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ABSTRACT 

Software reverse engineering and reengineering techniques are most often applied to reconstruct the software archi-
tecture with respect to quality constraints, or non-functional requirements such as maintainability or reusability. In this 
paper, the performance improvement of distributed software is modeled as a search problem that is solved by heuristic 
search algorithms such as genetic search methods. To achieve this, firstly, all aspects of the distributed execution of a 
software is specified  by an analytical performance evaluation function that not only evaluates the current deployment 
of the software from the performance perspective but also can be applied to propose the near-optimal object deploy-
ment for that software. This analytical function is applied as the Heuristic search objective function. In this paper a 
novel statement reordering method is also presented which is used to generate the search objective function such that 
the best solution in the search space can be found. 
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1. Introduction 

Automatic software reverse engineering and reengineer-
ing techniques are most often applied to reconstruct the 
software architecture with respect to quality constraints, 
or non-functional requirements such as maintainability or 
reusability [1–5]. However, there has been no effort to 
assess the architecture of existing distributed software 
from the performance viewpoint. All the architectural 
level performance engineering techniques are focused on 
the performance assessment at the early stages of the 
software development life cycle. However, the imple-
mented software still may not meet its performance pro-
visions and needs to be modified to improve the per-
formance. 

In this paper, a novel software reengineering approach 
is presented that proposes some alterations to the de-
ployment of the distributed software to improve its over-
all performance. The performance improvement is 
achieved by providing the chance for concurrent execu-
tion among method calls including the remote calls or 
local ones. The concurrency among the method calls is 
obtained when some of the blocking invocations are 
transformed into non-blocking or asynchronous form. 
However, this transformation entails execution overheads 
that should be considered very carefully. Therefore, the 
question is how to automatically find a set of invocations 

to be transformed to non-blocking such that the highest 
amount of concurrency in the execution of distributed 
software over a cluster is obtained.  

To address this problem, in this paper the program 
source code is analyzed to extract a performance evalua-
tion function considering the characteristics of the cur-
rent deployment of the distributed software. These char-
acteristics include the number of available workstations, 
the number of processors of each workstation and the 
deployment constraints. According to these constraints, 
some of the objects must reside on specific workstations 
as they need to access hardware or software resources 
(such as Database, printer, file,…) on that workstation. 

The current researches in the Software Performance 
Engineering (S.P.E) are dedicated to estimate the per-
formance of software in the early stage of development 
process due to needs for QOS. In order to achieve this 
goal, several works have been done to transform the 
software architectural models to the analyzable formal 
models. Some examples are deriving Queuing Network 
models from UML diagrams [6] or translating some of 
the UML diagrams to the Perti Nets [7,8]. In [9] con-
structing and analyzing two kinds of performance models 
are proposed: software execution model and system exe-
cution model. The former represents the software execu-
tion behavior and is modeled by execution graphs and 
the latter is based on the queuing network models, which 
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represent the computer system platform, including hard-
ware and software components. The software and system 
execution models are applied to assess the performance 
of the intended software architecture.  

There are also some related researches in the area of 
performance optimization of existing distributed pro-
grams. In a mixed dynamic and programmer-driven ap-
proach to optimize the performance of large-scale ob-
ject-oriented distributed systems [10], an object-partit- 
ioning method is dynamically invoked at runtime to col-
locate objects that communicate often. Here, the parti-
tioning criterion is to gather objects that often communi-
cate in a same partition. In a distribution strategy for 
program objects [11], an object graph construction algo-
rithm and a partitioning policy for the program objects 
based on object types is presented. The distribution 
strategy is to place the most communicating objects in 
the same machine to minimize the network traffic. How-
ever, when partitioning a program, in addition to mini-
mizing the communication cost, the amount of concur-
rency in the execution of the distributed partitions has to 
be maximized. To achieve this, in this paper, a new per-
formance-driven partitioning criterion is proposed. 

