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Abstract

A time dependent Hamiltonian associated to the impact parameter model for the scattering of a light particle
and two heavy ones is considered. Existence and non degeneracy of the ground state is shown.
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1. Introduction

In [1,2], the impact parameter model for the scattering of
two heavy particles and a light one is studied, where it is
assumed that the heavy particles are infinitely massive
and that their motion along a classical trajectory is not
affected by the light particle. Also, rigorous proof from
first principles of the validity of Massey’s criterion is
given [1,3].

The above mentioned results were proved for a simple
Hamiltonian, by means of an adiabatic argumentation.
Now we study a more complicated one than in [1], where
a precise knowledge of the discrete spectrum of the cor-
responding Hamiltonian was needed.

A physical ground state is a state of minimal energy,
and therefore it has a relevant role in quantum theories.
See for instance [4-17].

In this work we prove non degeneracy of the ground
state for the Hamiltonian

1
H (t) = _EA_Alvl -1V, _/12V1,p _IuZVZ,p’ (1)

defined as an operator in the Hilbert space L*(R") of
all complex valued Lebesgue measurable square inte-
grable functions on R", with domain H?(R"), the
Sobolev space of order two [18]. A is the Laplace opera-
tor [11].
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with derivatives in the distribution sense, and, 4,, 4,, 4,
M, are positive constants. Also, for k=12, we will
take the potentials V, of rank one:

Ve =(9:0)9 Voel’(R), )

with g,, g, fixed elements in ng]R”). Here (-,-) de-
notes the scalar product in LZ(]R ) antilinear on the
factor on the left. Moreover,

Ver#= (90, #) 90,0 90 (X)i= 0, (x=p(1), @)
p(t) being a continuous function on R with values in

R" satisfying p(0)=0eR" and

lim | (t)| = .

[t]>o0

We denote by * the Fourier transform [19], as an uni-
tary operator in L*(R"):
~ T —ipx 2 n
g(p)_imlxéKe g(x)dx, gel*(R"),

where the limit is taken in the L?-norm.
2. Main Theorem

From Weyl’s theorem [16], one knows that for each
teR, H(t) is a self-adjoint operator with discrete
spectrum in (—,0). The eigenvector corresponding to
the infimum of the spectrum of H(t) is called the
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ground state for H(t).
proved in [20].

Theorem 2.1. For i=12, let g,e*(R") and §,
nonnegative functions obeying | p| g, € L*(R). More-
over, we suppose the constants A,z in Equation (1)
satisfy

The following theorem was

A >y > > Ay >ty > 0.

such that 0<E;(2)<E, and O0<E, <E,. Here
-E;,—Ex(2),-E,,, and —E, are the ground state ei-
genvalues associated to

—%A—AW,——A—

H

(:ul t 4, )Vz

1 1
—EA—@w,—EA—Mw,
respectively. Then the following statements are valid:
1) The eigenvalue —E,, corresponding to the ground
state for the operator
H (0)=——A (A + %)V = (1 + 1)V,
and the eigenvalue —-E
state for the operator

corresponding to the ground

0 1

1
H (ioo) = —EA A A

are strictly negative and the inequality —E, < —E_ holds.

2) The eigenvale —E(t), corresponding to the ground
state for H(t) for all teR lies in the interval
[-Ey.—E,,)-

3) In the interval (—Ew,—El] there are no eigenval-
ues of H(t) forevery teR.

We mention that for a given function 0+ g e L*(R"),
one can find a sufficiently large positive constant ¢,

such that the operator

—%A—a(gw)g (4)

has a (unique) negative eigenvalue —E_, for a>¢,. In
fact, —E is a negative eigenvalue iff [1]

2

1 g
(p +Ej
2

where we denote p° ::|p|2. Note also that for a given
g the right hand side of (5) is a monotone decreasing
function of E. Therefore, given functions g, in L*(R"

one can find constants 4, 4 (i=1,2) large enough for
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the hypotheses of the theorem to hold.

