
Applied Mathematics, 2011, 2, 1297-1302
doi:10.4236/am.2011.210180 Published Online October 2011 (http://www.SciRP.org/journal/am)

Copyright © 2011 SciRes. AM

Optimal Implementation of Two FIFO-Queues in
Single-Level Memory

Elena A. Aksenova, Andrew V. Sokolov
Institute of Applied Mathematical Research, Karelian Research Center,

Russian Academy of Sciences, Petrozavodsk, Russia
E-mail: aksenova@krc.karelia.ru, avs@krc.karelia.ru

Received November 19, 2010; revised January 11, 2011; accepted January 18, 2011

Abstract

This paper presents mathematical models and optimal algorithms of two FIFO-queues control in single-level
memory. These models are designed as two-dimensional random walks on the integer lattice in a rectangular
area for consecutive implementation and a triangle area for linked list implementation.

Keywords: FIFO-Queues, Random Walks, Markov Chains, Consecutive Implementation, Linked List

Implementation, Paged Implementation

1. Introduction

Let two stacks grow towards each other in the shared
memory of size m. D. Knuth set the task of constructing a
mathematical model of this process [1]. In [2-6] a mathe-
matical model of the process was constructed as two-
dimensional random walk in a triangle with two reflecting
and one absorbing barriers. In [7-8] we consider the
problem of one and two stacks managing in two-level
memory. This paper proposes mathematical models and
optimal algorithms of two FIFO-queues control [9]. These
data structures are often used in control and automation
systems.

In the case of single-level memory, several allocation
methods of FIFO-queues in the memory may be used [1].
The first method (Garvic’s algorithm) is the consecutive
allocation of one queue after another. In this case we have
memory losses due to the fact that when any queue over-
flow, other queue can have free memory units. The linked
list implementation is the second method. In this case any
number of lists can coexist inside a shared area of memory
until the list of free memory isn’t exhausted. On the other
hand, this method requires an additional link field for each
element. The third method is storage of elements in the
linked lists of fixed size pages. In this case we have
memory losses of the first and the second types.

On the basis of proposed models the methods of queues
implementation are compared, the optimality criterion—
maximizing of the average number of operations, per-
formed with queues until memory overflow. Execution

time of each operation is constant and it isn’t included in
the optimality criterion. However, it is important to take
into account the specific of hardware and software in the
queues implementation methods. In [1] provides such
time assessment of element insertion in the stack. When
consecutive implementation is used, it equals 12 cycles,
and when linked list—it equals 17 cycles. For the opera-
tion of element deletion this assessments are equal ap-
proximately.

2. Consecutive Implementation of Two

FIFO-Queues

Assume that we want to work with two consecutive cir-
cular FIFO-queues in the single-level memory of size m.
Denote the insertion and deletion probabilities of the
elements in the first queue by p1 and q1, in the second
queue—by p2 and q2, the probability of operation which
doesn’t change the queue length (for example only read-
ing)—by r, where p1 + q1 + p2 + q2 + r = 1. Denote the
current lengths of queues by x1 and x2, the length of
memory, separated to the first queue—by s, to the second
queue—by n-s (Figure 1). The value n = m – 2 is the total
maximal size of two queues, because one memory ele-
ment remains free [1] for the circular realization of FIFO-
queue.

As a mathematical model we have two-dimensional
random walk on the integer lattice in the bounded area
0 ≤ x1 < s + 1, 0 ≤ x2 < n – s + 1 (Figure 2) with the tran-
sition probabilities : p1—to the right, q1—to the left, p2—

1298 E. A. AKSENOVA ET AL.

Figure 1. Consecutive allocation.

Figure 2. Random walk area.

upward, q2—downward, r—to remain on the place. The
random walk begins at the state x1 = x2 = 0, where the
lines x1 = –1 and x2 = –1 are reflecting barriers, the lines
x1 = s + 1 and x2 = n – s + 1—absorbing barriers. The
problem is to choose the value s so that the expectation of
the random walk time, until the absorption occurs, would
be maximal. Number the points of walk area top-down
and right to left beginning by 0. These points correspond
to the nonrecurring states of the Markov chain [10]. We
have (s + 1) (n – s + 1) such states.

