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Abstract 
 
By using lattice paths in the three-dimensional space we obtain bijectively an interpretation for the overparti-
tions of a positive integer n in terms of a set of plane partitions of n. We also exhibit two bijections between 
unrestricted partitions of n and different subsets of plane partitions of n. 
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1. Introduction 
 
In [1], one of us, Santos, in a joint work with Mondek 
and Ribeiro, introduced a new combinatorial interpreta-
tion for partitions in terms of two-line matrices. In that 
paper a new way of representing, as two-line matrices, 
unrestricted partitions and several identities from Slater’s 
list [2] including Rogers-Ramanujan Identities, and 
Lebesgue’s Partition Identity is described. In [3] we were 
able to provide a number of bijective proofs for several 
identities based on the two-line matrix representation, 
including a new bijective proof for the Lebesgue Identity, 
as well as a combinatorial proof for an identity related to 
three-quadrant Ferrers graphs, given by Andrews (see [4]). 

The possibility of associating a partition of n to a 
two-line matrix and the two-line matrix to a lattice path 
from the origin to the line x + y – n was mentioned in [1]. 
This construction can be done in many different ways. 
Each one of those provides us with a family of polyno-
mials that are, each one, a q-analog for the partition func-
tion. In order to construct these families it was employed 
the same idea of counting the lattice path according to 
the area limited by the path and the x-axis, as done by 
Pólya. 

Our main goal in the present paper is to associate a 
three-line matrix to a path in the 3-dimensional space, in 
order to build a volume, which is going to correspond to 
a plane partition. In this way it is possible to construct 
bijections from certain classes of plane partitions to 
overpartitions or unrestricted partitions. In some cases 

mock theta functions appear as the generating functions 
for these matrices (see [5]). 
 
2. Background 
 
In this section we remember a few definitions and state a 
theorem that is the base for constructing the bijections. 

Definition 2.1 A partition of a positive integer n is a 
collection of positive integers 1 2 s      such 
that 1 2= sn      . Each i  is called a part of 
the partition. 

Definition 2.2 An overpartition is a partition where 
the first occurrence of a part can be overlined. 

Example 2.1 There are 14 overpartitions of 4: 

4, 4,3 1,3 1,3 1,3 1, 2 2,2 2, 2 1 1, 2

1 1,2 1 1,2 1 1,1 1 1 1,1 1 1 1

       

           
 

Definition 2.3 A Plane partition π  is a left-justified  

array of positive integers  , , 1
πi j i j

 such that ,πi j   

 , 1 1,max π ,πi j i j  . We say that π  is a plane partition of 

n if ,, 1
= πi ji j

n
 . 

Now, if we stack ,πi j  cubes over the position ,i j  
of each part of a plane partition π , we obtain a geomet-
rical figure in the first octant of the 3-dimensional space, 
which represents π  in the same way a Ferrers diagram 
represents a partition. 

Example 2.2 Below (shown in Figures 1 and 2) we 
have a plane partitions of 43 and its standard geometri-
cal representation. 
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Figure 1. A plane partition. 

 

 

Figure 2. Geometrical representation. 
 

In [6] the following correspondence between three- 
line matrices and overpartitions is presented. 

Theorem 2.1 The number of overpartitions of n is 
equal to the number of three-line matrices of the form 

1 2 3

1 2 3

1 2 3

s

s

s

c c c c

d d d d

e e e e

 
 
 
 
 





            (1) 

with non-negative integer entries satisfying 

 

1 1

1 1

0,1

= 1

= 0 if   =

=

= ,

t

s s

t t t t

t t t t

t t t

e

c e

e d e e

c c d i

c d e n

 

 







 

   

 

where =t ti e , except when 1= = 1t te e   and 1 =tc  , in 
which case = 0ti . 

The proof of this theorem can be found in [6]. We de-
scribe the bijection that follows from the theorem. Given 
a matrix A of the form (1), the corresponding overparti-
tion 1 2= s       is obtained by adding up the 
entries in each column of A. A part t  of   is 
marked if and only if = 1te . Due to the conditions de-

fining matrices of the form (1), in case of more than one 
column of A add up to the same number, only the left 
most of these parts is marked. 

Example 2.3 In the table below we have the 14 over-
partitions of 4 and the corresponding three-line matrices 
of the form (1). 