The main contribution of this paper is to extend the 
Software Performance Engineering techniques to the 
reengineering area in order to optimize the performance 
of existing distributed software. To achieve this, a new 
parametric performance evaluation function to assess the 
performance of the current object deployment of the 
software over the computational nodes is presented. This 
function not only evaluates the current software deploy-
ment but also proposes the best object deployment for the 
software. This function is automatically constructed 
while traversing the program call flow graph and consid-
ers both blocking and non-blocking types for each invo-
cation. 

The remaining parts of this paper are organized as fol-
lows: in section 2 the main steps of the proposed method 
are described. Section 3 presents an optimization tech-
nique called statement reordering which is applied to 
improve the amount of concurrency in the distributed 
program code. In section 4 the implementation of the 
proposed method is described. Finally the conclusions 
and future works are presented in section 5. 

2. Software Performance Modeling 

To improve the performance of distributed software, 
some of the blocking invocations among objects should 
be transformed to non-blocking ones. The non-blocking 
invocations are implemented either by means of remote 
asynchronous calls (supported in some middlewares such 
as JavaSymphoney [12]) or Java Threads. However, an 
invocation is converted to non-blocking only when this 
conversion results in concurrent execution between the 
caller and callee considering the resultant overheads. 

Each non-blocking invocation incurs communication and 
initiation overheads. The former is the amount of re-
quired time for sending the invocation parameters and 
receiving the return values between caller and calee. The 
latter is the amount of time required for starting the 
non-blocking invocation (such as asynchronous RMI or 
Java Threads). 

The object deployment for a given program is defined 
as pair (r,d). r denotes the set of all invocations in the 
program along with each invocation status (blocking or 
non blocking) an d denotes the deployment of caller and 
called objects, for each invocation Ii in r, over the avail-
able computational nodes. The performance evaluation 
function Θ(r,d) estimates the amount of execution time 
for object deployment (r,d). The optimal object deploy-
ment (ro,do) is the one for which the amount of  Θ is 
minimum. To find the optimal object deployment all 
possible object deployment for the software should be 
evaluated using function Θ. However, this is a 
NP-Complete problem and should be solved using heu-
ristic search algorithms such as Genetic algorithms. The 
deployment constraints must be considered during the 
search for the optimal object distribution. According to 
these constraints, some of the objects must reside on spe-
cific workstations as they need to access hardware or 
software resources (such as Database, printer, file,…) on 
that workstation. We have used a Constrained Genetic 
Clustering algorithm to find the optimal object deploy-
ment. In this algorithm function Θ is used as the search 
objective function. 

The main steps can be summarized as follows: 
 Extracting Call Graph from the program source 

code. 
 Unfolding the all graph to obtain the Call Tree. 
 Extracting function Θ by analyzing the program 

source code. 
 Search for the optimal object deployment (ro,do). 

This is achieved by using a genetic clustering algorithm 
that uses Θ as the search objective function. 

We have omitted the cycles in the extracted call graph 
to obtain the program call tree. This is necessary as in the 
call graph each node represents a class with multiple in-
coming invocations. However at runtime each invocation 
may be performed using a separate instance of a class. 
Each object deployment (r,d) corresponds to a labeled 
partitioning of the program call tree. Each label of a node 
in the call tree specifies the workstation on which the 
object represented by that node resides. The status of 
invocations is determined by the partitioning. The invo-
cations among partitions are assumed non-blocking while 
the invocations inside a partition are blocking. Therefore 
each labeled partitioning of the call tree specifies an ob-
ject deployment (r,d) of the software uniquely and vice 
versa. To search for the optimal object deployment (ro,do) 
all possible labeled partitioning of the call tree are evalu-
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ated by the constrained genetic clustering algorithm. 
The performance evaluation function Θ is built auto-

matically while traversing a program call flow graph. A 
call flow graph represents the flow of method calls 
among program classes. Θ is built considering the esti-
mated execution times of all instructions within the pro-
gram code including the invocations. Since, the type of 
invocations affects the overall execution time of the pro-
gram and is not determined until the program is parti-
tioned; Θ is built as a general function including all the 
possible invocation types for each method call. There are 
four types of invocations: local blocking, remote block-
ing (implemented using RMI), local non-blocking (im-
plemented using Java Thread) and remote non-blocking 
(implemented using asynchronous RMI). For each type 
of invocation an overhead is defined as shown in Table 1. 