The tasks are solved with the apparatus of absorbing
Markov chains. The proposed algorithm of states num-
bering makes possible to estimate the transition matrix,
corresponding to the Markov chain.

Theorem 2.1 At the given states numbering, memory
size m and value s the matrix Q has the structure:

,

k k k k

k k
z z

k k k k

k k k k

A B

C
Q

A B

C A

 




 

 



 

  

 








1,

where

  1 1 ,z s n s k n s      

the submatrixes have the structures:

2

2

2

2 2

,k k

r q

p
A

r q

p r q



 
 
 
 
 

 

 


1

1

,k k

q

B

q


 
   
 
 



1

1

,k k

p

C

p


 
   
 
 



the submatrix k kA  has the same structure as k kA  , but
value q1 is added to the each element of the main diago-
nal.

The Proof is based on the mathematical induction me-
thod.

3. Linked List Implementation of Two

FIFO-Queues

For linked list implementation it is enough to have one-
linked list of elements (Figure 3). Each queue element
consists of two memory units of the same size. The first
unit contains stored information and the second unit
contains a pointer to the following element of list.

Denote the current lengths of queues by x1 and x2, the
pointers to the first queue elements—by F1 and F2, the
pointers to the last queue elements—by R1 and R2. As-
sume that m is divisible by 2. In such queue implementa-
tion m/2 memory units are spent for the pointers, m/2
memory units are spent for the stored information. As a
mathematical model we have two-dimensional random
walk on the integer lattice in the region 0 ≤ x1 + x2 < m/2
+ 1, where the border x1 + x2 = m/2+1 is an absorbing
barrier (it means that the overflow of some queue occurs),
the borders x1 = –1 and x2 = –1—are reflecting barriers (it
means that the underflow of some queue occurs) (Figure
4).

The random walk begins at the state x1 = x2 = 0. Nec-
essary to find an average time of random walk until the
absorption occurs. It is denoted by T. Then we should
compare it with the average time of consecutive and
paged implementation.

4. Paged Implementation of Two Queues

In this way the queues are implemented as a linked list of
the same size pages. The page size equals x memory units.
Assume that m is divisible by x, and then the number of
pages equals m/x. The number of pointers equals m/x,

Copyright © 2011 SciRes. AM

E. A. AKSENOVA ET AL.

1299

Figure 3. Linked list implementation.

Figure 4. Random walk area.

x – 1 memory units of each page are used for the infor-
mation storing and one unit is used for the pointer storing
(Figure 5). Also, assume that a control algorithm of free
page list exists. The algorithm gives new page to the
overflowing queue. If the page, which contains a queue
beginning, becomes empty, that this page returns to the
free page list. If the free page list is empty and the tail
page of some queue overflows, the queue overflow occurs.
Notice, if x = 2, it is the linked list implementation, i.e.
possible to consider the linked list implementation of
queues as a special case of the paged implementation.

Denote the current lengths of queues by x1 and x2, the
pointers to the first queue elements—by F1 and F2, the
pointers to the last queue elements—by R1 and R2. As a
mathematical model we have two-dimensional random
walk on the integer lattice in the region 0 ≤ x1 + x2 < m –
m/x + 1, where the border x1 + x2 = m – m/x + 1 is an
absorbing barrier, the borders x1 = –1 and x2 = –1 – are
reflecting barriers (Figure 6). The random walk begins at
the state x1 = x2 = 0.

The task is to find an average time of random walk.
Examine the process of random walk as a finite uniform
Markov chain. Let’s number the nonrecurring states so
like it is presented on the picture below (Figure 7), i.e.
bottom-up, from the left to the right. Determine the
scheme of random walk with the probabilities of transi-
tions so: p1—to the right, q1—to the left, p2—upward,
q2—downward, r – to remain on the place. The number of
memory units without pointers equals n = m – m/x. Then
the number of the nonrecurring states of Markov chain

Figure 5. Paged implementation.

1
m

m
x

 

1
m

m
x

 

1 2 1
m

x x m
x

   

Figure 6. Random walk area.

Figure 7. Random walk area.

equals (n + 1) (n + 2)/2.

