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Abstract 
 
Field equations in the presence of perfect fluid distribution are obtained in a scalar tensor theory of gravita-
tion proposed by Brans and Dicke [1] with the aid of Bianchi type-II, VIII & IX metrics. Exact prefect fluid 
Bianchi type- IX cosmological model is presented since other models doesn’t exist in Brans-Dicke scalar 
tensor theory of gravitation. Some physical and geometrical properties of the models are also discussed. 
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1. Introduction 
 
Brans and Dicke [1] theory of gravitation is well known 
modified version of Einstein’s theory. It is a scalar tensor 
theory in which the gravitational interaction is mediated 
by a scalar field   as well as the tensor field ijg  of 
Einstein’s theory. In this theory the scalar field   has 
the dimension of the inverse of the gravitational con- 
stant.In recent years, there has been a renewed interest of 
the gravitational constant. The latest inflationary models 
(Mathiazhagan and Johri [2]), possible “graceful exit” 
problem (Pimental [3]) and extended chaotic inflations 
(Linde [4]) are based on Brans and Dicke theory of gra- 
vitation. 

Brans-Dicke field equations for combined scalar and 
tensor field are 
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where 
1

2ij ij ijG R g R   is an Einstein tensor, 

ij  is the stress energy tensor of the matter, T   is the 
dimensionless coupling constant and comma and semi- 
colon denote partial and covariant differentiation respect- 
tively. 

The equation of motion  

; 0ij
jT                 (1.3) 

is a consequence of the field Equations (1.1) and (1.2). 
Several aspects of Brans-Dicke cosmology have been 

extensively investigated by many authors. The work of 
Singh and Rai [5] gives a detailed discussion of Brans- 
Dicke cosmological models. In particular, spatially ho- 
mogeneous Bianchi models in Brans-Dicke theory in the 
presence of perfect fluid with or with out radiation are 
quite important to discuss the early stages of evolution of 
the universe.  

Nariai [6], Belinskii and Khalatnikov [7], Reddy and 
Rao [8], Banerjee and Santos [9], Singh et al. [10], Shri- 
ram [11], Shriram and Singh [12], Berman et al. [13], 
Reddy [14], Reddy et al. [15], Adhav et al. [16] and Rao 
et al. [17,18] are some of the authors who have investi- 
gated several aspects of this theory.  

Chakraborty [19], Raj Bali and Dave [20], Raj Bali 
and Yadav [21] studied Bianchi type IX string as well 
as viscous fluid models in general relativity. Reddy, 
Patrudu and Venkateswarlu [22] studied Bianchi type- 
II, VIII & IX models in scale covariant theory of gravi- 
tation. Shanthi and Rao [23] studied Bianchi type-VIII 
& IX models in Lyttleton-Bondi Universe. Also Rao 
and Sanyasi Raju [24] and Sanyasi Raju and Rao [25] 
have studied Bianchi type-VIII & IX models in Zero 
mass scalar fields and self creation cosmology. Raha- 
man et al. [26] have investigated Bianchi type-IX string 
cosmological model in a scalar-tensor theory formu- 
lated by Sen [27] based on Lyra [28] manifold. Rao et 
al. [29-31] have studied Bianchi type-II, VIII & IX 
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string cosmological models, perfect fluid cosmological 
models in SaezBallester scalar-tensor theory of gravi- 
tation and string cosmological models in general rela- 
tivity as well as self creation theory of gravitation re- 
spectively. 

In this paper we discuss Bianchi type-II, VIII & IX 
perfect fluid cosmological models in a scalar-tensor the- 
ory proposed by Brans and Dicke [1]. 
 