As described in the previous section, Θ maps each ob-
ject distribution (r,d) to a value representing the esti-
mated execution time of the distributed software with 
object distribution (r,d). Object distribution (r,d) is de-
fined using a set of functions presented in Table 2 . 

For instance, consider a method invocation I1 that per-
forms another invocation I2 during its execution. The 
estimated execution time of I1, denoted by TI1, when I2 
type is (1) local blocking, (2) remote blocking,(3) local 
non-blocking and (4) remote non-blocking , is shown by 
relations (1) to (4) below respectively. 

 
Table1. Different overhead types 

α RMI initiation overhead 

β Thread creation overhead 

γ Asynch RMI initiation overhead 

 
Table 2. The maps that specify a labeled portioning and its 
equivalent object deployment (r,d) 

Φ 
Maps invocation Ii to a value 0 or 1, if Ii is 
inside a partition it is 1 otherwise it is 0. 

μ 
Maps invocation Ii to a value 0 or 1, if the 
caller and callee objects of Ii reside on the 
same workstation it is 0, otherwise it is 1. 

ω 
Maps invocation Ii to a workstation name on 
which Ii is executed 

Δ 

Maps invocation Ii to a value indicating the 
communication cost of the network link 
over which Ii is sending parameters or re-
ceiving return values as a RMI or asyn-
chronous RMI 

Г 
Maps each workstation w to the maximum 
number of threads created on it 

Π 
Maps each workstation w to the number of  
processing units installed on it 

TI1
  

= T0 + TI2,  TI2=T1                     (1) 

TI1
  

= T0 + α + TI2+ δ(I2) , TI2=T1           (2) 

TI1 = T0 + β + S2    , S2=max(T1-d2,0)      (3) 

TI1 = T0 + γ + S2    , S2=max(T1+ δ(I2)-d2,0)   (4) 

Assuming that the target of the invocation I1 is method 
m, T0 is the total execution time of all the instructions 
excluding I2 within m. When an invocation such as I2 is 
non-blocking, the caller should wait for the results of I2 
at some synchronization point during its execution. In 
relation (3) and (4), S2 denotes the amount of required 
time at the synchronization point of I2, to receive the re-
sults of I2. The above relations can be combined as a sin-
gle relation as follows: 

TI1= T0+Φ(I2)*(TI2 +μ(I2)*(α+δ(I2)) ) 

+ (1-Φ(I2))*(S2+μ(I2)*γ+(1-μ(I2))*β)   (5) 

S2=max(T1+μ(I2)* δ (I2) -d2,0) 

There may be several invocations, Ii, within method m 
and each invocation itself may include other invocations. 
Therefore, relation (5) for estimating the execution time 
of I1 can be generalized as follows: 

TI1 = T0 +  Φ (Ii)*(TIi + μ(Ii)*( α+ δ(Ii)) ) 

+ (1-Φ (Ii))*(Si + μ(Ii)*γ+(1-μ(Ii))*β)  (6) 

Si= max(TIi+ μ(Ii)*δ(Ii) – di,0) 

In the above relation, Si denotes the time elapsed to 
wait for the results of the invocation Ii, di denotes the 
estimated execution time of the program statements lo-
cated between each call statement, Ii, and the first loca-
tions where the results of the call are required (the syn-
chronization point of Ii). 

