258 0.9480 

 Propose  0.0264 0.0259 0.9477 

Table 3. , = 0x = = 5  x y , , 2 = 1 x
2 = 2 y xc ,  

 and .  

n

= 20 = 2m 0

c  (known) Method Lower Error Upper Error Central Coverage

0.5 r  0.0323 0.0262 0.9415 

 SS  0.0275 0.0232 0.9493 

 Propose 0.0276 0.0234 0.9490 

1 r  0.0313 0.0268 0.9419 

 SS  0.0264 0.0230 0.9506 

 Propose 0.0265 0.0231 0.9504 

4 r  0.0296 0.0265 0.9439 

 SS  0.0253 0.0245 0.9502 

 Propose 0.0253 0.0245 0.9502 

8 r  0.0272 0.0274 0.9454 

 SS  0.0239 0.0234 0.9527 

 Propose 0.0240 0.0234 0.9526 

 
4. Inference for the Difference of Two  

Independent Normal Means with an  
Unknown Ratio of Variances 

 
4.1. Proposed Likelihood Based Inference 
 
In this section, we consider the same model set up as in 
Section 3, but the ratio of variances is unknown. This is 
the Behrens-Fisher problem, and no exact distribution of 
the test statistic is available. The most common ap-
proximate solution is the Satterthwaite solution, which is 
discussed in most of the introductory statistics texts, and 
it is implemented in most statistical software packages. 

For this problem, the log likelihood function can be 
written as  

2

2 2
2

=1 =1

( ) = log log
2 2

1 1
         ( ) ( )

2

x

n m

i y j y
i jx

n m m
a c

x y
c

 

  


   
 

 
     

 
 


 (2) 

where 2= ( , ) = ( , , , )y x c        . Again, following 
the algorithm given in Section 2, we have 

Step 1: 

a) 2ˆ ˆ ˆ ˆ ˆ= ( , , , )y x c      where ˆ = x y  , ˆ =y y , 

2
2 =1

( )
ˆ = ii

x

n x x

n



, and 

2
=1

2
=1

( )
ˆ =

( )

m

jj

n

ii

n y y
c

m x x








. 

b) 
2 2

3 8
ˆ| |=

ˆ ˆ4 x

n m
j

c 
 

c) The constrained maximum likelihood estimate of 
  for a given  ,  does not have a 2= ( , , , )y x c       
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closed form. However, it can be obtained by the follow-
ing iterative procedure: 
i) Set ˆ  =c c

ii) Then  1
=y nxc nc my

nc m
  


  


, and  

2 2
=1 =1

1 1
= ( ) (

n m

x i y ji j
x

n m c
       

  


2)yy  


  

iii) Update 
2

=1

2

( )
=

m

j yj

x

y
c

m





 



. 

iv) Go to ii). Will stop when the absolute value of the 
difference of two consecutive ( )  is less than 
some pre-set tolerance level. 

d) Since 
2

=

( )
=j

 


 




  

 ,  can be obtained. | |j

Step 2: = ( )r r   can be obtained. 
Step 3: For this problem, the canonical parameter is 

2 2 2 2

1 1
( ) = , , ,y y

x x x xc

  
 

   
 

  
 

. Hence, we have 

a) 

2 2 4

2 4

4

4 2

1 1
0

1
0 0

( ) =
1

0 0 0

1 1
0 0

y

x x x

y

x x

x

x xc c



 
  


  



 

 
 

 
 
 
 
 
 
 
 
   
 

2

. 

b) 

2 4

2 4

4

4 2

1
0

1
0

( ) =
1

0 0

1 1
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c) .  2 2 2( ) = , , ,0x x x
     

The rest of the steps can be obtained from the above 
information. Hence (1 )100%  confidence interval 
can be obtained from the modified signed log-likelihood 
ratio statistic. 

4.2. Simulation 

Monte Carlo simulation studies, with setting being the 
same as those considered in Section 3, were conducted to  

compare the coverage properties of the proposed method 
( ) with the signed log-likelihood ratio method 
( ). Results are recorded in Tables 4-6 and they are 
similar to what we have observed in Section 3: the 
signed log-likelihood method does not have good cover-
age properties, whereas the proposed method have cov-
erages very closed to the nominal levels. 

Propose
r

 
5. Discussion 
 
A likelihood based method to obtain inference for the  

Table 4. , = 0x = = 1  x y , , 2 = 1 x
2 = 2 y xc ,  

 and .  

n

= 20 = 10m

c  (unknown) Method Lower Error Upper Error Central Coverage

0.5 r  0.0340 0.0340 0.9320 

 Propose 0.0214 0.0222 0.9564 

1 r  0.0328 0.0358 0.9314 

 Propose 0.0245 0.0259 0.9496 

4 r  0.0334 0.0351 0.9315 

 Propose 0.0275 0.0283 0.9442 

8 r  0.0349 0.0346 0.9305 

 Propose 0.0271 0.0270 0.9459 

Table 5. = 0x , = = 2  x y , , 2 = 1 x
2 = 2 y xc ,  

, .  

n

= 20

c

= 10m

 (unknown) Method Lower Error Upper Error Central Coverage

0.5 r  0.0319 0.0294 0.9387 

 Propose 0.0281 0.0258 0.9461 

1 r  0.0339 0.0312 0.9349 

 Propose 0.0285 0.0261 0.9454 

4 r  0.0371 0.0359 0.9270 

 Propose 0.0297 0.0272 0.9431 

8 r  0.0378 0.0370 0.9252 

 Propose 0.0290 0.0277 0.9433 

Table 6. = 0x , = = 5  x y , , 2 = 1 x
2 = 2 y xc ,  

 and .  

n

= 20

c

= 2m 0

 (unknown) Method Lower Error Upper Error Central Coverage

0.5 r  0.0314 0.0265 0.9421 

 Propose 0.0266 0.0224 0.9510 

1 r  0.0311 0.0267 0.9422 

 Propose 0.0262 0.0229 0.9508 

4 r  0.0300 0.0268 0.9432 

 Propose 0.0264 0.0241 0.9495 

8 r  0.0297 0.0272 0.9431 

 Propose 0.0249 0.0242 0.9509 
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difference of two independent normal means with known 
ratio of variances is proposed. Monte Carlo simulation 
results showed that the proposed method and the 
Schechtman & Sherman [3] method are almost indistin-
guishable. However, Schechtman & Sherman [3] method 
is tailored made for this particular problem and cannot be 
applied to the case where the ratio of variances is un-
known. On the other hand, the proposed method can still 
be applied to the unknown ratio of variance case. Simu-
lation studies for other combinations of the parameters 
have also been conducted and results are consistent with 
those reported in this paper. A simple  program to 
perform the calculations is available upon request. As a 
final note, the theoretical accuracy of the modified 
signed log-likelihood method is shown in Barndorff- 
Nielsen [5,6] and Wong & Wu [2]. 

R
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