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Abstract 
 
This paper presents mathematical models and optimal algorithms of two FIFO-queues control in single-level 
memory. These models are designed as two-dimensional random walks on the integer lattice in a rectangular 
area for consecutive implementation and a triangle area for linked list implementation.  
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1. Introduction 
 
Let two stacks grow towards each other in the shared 
memory of size m. D. Knuth set the task of constructing a 
mathematical model of this process [1]. In [2-6] a mathe- 
matical model of the process was constructed as two- 
dimensional random walk in a triangle with two reflecting 
and one absorbing barriers. In [7-8] we consider the 
problem of one and two stacks managing in two-level 
memory. This paper proposes mathematical models and 
optimal algorithms of two FIFO-queues control [9]. These 
data structures are often used in control and automation 
systems.  

In the case of single-level memory, several allocation 
methods of FIFO-queues in the memory may be used [1]. 
The first method (Garvic’s algorithm) is the consecutive 
allocation of one queue after another. In this case we have 
memory losses due to the fact that when any queue over-
flow, other queue can have free memory units. The linked 
list implementation is the second method. In this case any 
number of lists can coexist inside a shared area of memory 
until the list of free memory isn’t exhausted. On the other 
hand, this method requires an additional link field for each 
element. The third method is storage of elements in the 
linked lists of fixed size pages. In this case we have 
memory losses of the first and the second types.  

On the basis of proposed models the methods of queues 
implementation are compared, the optimality criterion— 
maximizing of the average number of operations, per-
formed with queues until memory overflow. Execution 

time of each operation is constant and it isn’t included in 
the optimality criterion. However, it is important to take 
into account the specific of hardware and software in the 
queues implementation methods. In [1] provides such 
time assessment of element insertion in the stack. When 
consecutive implementation is used, it equals 12 cycles, 
and when linked list—it equals 17 cycles. For the opera-
tion of element deletion this assessments are equal ap-
proximately.  
 
2. Consecutive Implementation of Two 

FIFO-Queues 
 
Assume that we want to work with two consecutive cir-
cular FIFO-queues in the single-level memory of size m. 
Denote the insertion and deletion probabilities of the 
elements in the first queue by p1 and q1, in the second 
queue—by p2 and q2, the probability of operation which 
doesn’t change the queue length (for example only read-
ing)—by r, where p1 + q1 + p2 + q2 + r = 1. Denote the 
current lengths of queues by x1 and x2, the length of 
memory, separated to the first queue—by s, to the second 
queue—by n-s (Figure 1). The value n = m – 2 is the total 
maximal size of two queues, because one memory ele-
ment remains free [1] for the circular realization of FIFO- 
queue.  

As a mathematical model we have two-dimensional 
random walk on the integer lattice in the bounded area   
0 ≤ x1 < s + 1, 0 ≤ x2 < n – s + 1 (Figure 2) with the tran- 
sition probabilities : p1—to the right, q1—to the left, p2—  
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Figure 1. Consecutive allocation. 
 

 

Figure 2. Random walk area. 
 
upward, q2—downward, r—to remain on the place. The 
random walk begins at the state x1 = x2 = 0, where the 
lines x1 = –1 and x2 = –1 are reflecting barriers, the lines 
x1 = s + 1 and x2 = n – s + 1—absorbing barriers. The 
problem is to choose the value s so that the expectation of 
the random walk time, until the absorption occurs, would 
be maximal. Number the points of walk area top-down 
and right to left beginning by 0. These points correspond 
to the nonrecurring states of the Markov chain [10]. We 
have (s + 1) (n – s + 1) such states.  

The tasks are solved with the apparatus of absorbing 
Markov chains. The proposed algorithm of states num-
bering makes possible to estimate the transition matrix, 
corresponding to the Markov chain.  

Theorem 2.1 At the given states numbering, memory 
size m and value s the matrix Q has the structure:  
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the submatrix k kA   has the same structure as k kA  , but 
value q1 is added to the each element of the main diago-
nal.  

The Proof is based on the mathematical induction me-
thod.  
 
3. Linked List Implementation of Two 

FIFO-Queues 
 
For linked list implementation it is enough to have one- 
linked list of elements (Figure 3). Each queue element 
consists of two memory units of the same size. The first 
unit contains stored information and the second unit 
contains a pointer to the following element of list.  