We can generalize relation (6) to obtain function Θ. 
this function that returns the estimated execution time for 
object deployment (r,d) is built by applying relations (6) 
recursively starting from the main() method of the pro-
gram. Assuming that the program call flow graph is cy-
cle-free, Θ (r,d) can always be computed recursively. 
However, there may be cycles in the call flow graph, 
resulting from direct or indirect recursive calls. Assum-
ing that Ii is an invocation to a method in the cycle (and 
itself is not in the cycle) and the estimated number of 
recursions is ni then the estimated execution time of in-
vocation Ii is multiplied by ni. An invocation Ii or a syn-
chronization point Si may be located within a loop state-
ment. Therefore to consider the impact of loop iterations 
on the time estimation, coefficients mi and ki have been 
added to relation (7): 

Θmain(r,d) = T0 +Φ(Ii)*ni*mi*(Θ Ii(r,d) 

+μ(Ii)*(α+δ(Ii)) )+ (1-Φ(Ii))*   (7) 

(Si + μ(Ii)* γ+(1- μ(Ii))* β) 

Si= ki*max(Η(Ii)*Θ Ii(r,d)+ μ(Ii)*δ(Ii) – di,0) 
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In the above relation, Θ Ii(r,d) denotes the estimated 
execution time of the program starting from invocation Ii. 
H(Ii) is the adjustment factor that adjusts the execution 
time of invocation Ii according to the hardware capacity 
of the workstation on which Ii will be executed. H(Ii) is 
defined as follows: 

H(Ii)= Г (ω(Ii)) / Π(ω(Ii))         (8) 

As described in Table 2, Г maps each workstation w to 
the number of possible threads created on it due to re-
mote or local non-blocking invocations executed on w 
considering an object distribution (r,d). Г(w) for each 
workstation w in object distribution (r,d) is calculated as 
follows: 

Г(w)= Φ(Ii)*μ(Ii)+(1- Φ(Ii)) ,      (9) 

for all Ii such that: ω(Ii)=w 

3. Statement Reordering 

In the preceding sections, the idea of partitioning the 
program call tree directed by Θ function was described. 
The main idea was to search for a partitioning of the 
program classes which results in the highest amount of 
concurrency among invocations. Obviously the concur-
rency is achieved by performing some of the method 
invocations among actors asynchronously. Generally, 
converting an ordinary method call to an asynchronous 
one, poses two kinds of overheads on the execution: ini-
tiation and communication (described earlier). The for-
mer is denoted by s and the latter is denoted by O. 
Therefore, from the performance perspective, converting 
an ordinary call Ik to an asynchronous call is only benefi-
cial when the sum of execution times of program instruc-
tions located between Ii and its synchronization point Si , 
denoted by di, is greater than s+O. Obviously, the larger 
the amount of di, the more concurrency between the 
caller and the callee is obtained. 

 

 

Figure 1. The statement reordering 

However, a major difficulty is that programmers usu-
ally use the results of any method call Ii immediately 
after (di=0). Therefore there will be no chance for con-
currency when transforming method calls to asynchro-
nous calls. To resolve the difficulty, we have applied the 
ideas of statement reordering to enhance the potential 
parallelism degree of a program by increasing the 
amount of di for each invocation. The algorithm attempts 
to insert as many statements as possible between an in-
vocation and its first data-dependent statement, consid-
ering the data dependencies between the statements. Ob-
viously the reordering should be performed such that the 
original semantic of the program is preserved. To do this 
during the statement reordering the data and control de-
pendency among statements must not be violated. Data 
and control dependency among program statements are 
represented by a acyclic graph called Task Graph [13]. 
The statement reordering is performed such that the de-
pendencies represented by the program task graph are not 
violated. The overall steps including statement reordering 
is illustrated in Figure 1. 