Examine the transition probability matrix Q, describing
transitions from the nonrecurring states to the nonrecur-
ring ones. At the given numbering the matrix Q has a
block structure. Obviously, that the matrix structure of the
linked list implementation coincides with the matrix
structure of the page implementation.

Theorem 4.1 At the given states numbering, memory
size m and value s the matrix Q has the structure:

1 1

1

2 2 2 1

1 2 1 2

,

k k

k k k

z k

A B

C A B

Q C

A B

C r q q

 



 



 
 
 
 
 
 
   

 


  1 2z n n   2 ,

Copyright © 2011 SciRes. AM

E. A. AKSENOVA ET AL.

1300

kwhere the submatrixes have the dimensions k kA A  ,
, and the structures:  1k k kB B    1k k kC C  

2

1

=k

r q

r

A

r

r q







 

 ,










 1 1 1 2A r q q    ,

1

2

1

2

= ,k

q

q
B

q

q

 
 
 
 
 
 




1 2

1 2

= ,k

p p

C

p p

 
 
 
 
 

 

1, , ,3, 2.k n n  

The Proof is based on the mathematical induction me-
thod.

Denote by F(x) the average number of memory units,
which actually used for stored data, if overflow occurs.
Let’s suppose that pages stored the queue beginning and
the queue end, are half-filled, if the overflow occurs. The
number of these pages equals 3. Then F(x) = m – m/x –
3(x – 1)/2, m > 0, x > 0. Lets find a maximum of F(x). The
derivative F'(x) =m/x2 – 3/2=0, the root x* = 6m /3.

The second derivative F''(x) = –2m/x3 < 0, m > 0, x > 0,
then x* is the maximum of F(x). Consider the values x  
and x   a optimal page size, because the mathe-
matical model is discrete.

s an

5. Decision of the Task

For decision of the task we shall find the fundamental
matrix N = (I – Q)–1 [10], where I is an unitary matrix. In
the cases of linked list and page implementations we work
with the general resource of the memory. It implies that
when the overflow of some queue occurs, all memory
units are filled. Indeed, page, which contains the queue
beginning, can’t be filled fully. In this case another queue
can’t use this page, but pages, which contains its begin-
ning and end, are not filled fully too. The overflowed
queue can’t use these pages. Actually the random walk
occurs in smaller volume of the memory. So the calcu-
lated average time is the upper estimate for real random
walk time. It is denoted by Tmax. Also, possible to compute
the lower estimate of real random walk time if consider
that when the overflow of some queue occurs, pages,

which contain the beginning of the overflowed queue and
the beginning and the end of another queue, are stored on
one unit.

Then consider the random walk in triangular area 0 ≤ x1
+ x2 < m – m/x + 1 for the upper estimate, and 0 ≤ x1 + x2
< m – m/x – 3(x – 2) + 1 for the lower estimate, where the
summand 3(x – 2) is three pages, which stored on one unit.
Notice that the linked list implementation hasn’t such
losses. For any memory size m we define when the ran-
dom walk area for the linked list implementation is less
than the random walk area for the page implementation in
the case of lower estimate of the average time. Consider
the inequality m – m/x – 3(x – 2)> m/2, m > 0, x > 2.

If x is an arbitrary page size, get 2 < x < m/6, i.e. the
random walk area in the case of linked list implementation
is always less than the random walk area in the case of
paged implementation for lower estimate, if x satisfies the
inequality above. Therefore, if 2 < x < m/6, the average
time of random walk until absorption in the case of linked
list implementation is less than in the case of paged im-
plementation for the lower estimate.

If x = 6m/3, then m – 3 6m + 12 > 0. Get 24 < m <
∞, i.e. for m > 24 at x = 6m/3 the random walk area in
the case of linked list implementation is always less than
the random walk area in the case of paged implementation
for lower estimate. Therefore, for m > 24 at x = 6m/3
the average time of random walk until absorption in the
case of linked list implementation is less than in the case
of paged implementation for the lower estimate.