2. Metric and Energy Momentum Tensor 
 
We consider a spatially homogeneous Bianchi type-II, 
VIII and IX metrics of the form 

  22 2 2 2 2 2 2( )ds dt R d f d S d h d              

(2.1) 

where ( , , )   are the Eulerian angles,  and are 
functions of t only. It represents 

R S

Bianchi type-II if  and   1f    h    
Bianchi type-VIII if  f cosh   and 
  sinhh    
Bianchi type-IX if   sinf    and   cosh    
The energy momentum tensor for perfect fluid distri- 

bution is given by 

 ij i j ijT p u u   pg         (2.2) 

where  is the density and  is the pressure. p
Also 

1i j
ijg u u               (2.3) 

In the co moving coordinate system, we have from 
Equations (2.2) and (2.3) 

1 2 3
1 2 3T T T    p 4

4T,  and for 0i
iT  i j  (2.4) 

The quantities   and  are functions of “t” only.  p
 
3. Bianchi Type-II, VIII & IX Perfect  

Fluidcosmological Models in Brans-Dicke 
Theory of Gravitation 

 
The field Equations (1.1), (1.2) & (1.3) for the metric 
(2.1) with the help of Equations (2.2), (2.3) and (2.4) can 
be written as  
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where “  ” denotes differentiation with respect to “t”. 
When  = 0, –1 & +1, the field Equations (3.1)-(3.6) 

correspond to the Bianchi type-II, VIII & IX universes 
respectively.  

Using the transformation R e , S e , , 
where 

2dt R SdT
  and   are functions of “T” only. 

The field Equations (3.1) to (3.6) reduce to 
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  2 0p              (3.12) 

where “ ′ ” denotes differentiation with respect to “T”. 
Since we are considering the Bianchi type-II, VIII and 

IX metrics, we have  h   ,   sinhh   &  
  cosh    for Bianchi type-II, VIII and IX metrics 

respectively. Therefore, from the Equation (3.10), we 
will consider the following possible cases with   0h   . 

1) 0     and 0    
   (3.3) 2) 0     and 0   

3) 0     and 0   
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CASE (1): 0     and 0  : 
Here, we get c    
Without loss of generality by taking the constant of 

integration , we get 0c 
                 (3.13) 

By using (3.13), the field Equations (3.7) to (3.12) will 
reduce to  
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where “ ′ ” denotes differentiation with respect to “T”. 
From (3.14) and (3.15), we have  

4 4 0e e               (3.19) 

From (3.19), we observe that, we can’t find Bianchi 
type-II ( 0  ) and VIII ( 1  

(

) perfect fluid cosmo- 
logical models in Brans-Dicke theory of gravitation. But 
we can get Bianchi type-IX 1)  perfect fluid cosmo- 
logical model in Brans-Dicke theory of gravitation. 

For 1  , the field Equations (3.14)-(3.18) reduce to 
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From (3.20), (3.21) & (3.23), we get 
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Then from (3.24), we get 
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with the relation , where  are 

arbitrary constants. 

2 216 3 3 0a a    &a b

Using (3.25) & (3.26) in (3.20) & (3.21), we get 
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The corresponding metric can be written in the form 
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(3.29) 

Thus (3.29) together with (3.27) and (3.28) constitutes 
an exact Bianchi type-IX perfect fluid cosmological 
model in Brans-Dicke scalar-tensor theory of gravitation.  

PHYSICAL AND GEOMETRICAL PROPERTIES: 
The volume element of the Bianchi type-IX perfect 

fluid cosmological model is given by 
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1 3
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We can observe that the spatial volume  decreases 
as time “T ” increases, i.e., the model is contracting. Also 
the model has initial singularity at 

V
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The scalar expansion   and shear   are given by 
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for Bianchi type-IX perfect fluid cosmological model in 
Brans-Dicke theory of gravitation. The scalar expansion 

0   as T  and   

T 

as . So, the rate 
of expansion is rapid as time decreases and it becomes 
slow as time increases. The shear scalar  as 

 and  as . Thus the shape of 
universe changes uniformly. The deceleration parameter 
q is obtained as 
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cates that the model is inflationary. Since lim 0
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which confirms that the universe remains anisotropic 
throughout the evolution.  

CASE (2): 0     and 0  : 
In this case 1c  , where  is a constant of integra- 

tion, without loss of generality we can take 
1c

1 1c  .  