In the statement reordering algorithm, the program 
statements are classified as follows: 
 Call: a method invocation 
 Use, statement which is data dependent on a Call 
 Common, an ordinary statement which is neither 

a Call nor a Use 
The algorithm comprises two main steps. In the first 

step the program statements are moved from the Original 
Code to the Reordered Code gradually. In this step, pre-
sented in Figure 2, Call statements are moved to the re-
ordered cod first and Use statements are moved as late as 
possible. In the second step, the reordered code resulted 
by applying the first step, is further optimized by reduc-
ing the time elapsed to wait for the results of Call state-
ments. This is achieved by inserting as many statements 
as possible between each Call and its corresponding Use. 

In the first step, Call statements of longer execution 
time are moved to the reordered code first because the 
longer the execution time of a Call, the more statements 
should be inserted between that Call and the correspond-
ing Use. Obviously, before a statement is moved into the 
reordered code, all of its parent statements in the pro-
gram task graph should be moved into the reordered 
code. 

In the second step, the reordered code resulted in the 
first step is further optimized. To achieve this, the time 
required to wait for the results of Call statements is 
minimized. This is achieved by pushing down Use 
statements with positive wait time as far as their wait 
time reaches zero. Here Use statements with longer wait 
time are selected and pushed down first. 

4. Implementation 

We have developed a tool support that implements the 
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steps described in section 2 to find the optimal object 
distribution for distributed software. Within this envi-
ronment, a Java source code analyzer implemented using 
COMPOST [14] library, analyzes the program source to 
extract the call graph, call flow graph, call tree and build 
the Θ function. To build the Θ function for a program, 
first the number of clock cycles for each statement in the 
program is determined, according to the JOP microin-
struction definition [15], and saved in an XML document. 
JOP is an implementation of Java Virtual Machine in  

 
Algorithm  Reorder (Task-Graph: DAG)  OUT:  Reordered-Code : 
List 
Begin 

1. If   there is no Call in Task-Graph which is not moved 
2. While there is a Common-statement in Task-Graph  which is 
not moved 
3. Select a Common-statement whose predecessors in Task-Graph 
are already moved  
4. Append this statement to Reordered-Code 
5. Label this instruction as moved 
6. End While 
7. While there is a Use in Task-Graph which is not moved 
8. Select a Use whose predecessors in Task-Graph are already 
moved  
9. Append this instruction to Reordered-Code 
10. Label this instruction as moved 
11. End While 
12. Else 
13. Find a Call C  with the longest execution time in Task-Graph 
which is not moved 
14. Let New-Task-Graph be a Sub-graph of  Task-Graph, including 
Predecessors of C  
15. Reorder(New-Task-Graph) 
16. Append C to Reordered-Code 
17. Label C as moved 
18. Reorder(Task-Graph) 
19. End If 

End 
 
Algorithm Optimize (Task-Graph: DAG, Reordered-Code : List )  
OUT: New-Reordered-Code: List 
Begin 

1. While there is a Use in Task-Graph which is not selected 
2. Select a Use U with the longest wait time W in 
Task-Graph  
3. Find all unselected nodes in Task-Graph which are not 
connected to U through a path in the task graph and  
4. Add them to Moving-List 
5. Remove all those nodes from Moving-List which do not 
share an immediate control dependent parent with U  
6. While W>0 
7. Select an instruction I, from Moving-List, whose prede-
cessors in Task-Graph are not in Moving-List 
8. Let P be the set of immediate predecessors of I 
9. Let C be a Call whose results are used by U 
10. Let P=P  {C} 
11. Move I to a position after instructions in P and before U in 
Reordered-Code 
12. Remove I from Moving-List 
13. Subtract the estimated time of  I form W 

     End While 
End While 
End 

Figure 2. The statement reordering algorithms 

hardware. Our tool also inputs the loop bounds in the 
program as they are needed during the Θ generation. The 
generated XML document is applied by a statement re-
ordering [13] engine to maximize the distances between 
each call statement and its very first data-dependent 
statement. The reordered program and the XML docu-
ment are input to a separate module to produce the Θ 
function. The resultant Θ function is applied as an objec-
tive function of a constrained genetic clustering algo-
rithm [16] to find a near-optimal object deployment for 
the distributed software. 