Denote the current lengths of queues by x1 and x2, the 
pointers to the first queue elements—by F1 and F2, the 
pointers to the last queue elements—by R1 and R2. As-
sume that m is divisible by 2. In such queue implementa-
tion m/2 memory units are spent for the pointers, m/2 
memory units are spent for the stored information. As a 
mathematical model we have two-dimensional random 
walk on the integer lattice in the region 0 ≤ x1 + x2 < m/2 
+ 1, where the border x1 + x2 = m/2+1 is an absorbing 
barrier (it means that the overflow of some queue occurs), 
the borders x1 = –1 and x2 = –1—are reflecting barriers (it 
means that the underflow of some queue occurs) (Figure 
4).  

The random walk begins at the state x1 = x2 = 0. Nec-
essary to find an average time of random walk until the 
absorption occurs. It is denoted by T. Then we should 
compare it with the average time of consecutive and 
paged implementation.   
 
4. Paged Implementation of Two Queues 
 
In this way the queues are implemented as a linked list of 
the same size pages. The page size equals x memory units. 
Assume that m is divisible by x, and then the number of 
pages equals m/x. The number of pointers equals m/x,  
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Figure 3. Linked list implementation. 
 

 

Figure 4. Random walk area. 
 
x – 1 memory units of each page are used for the infor-
mation storing and one unit is used for the pointer storing 
(Figure 5). Also, assume that a control algorithm of free 
page list exists. The algorithm gives new page to the 
overflowing queue. If the page, which contains a queue 
beginning, becomes empty, that this page returns to the 
free page list. If the free page list is empty and the tail 
page of some queue overflows, the queue overflow occurs. 
Notice, if x = 2, it is the linked list implementation, i.e. 
possible to consider the linked list implementation of 
queues as a special case of the paged implementation.  

Denote the current lengths of queues by x1 and x2, the 
pointers to the first queue elements—by F1 and F2, the 
pointers to the last queue elements—by R1 and R2. As a 
mathematical model we have two-dimensional random 
walk on the integer lattice in the region 0 ≤ x1 + x2 < m – 
m/x + 1, where the border x1 + x2 = m – m/x + 1 is an 
absorbing barrier, the borders x1 = –1 and x2 = –1 – are 
reflecting barriers (Figure 6). The random walk begins at 
the state x1 = x2 = 0.  

The task is to find an average time of random walk. 
Examine the process of random walk as a finite uniform 
Markov chain. Let’s number the nonrecurring states so 
like it is presented on the picture below (Figure 7), i.e. 
bottom-up, from the left to the right. Determine the 
scheme of random walk with the probabilities of transi-
tions so: p1—to the right, q1—to the left, p2—upward, 
q2—downward, r – to remain on the place. The number of 
memory units without pointers equals n = m – m/x. Then 
the number of the nonrecurring states of Markov chain  

 

Figure 5. Paged implementation. 
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Figure 6. Random walk area. 
 

 

Figure 7. Random walk area. 
 
equals (n + 1) (n + 2)/2. 

Examine the transition probability matrix Q, describing 
transitions from the nonrecurring states to the nonrecur-
ring ones. At the given numbering the matrix Q has a 
block structure. Obviously, that the matrix structure of the 
linked list implementation coincides with the matrix 
structure of the page implementation.  

Theorem 4.1 At the given states numbering, memory 
size m and value s the matrix Q has the structure:  
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The Proof is based on the mathematical induction me-
thod.  

Denote by F(x) the average number of memory units, 
which actually used for stored data, if overflow occurs. 
Let’s suppose that pages stored the queue beginning and 
the queue end, are half-filled, if the overflow occurs. The 
number of these pages equals 3. Then F(x) = m – m/x – 
3(x – 1)/2, m > 0, x > 0. Lets find a maximum of F(x). The 
derivative F'(x) =m/x2 – 3/2=0, the root x* = 6m /3.  