 

Overpartition Matrix Overpartition Matrix 

4  

1

3

0

 
 
 
 
 

 4  

0

3

1

 
 
 
 
 

 

3 1  

1 1

2 0

0 0

 
 
 
 
 

 3 1  

0 1

2 0

1 0

 
 
 
 
 

 

3 1  

0 0

3 0

0 1

 
 
 
 
 

 3 1  

0 0

2 0

1 1

 
 
 
 
 

 

2 2  

2 1

0 1

0 0

 
 
 
 
 

 2 2  

1 1

0 1

1 0

 
 
 
 
 

 

2 1 1   

1 1 1

1 0 0

0 0 0

 
 
 
 
 

2 1 1   

0 1 1

1 0 0

1 0 0

 
 
 
 
 

2 1 1   

0 0 1

2 0 0

0 1 0

 
 
 
 
 

2 1 1   

0 0 1

1 0 0

1 1 0

 
 
 
 
 

1 1 1 1  

1 1 1 1

0 0 0 0

0 0 0 0

 
 
 
 
 

 1 1 1 1    

0 1 1 1

0 0 0 0

1 0 0 0

 
 
 
 
 

 
3. Bijection between Overpartitions and 

Plane Partitions via Lattice Path 
 
In this section we stablish a bijection between the overparti-
tions of n and certain plane partitions of n. In order to do 
this we describe a possible way to build a volume from a 
three-line matrix and, then, we associate a plane partition. 

Consider, for example, the matrix 

6 3 1

4 2 1 .

2 2 0

 
 
 
 
 

                   (2) 
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In order to obtain a solid representing a plane partition 
we start drawing the lattice path at (0,1,1)  moving 6 
units in the x-direction, 4 units in the y-direction, 2 units 
in z-direction, 3 units in the x-direction, and so on. In this 
way we generate a 3-dimensional path. These move-
ments are represented in Figure 3, where the star to-
gether with a number near a corner represents a move-
ment in the positive z-direction. When the displacements 
in both, the y and z-directions, are zero, we have a prob-
lem to reconstruct the three-line matrix from the lattice 
path, which can be overcome by the introduction of two 
different colors. 

We need to get from the picture given in Figure 3 a 
representation for a plane partition in the conventional 
way, i.e., as a solid in the first octant. It suffices to apply 
the transformation 

=1
1

s

ii
x x c   , which corre-

sponds to a reflection with respect to the yz-plane fol-
lowed by a translation in the x-direction. Figure 4 below 
shows the corresponding volume. 

Note that in the solid shown in Figure 4 there is an 
extra wall added on the back as if at the end of the lattice 
path we had moved one extra unit in the x-direction. This 
must be done to avoid ambiguity when we reconstruct 
the three-line matrix from the solid. The plane partition 
corresponding to this solid is shown below. 

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5

3 3 3 3 3

3 3 3 3 3

3 3 3 3 3

1

1

1

1

1

1

 

 

 

Figure 3. The lattice path.  

 

Figure 4. The solid. 
 

As one may see above in Theorem 1, the three-line 
matrix can have zero entries, in which case we should 
have to introduce different colors in order to be able to 
reconstruct the original matrix from the volume. It is 
important to mention that by the way we are building the 
lattice path from the matrix the distance from the origin 
to the end of the path is equal to 2n   as shown in 
Figure 3 (remember we have started at (0,1,1) and, be-
cause the extra wall added on the back in Figure 4 the 
number of layers (11) on the plane partition plus the 
height of the first layer (5) plus its width (8) must be 

3n   ( 21 3 = 24) ). 
Now we are going to describe how to solve the prob-

lem when there are zero entries so that it will not be nec-
essary to use colors. Consider the overpartition 4 3   
2 1  of 10. By Theorem 1 its three-line matrix repre-
sentation is 

3 1 0 1

1 2 1 0 .

0 0 1 0

 
 
 
 
 

 

In this case if we draw the lattice path as in Figure 3 it 
would be quite difficult to tell the matrix from which we 
have started without using colors. One way to solve this 
problem is to add 1 to each entry of the matrix and then 
draw the lattice path. In the example above the resulting 
matrix is 

4 2 1 2

2 3 2 1

1 1 2 1

 
 
 
 
 

              (3) 

and the corresponding figures, as done for matrix (2) are 
shown in Figure 5-6 below. 

Definition 3.1 A plane partition is said to be of type 
  if in its geometrical representation the the number of 
distinct levels that are parallel to each of the planes xy, 
xz, and yz is the same. 



M. ALEGRI  ET  AL. 

Copyright © 2011 SciRes.                                                                                OJDM 

111

 

Figure 5. The lattice path. 
 

 

Figure 6. The solid. 
 

Another way to characterize a plane partition of type 
  is to say that the number of steps necessary to climb 
from the xy-plane to the top of the solid representing the 
plane partition is the same as climbing from the xz-plane 
or from the yz-plane to the respective top. 

From the observations given above we can always 
move from an overpartition to a 3-line matrix with non-
zero entries and, then, drawing the lattice path, get a 
plane partition of type  . The number of distinct levels 
that are parallel to each of the planes xy, xz, and yz will 
be one plus the number of columns of the original matrix. 
This number is precisely the number of blocks (rectan-
gular prisms) that are present in the 3-dimension repre-
sentation of the plane partition. 