6. Results of Numerical Experiments

For this problems solution the algorithms and computa-
tional programs in C++ were developed. Numerical re-
sults are presented in Tables 1-2. The average time of the
random walk is presented in Table 1 for memory size m =
12 in the case, when each consecutive circular FIFO-
queue has the same size of memory. In Table 2 the av-
erage time is presented for different queues implementa-
tions. In the case of consecutive implementation the
memory is divided optimally depending on queues
probabilities. In the first five columns there are the queues
probabilities, in the following three columns there is the
average time of the random walk for A1—consecutive
implementation, A2—paged implementation, A3—linked
list implementation. The column s is the memory size,
assigned to the first queue in the case of consecutive im-
plementation. The column, corresponding to the paged
implementation, contains the optimal page size x and the
average time of random walk. Obviously that at the page
size x = 2 the average time of random walk for the page
implementation is the same as one for the linked list im-
plementation. The column A contains the upper estimate 2

Copyright © 2011 SciRes. AM

E. A. AKSENOVA ET AL.

Copyright © 2011 SciRes. AM

1301

Table 1. The average time for a consecutive implementation of the queues, when the memory is divided equally.

p1 q1 p2 q2 r s T

0.5 0 0.5 0 0 5 9.29

0.2 0.2 0.2 0.2 0.2 5 61.34

0.6 0.1 0.1 0.1 0.1 5 11.59

0.5 0.1 0.3 0.1 0 5 13.1

0.4 0.1 0.4 0.1 0 5 13.8

0.4 0.19 0.4 0.01 0 5 13.28

0.3 0.2 0.2 0.3 0 5 38.77

0.01 0.5 0.19 0.3 0 5 304.85

0.19 0.5 0.01 0.3 0 5 1703.45

0.3 0.3 0.2 0.2 0 5 48.93

0.4 0.4 0.1 0.1 0 5 47.52

0.45 0.45 0.05 0.05 0 5 45.64

0.3 0.3 0.25 0.1 0.05 5 29.16

0.3 0.3 0.1 0.25 0.05 5 68.92

0.45 0.05 0.1 0.4 0 5 14.17

Table 2. The average time for different methods of implementation of queues.

A1 A2 A3
p1 q1 p2 q2 r

s T x Tmax Tmin T

0.5 0 0.5 0 0 5 9.29 3 9.0 6.0 7.0

2 0.2 0.2 0.2 0.2 5 61.34 3 73.33 35.76 46.81

0.6 0.1 0.1 0.1 0.1 8 16.31 3 15.57 10.12 11.92

0.5 0.1 0.3 0.1 0 6 13.81 3 13.84 8.93 10.56

0.4 0.1 0.4 0.1 0 5 13.8 3 13.91 8.97 10.61

0.4 0.19 0.4 0.01 0 4 13.44 3 13.65 8.8 10.41

0.3 0.1 0.2 0.3 0.1 6 42.87 3 32.84 25.998 23.94

0.01 0.5 0.19 0.3 0 1 1590.3 3 1353.63 292.27 497.81

0.19 0.5 0.01 0.3 0 8 23720.14 3 28498.54 1541.23 4091.91

0.3 0.3 0.2 0.2 0 5 48.93 3 59.13 28.83 37.74

0.4 0.4 0.1 0.1 0 7 55.16 3 63.61 30.96 40.57

0.45 0.45 0.05 0.05 0 7 65.5 3 69.51 33.72 44.25

0.3 0.3 0.25 0.1 0.05 4 29.2 3 32.38 18.8 23.15

0.3 0.3 0.1 0.25 0.05 7 97.46 3 113.88 49.31 67.5

0.45 0.05 0.1 0.4 0 8 21.46 3 20.86 13.45 15.91

Tmax and the lower estimate Tmin for the average time of
random walk.

7. Conclusions

It is possible to draw a conclusion from numerical results,

that for linked implementation of the queues, when size of
the page x = 2, the average time of random walk before
overflowing of the memory always less than average time
of random walk for consecutive implementation. Also, it
is seen that average time for linked list implementation
lies between the estimates Tmin and Tmax of the average

1302 E. A. AKSENOVA ET AL.

time for paged implementation. So for some probabilistic
characteristics of the queues the linked list implementa-
tion can be better than the page implementation.