The second derivative F''(x) = –2m/x3 < 0, m > 0, x > 0, 
then x* is the maximum of F(x). Consider the values x    
and x    a  optimal page size, because the mathe-
matical model is discrete.  

s an

 
5. Decision of the Task 
 
For decision of the task we shall find the fundamental 
matrix N = (I – Q)–1 [10], where I is an unitary matrix. In 
the cases of linked list and page implementations we work 
with the general resource of the memory. It implies that 
when the overflow of some queue occurs, all memory 
units are filled. Indeed, page, which contains the queue 
beginning, can’t be filled fully. In this case another queue 
can’t use this page, but pages, which contains its begin-
ning and end, are not filled fully too. The overflowed 
queue can’t use these pages. Actually the random walk 
occurs in smaller volume of the memory. So the calcu-
lated average time is the upper estimate for real random 
walk time. It is denoted by Tmax. Also, possible to compute 
the lower estimate of real random walk time if consider 
that when the overflow of some queue occurs, pages, 

which contain the beginning of the overflowed queue and 
the beginning and the end of another queue, are stored on 
one unit.  

Then consider the random walk in triangular area 0 ≤ x1 
+ x2 < m – m/x + 1 for the upper estimate, and 0 ≤ x1 + x2 
< m – m/x – 3(x – 2) + 1 for the lower estimate, where the 
summand 3(x – 2) is three pages, which stored on one unit. 
Notice that the linked list implementation hasn’t such 
losses. For any memory size m we define when the ran-
dom walk area for the linked list implementation is less 
than the random walk area for the page implementation in 
the case of lower estimate of the average time. Consider 
the inequality m – m/x – 3(x – 2)> m/2, m > 0, x > 2.  

If x is an arbitrary page size, get 2 < x < m/6, i.e. the 
random walk area in the case of linked list implementation 
is always less than the random walk area in the case of 
paged implementation for lower estimate, if x satisfies the 
inequality above. Therefore, if 2 < x < m/6, the average 
time of random walk until absorption in the case of linked 
list implementation is less than in the case of paged im-
plementation for the lower estimate.  

If x = 6m/3, then m – 3 6m + 12 > 0. Get 24 < m < 
∞, i.e. for m > 24 at x = 6m/3 the random walk area in 
the case of linked list implementation is always less than 
the random walk area in the case of paged implementation 
for lower estimate. Therefore, for m > 24 at x = 6m/3 
the average time of random walk until absorption in the 
case of linked list implementation is less than in the case 
of paged implementation for the lower estimate.  
 
6. Results of Numerical Experiments 
 
For this problems solution the algorithms and computa-
tional programs in C++ were developed. Numerical re-
sults are presented in Tables 1-2. The average time of the 
random walk is presented in Table 1 for memory size m = 
12 in the case, when each consecutive circular FIFO- 
queue has the same size of memory. In Table 2 the av-
erage time is presented for different queues implementa-
tions. In the case of consecutive implementation the 
memory is divided optimally depending on queues 
probabilities. In the first five columns there are the queues 
probabilities, in the following three columns there is the 
average time of the random walk for A1—consecutive 
implementation, A2—paged implementation, A3—linked 
list implementation. The column s is the memory size, 
assigned to the first queue in the case of consecutive im-
plementation. The column, corresponding to the paged 
implementation, contains the optimal page size x and the 
average time of random walk. Obviously that at the page 
size x = 2 the average time of random walk for the page 
implementation is the same as one for the linked list im-
plementation. The column A  contains the upper estimate  2    
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Table 1. The average time for a consecutive implementation of the queues, when the memory is divided equally. 

p1 q1 p2 q2 r s T 

0.5 0 0.5 0 0 5 9.29 

0.2 0.2 0.2 0.2 0.2 5 61.34 

0.6 0.1 0.1 0.1 0.1 5 11.59 

0.5 0.1 0.3 0.1 0 5 13.1 

0.4 0.1 0.4 0.1 0 5 13.8 

0.4 0.19 0.4 0.01 0 5 13.28 

0.3 0.2 0.2 0.3 0 5 38.77 

0.01 0.5 0.19 0.3 0 5 304.85 

0.19 0.5 0.01 0.3 0 5 1703.45 

0.3 0.3 0.2 0.2 0 5 48.93 

0.4 0.4 0.1 0.1 0 5 47.52 

0.45 0.45 0.05 0.05 0 5 45.64 

0.3 0.3 0.25 0.1 0.05 5 29.16 

0.3 0.3 0.1 0.25 0.05 5 68.92 

0.45 0.05 0.1 0.4 0 5 14.17 

 
Table 2. The average time for different methods of implementation of queues. 