Considering the construction above, it is easy to write 
the matrix with positive entries by looking at the solid 

representing a plane partition of type  . To get the en-
tries on the third line we have to stand on the plane z = 1 
(remember we have started drawing the lattice path at 
(0,1,1) ), climb to the top and set the height of those 
steps as the entries. For instance, in Figure 6 the steps 
are, respectively, 1, 1, 2 and 1. To get the entries on the 
second line we have to stand on the plane y = 1 (we have 
started at (0,1,1) ), go up to the top and set the height of 
those steps as the entries. In Figure 6, these steps are 
respectively, 2, 3, 2 and 1. As we have made a reflection 
in the construction of the solids, in order to obtain the 
entries on the first line we have to stand on the plane x = 
1, climb to the top, count the height of those steps and, 
then, we set the entries as being these integer in the re-
verse order. For example, from Figure 6, we have for the 
first line: 4, 2, 1 and 2. 

The discussion above provides us with a bijection be-
tween plane partitions of type   and those three-line 
matrices from which by subtracting 1 of each entry we 
get matrices of the form (1). 

Definition 3.2 A plane partition of n is said to be of 
type   if it is a plane partition of type   and the ma-
trix obtained by subtracting 1 from each entry of its cor-
responding three-line matrix is of the form (1). 

We summarize what we have obtained above in the 
following theorem that gives a complete characterization 
for the overpartitions in terms of plane partitions. 

Theorem 3.1 The number of plane partitions of n of 
type   is equal to the the number of overpartitions of 
n. 
 
4. Two Bijections between Unrestricted  

Partitions and Plane Partitions 
 
There is a trivial bijection between unrestricted partitions 
and plane partitions that can be obtained just by looking 
a Ferrers diagram as a plane partition with one row. In 
this section we present two bijections between unre-
stricted partitions and plane partitions different from the 
trivial. 

In [1] three interpretations as two-line matrices for 
unrestricted partitions are presented. One of them estab-
lishes that: 

Theorem 4.1 (Theorem 8 of [1] ) The number of un-
restricted partitions of n is equal to the number of ma-
trices of the form 

1 2

1 2

,s

s

c c c

d d d

 
 
 




             (4) 

where 1 1= 0, =s t t tc c c d  , and =i ic d n  . 
The proof of this theorem can be found in [1]. Given a 

partition 1 2 s      of n, we split each part i  
into a column starting with s  as the right-most column 
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of a matrix of the form (4): =s sd  , 1 =t t tc c d   and 

1 1 1=t t td c   . Conversely, given a matrix of the form 
(4), we obtain a partition of n adding up the entries in 
each column. 

In our next theorem we have an interpretation, as 
three-line matrices, for unrestricted partitions. 

Theorem 4.2 The number of unrestricted partitions of 
n is equal to the number of three-line matrices of the 
form 

1 2

1 2

1 2

,
s

s

s

c c c

d d d

e e e

 
 
 
 
 





            (5) 

where 1 1 1 1= = = 0, = , 1, =s s s t t s t t tc d c d e e c c d     , 

and =i i ic d e n    . 

The proof of this theorem is just a consequence of the 
following notation for the positive integers. 

0

1 0

1

0 0

2 1 0

0 1

1 0 0

3 0 1 0

0 0 1

1 1 0 0

4 0 0 1 0

0 0 0 1

1 1 1 0 0

5 0 0 0 1 0

0 0 0 0 1

1 1 1 0 0

0 0 0 1 0

0 0 0 0 1














 


n

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 

We define the sum of two integers in this notation by 
adding the corresponding matrices in the usual way if 
they have the same number of columns and, if not, we 
add to the matrix representing the smaller integer a 
number of zero columns on the right to have the two ma-
trices with the same number of columns so that we may 

add in the usual way. For example, 

1 1 1 0 0 1 1 0 0 0

5 4 0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0

   
       
   
   

  

2 2 1 0 0

= 0 0 1 1 0 ,

0 0 0 1 1

 
 
 
 
 

 

and 

6 6 4 3 3 3 1 0 0

9 8 8 5 4 4 0 0 2 1 0 0 2 1 0 .

0 0 0 2 1 0 0 2 1

 
       
 
 

  

With this three-line matrix representation for unre-
stricted partitions and exactly the same construction de-
scribed in the previous section for overpartitions we can 
state a nontrivial characterization for unrestricted parti-
tions as plane partitions. 

Definition 4.1 A plane partition of n is said to be of 
type   if it is a plane partition of type   and the 
matrix obtained by subtracting 1 from each entry of its 
corresponding three-line matrix is of the form (5). 