Comparing the average time of the random walk for
consecutive and paged implementations, notice that the
average time for consecutive implementation is basically
less than the upper estimate Tmax for paged implementa-
tion. However, for some probabilistic characteristics of
the queues the average time for consecutive implementa-
tion is greater than the upper estimate Tmax for paged
implementation. Also, for practice it can be interesting to
analyze the consecutive implementation of the queues,
when the memory isn’t divided optimum depending on
probabilistic characteristics of the queues, but simply—
fifty-fifty. It is logically, when we don’t know probabil-
istic characteristics of the queues beforehand. Then as a
mathematical model we have two-dimensional random
walk on the integer lattice in the square 0 ≤ x1 < m/2, 0 ≤
x2 < m/2, but for the linked list implementation we have
two-dimensional random walk on the integer lattice in the
triangular area 0 ≤ x1 + x2 <m/2 + 1. As can be seen from
comparison of the lines with numbers 3, 8, 9, 15 in the
Table 1 and in the Table 2, the consecutive implementa-
tion can be worse than linked.

Though greater part of the triangular area lies inside the
square and only two states (m/2, 0) and (0, m/2) are ab-
sorbing for the square, but nonrecurring for the triangle,
for some probabilistic characteristics of the queues it is
enough that the average time of the random walk in the
triangle became greater than in the square. For example,
in line 3 we have a situation, when the insertion in the first
queue occurs with high probability p1 = 0.6, but all rest
probabilities is alike. In this case the consecutive imple-
mentation is worse than linked. Obviously, this occurs
because greater part of the random walk paths is absorbed
in the point, which lies outside of absorbing borders of the
square, but is absorbing state for the triangle.

8. References

[1] D. E. Knuth, “The Art of Computer Programming,” Vol.

1, Addison-Wesley, Reading, 2001.

[2] A. V. Sokolov, “About Storage Allocation for Imple-
menting Two Stacks,” Automation of Experiment and
Data Processing, Petrozavodsk, 1980, pp. 65-71 (in Rus-
sian).

[3] A. C. Yao, “An Analysis of a Memory Allocation
Scheme for Implementation of Stacks,” SIAM Journal on
Computing, Vol. 10, 1981, pp. 398-403.
doi:10.1137/0210029

[4] P. Flajolet, “The Evolution of Two Stacks in Bounded
Space and Random Walks in a Triangle,” Lecture Notes
in Computer Science, Vol. 233, 1986, pp. 325-340.
doi:10.1007/BFb0016257

[5] G. Louchard, R. Schott, M. Tolley and P. Zimmermann,
“Random Walks, Heat Equation and Distributed Algori-
thms,” Journal of Computational and Applied Mathema-
tics, Vol. 53, No. 2. 1994, pp. 243-274.
doi:10.1016/0377-0427(94)90048-5

[6] R. S. Maier, “Colliding Stacks: A Large Deviations
Analysis,” Random Structures and Algorithms, Vol. 2,
No. 4, 1991, pp. 379-421. doi:10.1002/rsa.3240020404

[7] E. A. Aksenova, A. A. Lazutina and A. V. Sokolov,
“Study of a Non-Markovian Stack Management Model in
a Two-Level Memory,” Programming and Computer
Software, Vol. 30, No. 1, 2004, pp. 25-33.
doi:10.1023/B:PACS.0000013438.25368.b4

[8] E. A. Aksenova and A. V. Sokolov, “Optimal Manage-
ment of Two Parallel Stacks in Two-Level Memory,”
Discrete Mathematics and Applications, Vol. 17, No. 1,
2007, pp. 47-56. doi:10.1515/DMA.2007.006

[9] E. A. Aksenova, A. V. Sokolov and A. V. Tarasuk,
“About Optimal Allocation of Two FIFO-Queues in the
Bounded Area of Memory,” Control Systems and Infor-
mation Technologies, Vol. 3, No. 22, 2006, pp. 62-68 (in
Russian).

[10] J. G. Kemeny and J. L. Snell, “Finite Markov Chains,
Van Nostrand,” Princeton, New Jersey, 1960.

Copyright © 2011 SciRes. AM

http://dx.doi.org/10.1137/0210029
http://dx.doi.org/10.1007/BFb0016257
http://dx.doi.org/10.1016/0377-0427(94)90048-5
http://dx.doi.org/10.1002/rsa.3240020404
http://dx.doi.org/10.1023/B:PACS.0000013438.25368.b4
http://dx.doi.org/10.1515/DMA.2007.006