A1 A2 A3 
p1 q1 p2 q2 r 

s T x Tmax Tmin T 

0.5 0 0.5 0 0 5 9.29 3 9.0 6.0 7.0 

2 0.2 0.2 0.2 0.2 5 61.34 3 73.33 35.76 46.81 

0.6 0.1 0.1 0.1 0.1 8 16.31 3 15.57 10.12 11.92 

0.5 0.1 0.3 0.1 0 6 13.81 3 13.84 8.93 10.56 

0.4 0.1 0.4 0.1 0 5 13.8 3 13.91 8.97 10.61 

0.4 0.19 0.4 0.01 0 4 13.44 3 13.65 8.8 10.41 

0.3 0.1 0.2 0.3 0.1 6 42.87 3 32.84 25.998 23.94 

0.01 0.5 0.19 0.3 0 1 1590.3 3 1353.63 292.27 497.81 

0.19 0.5 0.01 0.3 0 8 23720.14 3 28498.54 1541.23 4091.91 

0.3 0.3 0.2 0.2 0 5 48.93 3 59.13 28.83 37.74 

0.4 0.4 0.1 0.1 0 7 55.16 3 63.61 30.96 40.57 

0.45 0.45 0.05 0.05 0 7 65.5 3 69.51 33.72 44.25 

0.3 0.3 0.25 0.1 0.05 4 29.2 3 32.38 18.8 23.15 

0.3 0.3 0.1 0.25 0.05 7 97.46 3 113.88 49.31 67.5 

0.45 0.05 0.1 0.4 0 8 21.46 3 20.86 13.45 15.91 

 
Tmax and the lower estimate Tmin for the average time of 
random walk. 
 
7. Conclusions 
 
It is possible to draw a conclusion from numerical results, 

that for linked implementation of the queues, when size of 
the page x = 2, the average time of random walk before 
overflowing of the memory always less than average time 
of random walk for consecutive implementation. Also, it 
is seen that average time for linked list implementation 
lies between the estimates Tmin and Tmax of the average 
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time for paged implementation. So for some probabilistic 
characteristics of the queues the linked list implementa-
tion can be better than the page implementation.  

Comparing the average time of the random walk for 
consecutive and paged implementations, notice that the 
average time for consecutive implementation is basically 
less than the upper estimate Tmax for paged implementa-
tion. However, for some probabilistic characteristics of 
the queues the average time for consecutive implementa-
tion is greater than the upper estimate Tmax for paged 
implementation. Also, for practice it can be interesting to 
analyze the consecutive implementation of the queues, 
when the memory isn’t divided optimum depending on 
probabilistic characteristics of the queues, but simply— 
fifty-fifty. It is logically, when we don’t know probabil-
istic characteristics of the queues beforehand. Then as a 
mathematical model we have two-dimensional random 
walk on the integer lattice in the square 0 ≤ x1 < m/2, 0 ≤ 
x2 < m/2, but for the linked list implementation we have 
two-dimensional random walk on the integer lattice in the 
triangular area 0 ≤ x1 + x2 <m/2 + 1. As can be seen from 
comparison of the lines with numbers 3, 8, 9, 15 in the 
Table 1 and in the Table 2, the consecutive implementa- 
tion can be worse than linked.   

Though greater part of the triangular area lies inside the 
square and only two states (m/2, 0) and (0, m/2) are ab-
sorbing for the square, but nonrecurring for the triangle, 
for some probabilistic characteristics of the queues it is 
enough that the average time of the random walk in the 
triangle became greater than in the square. For example, 
in line 3 we have a situation, when the insertion in the first 
queue occurs with high probability p1 = 0.6, but all rest 
probabilities is alike. In this case the consecutive imple-
mentation is worse than linked. Obviously, this occurs 
because greater part of the random walk paths is absorbed 
in the point, which lies outside of absorbing borders of the 
square, but is absorbing state for the triangle.   
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