We will prove in this manuscript that under the hy-
potheses of theorem 2.1, for te R the ground state of
H (t) is not degenerate.

Let —E(t) be the ground state eigenvalue of the time
dependent operator given by Equation (1). We define

2

®(p):=p7+ E(t) and

2 2

%:%+%§;%=i+§% for i=12. (6)
Moreover,
a, =—(6,07G,,).
b, =—(6,,07,),
b, =—(4,,074, ), @
b, =~(4,,.076,),

Lemma 2.1. Let —E(t) be the ground state eigen-
value of the time dependent operator H(t) given by
Equation (1). Then, the matrix equation

X

M =0ecR*,

a;, a, b, by ®)
[A BTJ.: a12 a22 blZ bll
B D . bll b12 dll dlZ
b21 bll dlZ d22

has a nontrivial solution. Furthermore

d, d
det(D)=det|| * *|[>0 (VteR).
dlZ d22

Proof: Let (t) the eigenvector for H(t) with re-
spective eigenvalue —E(t), then the Fourier transform
of w(t) isgivenby

~ glp
V/() 11(91: ) ( (glpll//)®(p) ©
+ (gz’ ) /uz(gzp"//) 92,
) o(p)’

where O( )':p?+ (t). The Plancherel theorem im-
G,v

plies that (u,v)=(d,7)vVu,ve LZQJR”). Taking inner
products in (9) with g, and @, , for i=12, we get
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2

%

NG

(6,57) = 4 (8097)(61,,076,) + 4 (6,,)

(gl!y;):ﬂl(gl!l/})‘

2

gl,p

NG

(82097) = 21(8097)(82,, 0701 ) + 42 (81,0 ¥7) (82, ©7 1 ) + 24 (82097)( 85,0 0702 ) + 412 (82,097 ),

This system of equations is represented in matrix form
precisely by Equation (8), where

(i)
o)

From Theorem 2.1 we deduce the existence of a non-
trivial solution to Equation (8).

Now we fix E >0. For every teR let us consider
the function,

(11)

(gz,w)=4(@1,¢)(@z,®-1@1)+12(gl,p,;&)(az,®-1gl,p)+;ﬁ(@2,zp)‘

+4, (61,,)"/;)(61!@71@1”0)4'%(g\z’y;)(gp@ilg\z)+,uz (@2,/):‘/;)(@1,@71@2,,)):

+;Lﬁ(@2x‘/;)(g1,p-®_lgz)+ﬂz (gz,p’v;)(gl,p'G_ng,p)'

o (10)
g i A\(A in
Té +ﬂz(gz,p7‘//)(gzl®1gz,p)’
Jo
2 2
1 § 1 g
Re (1) = P 7 ﬂ——ﬁ
il
2
| A Qz,p
27 2
p—+E
2

2
2

2
1 m+p g g
RE(t):,Lﬁ,U - #1/12 5 ? )| 5 : 12
? 2 p—+E p—+E
2 2
2
::u’.l.+/u2 1 _ QZ > 0.
Hatly | (p22+ E]“Z

The last inequality being true because of the remark
following Equation (5). Also, we have used the Schwarz
inequality and the Fourier transform property
@va(p):e’i"(‘)‘pgjz(p). When —-E=-E(t) is the ei-
genvalue for H (t) then the determinant of matrix D in
Equation (8) satisfies, det(D)= R(E(t)). Theorem 2.1
states that —E(t)e[-E,,—E,) and E,>E >E,(2).
Then, (12) gives det(D)>0. o

The main result will be proved by showing that the
dimension of the eigenspace associated to the ground
sate remains constant over time.

Lema 2.2. The ground state for the operator

Copyright © 2011 SciRes.