Hence the field Equations (3.7) to (3.12) reduce to 
general relativity field equations with   .  
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From (3.33), we get 

3p                 (3.35) 

Since 3p  , we will get only radiating universe in 
this case. 

The field Equations (3.30) to (3.34) reduce to 
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Then from (3.40), we get 
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where ,  and b  are arbitrary constants satisfying m a

 2 24 1a m   3 20 & 1a m , . 

FOR BIANCHI TYPE- II METRIC ( 0)  : 
From (3.36)-(3.38), we get 
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The corresponding metric can be written in the form 
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Thus (3.45) together with (3.43) & (3.44) constitutes 
Bianchi type-II Perfect fluid radiating cosmological 
models in general theory of relativity. 

FOR BIANCHI TYPE-VIII METRIC ( 1)   : 
From (3.36)-(3.38), we get 
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The corresponding metric can be written in the form 
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Thus (3.48) together with (3.46) & (3.47) constitutes 
Bianchi type-VIII Perfect fluid radiating cosmological 
models in general theory of relativity. 

FOR BIANCHI TYPE-IX METRIC ( 1)  : 
From (3.36)-(3.38), we get 

  
 

2 12 2 2

4 1

4 4 4
8

4

m

m

m a ma aT b
p

aT b





3   
 


    (3.49) 

  
 

2 12 2 2

4 1

4 4 4
8

4

m

m

m a ma aT b

aT b






1   
 


    (3.50) 

The corresponding metric can be written in the form 

 
 

   

4 12 2

2 2 2 2

21

sin

cos

m

m

ds aT b dT

aT b d d

aT b d d

  

  





 

    

  

     (3.51) 

Thus (3.51) together with (3.49) & (3.50) constitutes 
Bianchi type-IX Perfect fluid radiating cosmological 
models in general theory of relativity. 

PHYSICAL AND GEOMETRICAL PROPERTIES: 
The volume element of the above three models [(3.45), 

(3.48) & (3.51)] are given by 

     
1 4 1

2 2

m

V g aT b f 


     

where   1f   , sinhθ and sinθ respectively. 
In the above expressions, the volume decreases as time 

increases if 1 4m   i.e., the models are contracting, the 
volume increases as time increases if 1 4m   i.e., the 
models are expanding and the volume is independent of 
time T if 1 4m  . Also the models have initial singu-
lar-- ity at T b a  , 0a  . 
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The expansion   and shear   are equal for all Bi- 
anchi type-II, VIII & IX perfect fluid radiating cosmo- 
logical models in general relativity. Which are given by 

 
 ;

4 1

2
i

i

a m
u

aT b



 


 

 
 

22
2

2

4 1

12

a m

aT b






 

The deceleration parameter  

2 2
;

1 7 4
3

3 4
i

i

m
q u

m
              1





 

It can be seen that for large “ ” the quantities T   and 
  will become zero if 1 4m  . Also the quantities   
and   tends to +∞ as  if and tends 
to –∞ if .Thus the rate of expansion is rapid 
as time decreases, it becomes slow as time increases and 
the shape of universe changes uniformly. In the case of 

, we can see that the Spatial Volume “V” is 
independent of time “T” and 

0T  4 1m   0
04 1m  

04 1 m
 ,   will become zero. 

Also, since lim 0
T




   
 

, the models are not isotropic  

for large T. The negative value of the deceleration pa- 
rameter q shows that the models inflate except for m = 1. 

CASE (3): 0     and 0   
Here, we get c    
Without loss of generality by taking the constant of 

integration , we get 0c 

                 (3.52) 

Since 0 c     ,  

where  is a constant of integration, without loss of 
generality we can take . 

c
1c 

Hence the field equations (3.7) to (3.12) reduce to 
general relativity field equations with   .  

4
22 3 8

4

e
pe


6            (3.53) 

2 4 4 63
2 3 8

4
e e pe              (3.53) 

2 4 4 61
3

4
e e e8              (3.55) 

  68
0 3

3 2
p e 




 


         (3.56) 

 3p      0           (3.57) 

where “ ′ ” denotes differentiation with respect to “T”. 
From (3.53) and (3.54), we have  

4 4 0e e                (3.58) 

From (3.58), we observe that, we can’t find Bianchi 
type II ( 0  ) and VIII ( 1   ) perfect fluid cosmo- 
logical models of general relativity. But we can get only 
Bianchi type IX ( 1)  perfect fluid cosmological mod- 
el of general relativity.  