A practical evaluation of the proposed method to op-
timize the performance of distributed object-oriented 
programs is presented in this section. We have used two 
Java case-studies: TSP and Consolidated Clustering (CC). 
The first case study evaluates the impact of applying the 
proposed approach on a TSP program containing 18 
classes and 129 method calls. This program finds near 
optimal Hamiltonian Circuit in a graph, using minimum 
spanning trees. The second case study measures the 
amount of speedup achieved by optimizing the perform-
ance of a program called Consolidated Clustering [17]. 
Consolidated Clustering is a graph clustering application 
written in Java. This program comprises 16 classes and 
23 method calls. In this program, a graph is clustered 
several times using heuristic clustering algorithms. The 
results of each clustering are stored in a database for fur-
ther uses. This program consolidates the clustering re-
sults to obtain a clustering with a specific confidence 
threshold. The program is relatively slow, because it ap-
plies the heuristic algorithms for clustering. 

The case studies were analyzed first to extract function 
Θ for them. Then a genetic clustering algorithm was ap-
plied to partition the call tree of each program to find the 
optimal object deployment using Θ as the objective func-
tion. The chosen test bed was a cluster with 3 single 
processor Pentium computers running JavaSymphoney 
[12] as the cluster middleware. The parameter passing 
mechanism in remote non-blocking invocations in this 
test bed is implemented using copy-restore technique. 

Before applying the genetic clustering algorithm on 
the case-studies, the values for parameters α, β, γ and δ(Ii) 
were measured in the test bed. The amount of communi-
cation cost over the Pentium cluster, regarding our un-
derlying communication middleware, JavaSymphony, 
was measured less than 100 ms. To estimate the commu-
nication cost in terms of JOP clock cycles, the number of 
clock cycles of a sample program was divided by the 
measured execution time of that program. According to 
this estimation, the communication cost δ(Ii) was nearly 
107 clock cycles for all Ii. The measured amount of pa-
rameters α, β and γ in the test bed were almost the same 
and was estimated 104 clock cycles. We applied a con-
straint for the CC program as 3 of its classes in the call 
tree should necessarily reside on the workstation on  
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Table 3. Measured speedups 

 20 40 100 130 400 500 

TSP:Θ 0.8 0.9 1 1.2 1.35 1.4 

CC: Θ 0.6 0.7 0.8 1 1.3 1.4 

TSP:MCC 0.3 0.5 0.6 0.7 0.78 0.8 

TSP:TM 0.6 0.8 0.2 0.8 1 0.8 

 
which the Data Base server was running.  

The measured speedups resulted from executing TSP 
and CC on the test bed are presented in Table 3. The re-
sults are compared to other methods: (1) applying MCC 
function and (2) and applying trivial method. MCC de-
notes Minimum Communication Cost described in sec-
tion 1. In the trivial method, denoted by TM, the invoca-
tions are assigned to a workstation with the lowest load 
at runtime for execution. 

5. Conclusions 

In this paper the software reengineering research area has 
been extended to include performance improvement of 
existing distributed software. To achieve this first a per-
formance assessment function is extracted from the pro-
gram source code. Then this function is applied to find 
optimal object deployment of the software using a con-
strained genetic clustering algorithm. The result is a la-
beled partitioning of the program call tree. The invoca-
tions inside a partition are assumed blocking while the 
invocations among partitions are non-blocking. The la-
bels in the labeled partitioning graph indicate the work-
stations on which objects reside. We have implemented 
this approach and applied that on two case studies. The 
result of our measurements shows this approach can be 
applied to improve the performance of legacy software. 

This is an ongoing research in the field of Software 
Performance Engineering. As the future work we intend 
to extend the idea of architectural level performance as-
sessment in forward engineering to validate the software 
models in the sense that whether they satisfy the per-
formance provisions or not. 
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