Theorem 4.3 The number of plane partitions of n of 
type   is equal to the the number of unrestricted parti-
tions of n. 

Consider, for example, the partition 5 4 2 2 1    . 
Then 

2 2 1 0 0 3 3 2 1 1

5 4 2 2 1 2 0 1 1 0 3 1 2 2 1 .

1 2 0 1 1 2 3 1 2 2

   
          
   
   

   

Now we can obtain the plane partition associated to 
5 4 2 2 1     by drawing the lattice path (Figure 7) 
and constructing the solid (Figure 8) as before: 
 

 

Figure 7. The lattice path. 
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Figure 8. The plane partition. 
 

As an extra example consider the partition 6 3   
3 2 . Then 

3 1 1 1 0 0

6 3 3 2 1 2 0 0 1 0

0 1 2 0 1 1

4 2 2 2 1 1

2 3 1 1 2 1

1 2 3 1 1 2

 
     
 
 

 
 
 
 
 





 

and the lattice path and the corresponding plane partition 
associated to 6 3 3 2    are shown in Figures 9 and 
10. 

 

 

Figure 9. The lattice path. 

 

Figure 10. The plane partition. 
 
Our final result is another representation for unrestricted 
partitions as plane partitions different from the one just 
described. To do this we use the result given in Theorem 
4.2. From the restrictions defining a matrix of the form 
(5) it is easy to see that the third line, without 1e , is 
equal to the second one (just shifted one position to the 
right). Now we can associate to each one of these three- 
line matrices a two-line matrix by adding together the 
elements td  and 1te   that are equal. This is equivalent 
to multiply the second line by 2. We add the element 1e  
to the first entry 1c  on the first line. We observe that, in 
general, the number of columns in the two-line matrix 
obtained is reduced by one. Te only case in which this 
number is not reduced is when the three-line matrix has 
only one column. In this case we define the correspond-
ing two-line matrix by: 

1
, if is even0

1
0

0
, f is odd.

n
n

n i n
n

 
     

    
    

  

To illustrate the bijection just defined we list below 
two examples 

2 2 1 0 0
3 2 1 0

2 0 1 1 0
4 0 2 2

1 2 0 1 1

3 1 1 1 0 0
3 1 1 1 0

1 2 0 0 1 0
2 4 0 0 2

0 1 2 0 0 1

 
  
     

 

 
  
     

 




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From this bijection we have the following theorem. 
Theorem 4.4 The number of unrestricted partitions of 

n is equal to the number of two-line matrices of the form 

1 2

1 2

,s

s

c c c

d d d

 
 
 




               (6) 

where 

 for > 1s , = 0sc , td  is even with , 2
1 2 2

d
c c  , 

1
1=

2
t

t t

d
c c 

   for > 1t ;  

 for = 1s  and n even, 1 = 1c  and 1 = 1d n  ;  
 for = 1s  and n odd, 1 = 0c  and 1 =d n ;  
 and =i ic d n  . 

In order to get, for an integer n, a complete description 
for another subset of plane partitions having the same 
cardinality as the number of unrestricted partitions of n 
we do the following. 

When we moved from a matrix of the form (5) to one 
like (6) we have added the entries 1e  and 1c  of (5) to 
get the entry 1c  of (6). Now we consider the two-line 
matrix without this addition and use this matrix to draw a 
lattice path, as we did before, by first adding one to each 
entry. Observing that this lattice path is entirely on the 
plane = 1z  we use the element 1e  to move up this 
lattice path to the plane 1= 1z e . This operation is il-
lustrated below. 

2 2 1 0 0

5 4 2 2 1 2 0 1 1 0

1 2 0 1 1

2 2 1 0 3 3 2 1

4 0 2 2 5 1 3 2



 

 
      
 
 

   
   
   

 

The corresponding lattice path and plane partition are 
shown in Figures 11 and 12. 

Definition 4.2 A plane partition is said to be of type E 
if the number of faces that are parallel to the xz-plane is 
equal to the number of faces that are parallel to the 
yz-plane and there is only one face parallel and above 
the xy-plane. 

Definition 4.3 A plane partition of type   is a plane 
partition of type E such that the matrix obtained from its 
corresponding two-line matrix with nonzero entries after 
subtracting 1 from each entry and adding 1e  to 1c  is 
of the form (6). 

Figure 10 gives an example of a plane partition of 
type  . Observe that there is only one face (on the 
plane 1= 1z e ) parallel and above the xy-plane. With 
this definitions and the discussion above we now state 
our last theorem. 

 

Figure 11. The lattice path. 
 

 

Figure 12. The plane partition. 
 

Theorem 4.5 The number of plane partitions of n of 
type   is equal to the number of unrestricted parti-
tions of n. 
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