For 1  , the field equations (3.53)-(3.57) reduce to 
4

22 3 8
4

e
pe


4             (3.59) 

2 43
3 8

4
e 4e              (3.60) 

  68
0 3

3 2
p e 




 


        (3.61) 

 3p   0             (3.62) 

From (3.61), we get  

3p               (3.63) 

Since from 3p  , we will get only radiating uni- 
verse in this case. 

Now from (3.59), (3.60) and (3.61), we have 
4

2 0
4

e 

              (3.64) 

From (3.64), we get  

 
122 4e aT b


4              (3.65) 

Using (3.65) in (3.59) & (3.60), we get   

   4 2
3 24

8 24
64

aT b aT b
p

   
   

48
 (3.66) 

The corresponding metric can be written in the form 

 

 

   

322 2

12 2 2 2

1 22

64 4

4 4 sin

4 4 cos

ds aT b dT

aT b d d

aT b d d

  

  







    

        

     

   (3.67) 

Thus (3.67) together with (3.66) constitutes Bianchi 
type-IX radiating perfect fluid cosmological model in 
general theory of relativity. 

PHYSICAL AND GEOMETRICAL PROPERTIES: 
The volume element of the model (3.67) is given by 

   
1 32
2 64 4 sinV g aT b 


        

Now the expression for expansion   and shear   
are given by 

 
  ; 2

6

4

i
i

a aT b
u

aT b


 
 

 
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 
  

22
2

22

6

4

a aT b

aT b





 
 

for Bianchi type-IX perfect fluid radiating cosmological 
model in Brans-Dicke theory of gravitation. The spatial 
volume tends to zero as T→∞. Thus the model is con- 
tracting with the increase of time and also the model has 
no real singularity. The deceleration parameter q is ob- 
tained as . The negative value of q indicates that 2q  

the model is inflationary. Also, since lim 0
T




   
 

 

which confirms that the universe remains anisotropic 
throughout the evolution.  
 
4. Conclusions 
 
Bianchi type space-times play a vital role in understand- 
ing and description of the early stages of evolution of the 
universe. In particular, the study of Bianchi type-II, VIII 
& IX universes are important because familiar solutions 
like FRW universe with positive curvature, the desitter 
universe, the Taub-Nut solutions etc correspond of Bi- 
anchi type-II, VIII & IX space-times. In view of the im- 
portance of Bianchi type-II, VIII & IX space- times and 
also since exact solutions offer an alternative and com-
plementary approach to study various cosmological 
models, in this paper we have presented Bianchi type-II, 
VIII & IX perfect fluid cosmological models in Brans- 
Dicke theory of gravitation. 

In case of 0     and 0  , we can observe 
that the only Bianchi type-IX perfect fluid cosmological 
model exists in Brans-Dicke theory of gravitation. The 
model is anisotropic, inflationary and has initial singular- 
ity at T b a 0a   , . Also established the non-exis- 
tence of Bianchi type-II & VIII perfect fluid cosmologi- 
cal models in this theory. Since “a” is an arbitrary con- 
stant and “ω” is a coupling constant, it is always possible 
to assign specific values to “a” and “ω” to keep the pres- 
sure “p” (3.27) and density “ρ” (3.28) be always positive.  

In case of 0     and 0  , we can observe 
that Bianchi type-II, VIII & IX perfect fluid radiating 
cosmological models of general relativity exist in this 
theory. The models have initial singularity at T b a  , 

and remain anisotropic throughout the evolution.  0a 
In case of 0     and 0  , we have obtained 

only Bianchi type-IX anisotropic radiating perfect fluid 
cosmological model of general relativity with   . In 
this case also we have observed that Bianchi type-II & 
VIII cosmological models doesn’t exist in this theory. 
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