(12)

H(0) == A (4 + 4 Vs~ (14 + Ve

is not degenerate.
Proof: Lemma (2.1) assures that D™ exists. Equa-
tion (8) implies,

y=-D"Bx, (A-B'D'B)x=0, (13)
We take C:=A-B'D™B, so that,

co (Cn clzj,
C12 C22

where
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(b211d22 - 2b11b21d12 + b221d11)

Cy=a;— )
v det D
Cp =
(14)
_ (bnblzdzz + b11b21d11 - b121d12 - b12b21d12 )
2 detD ’
(b — 283,03, + D0 )
Cpp =8y — d :
etD

From Theorem 2.1, we know that there exists a non-
trivial solution to system (8). Thus detC =0. Accord-

ingly,
C :[ Cll C12 J, (15)
kcll kclz

for some constant k =k(t). Moreover, for t=0 the
matrix C =C(t) is not null. In fact, for this value of t,
the following terms simplify

5 12
(% +E, ] 0,

2

a, =-

N

It follows that,

_b121(d11+d22)_2d12b11 :_H @1

Cp, =2, detD ) 1/2
[5+5)
, 2
~ G + U g
9 22 ’ullulluz—Z o? 2 12
2
7+E0 [2+E°j
- detD
) 2 |2 ) 1 2
2["2+E0] g, [@1,["2+E0] @2}
detD
<0,
(16)

where we use equation (5), the hypothesis E,(2)<E,
and statement (3) of theorem 2.1. Therefore,
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2
At
21,

2 -1/2
s

Equations (11)-(16) imply,
m (Qz , ,/}) _ (bZIdlz -b,d,, N Ciy (blZdzz -b,,d, )J

detD c,detD
S bydy, —bydyy Gy (00 —Dydy, )J
15 (8,97 = + X
2(0:,7) [ det D ¢, det D '
(7

Substitution of these equalities in Equation (9) gives,

g 9
W(O):Xi p? —+ky pzlp
—+E, —+E,
2 2
(18)
g g,
+k, 52—+ ky— 20
—+E, —+E,
Here,
c
k =-—1L
' C12
k. = (012b21d12 + Cublzdzz)_(cubudzz + Cllbzzdlz) (19)
, =
Cc, detD
k — (C12b11d12 + C11b22d11)_(012b21d11 + Cllb12d12)
: ¢, detD '

This determines the vector 17(0) up to a multiplica-
tive constant, and from the Plancherel theorem, also the
eigenspace associated to the ground state for H (0)
proving the statement of the lemma. o

Theorem 2.2. Let H(t) be defined by Equation (1)
and suppose the hypotheses of theorem 2.1 hold true.
Moreover, we take the curve p:R—R" so that
p(t)=a+vt, V|t|=M, for some positive constant M
and fixed vectors a,veR". Then the dimension of the
spectral projection onto the interval [—Eo,—Ew], asso-
ciated with the selfadjoint operator H(t), is equal to
one for each teRR.

Proof: The resolvent R;(A) of a self-adjoint opera-
tor Aat ieC is defined by (il - A)’1 with | denoting
the identity operator on L R”).We take H,=H(t,),
H,=H(t,), for two distinct values t, and t, and
calculate the difference R (H,)—R;(H,).

Ri(H2)=Ri(H;) =R (H,)(H, - H,)R (H,)
= LR (Hy) (Vo —Va, )R (Hy) (20)

+ 1R (Hz)(vz,pl -V, ) R; (Hl)
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HereV, , is given as in Equation (3) with
9., (x)=0,(x-p(t)) replaced with

9., (X)=0,(x-p(t)). Also V,,.V,,,

being defined similarly. It follows from Equation (1) and
standard arguments that

"Ri(HZ)_Ri(Hl)HSYhz_%
where Y is a constant uniform in t,t, e R/[-M,M]
depending on ||p|g,| and [g,|. ¢=12. Thisimplies
that R;(H(t)) is uniformly continuous on R with
respect to the norm topology. Let P,(B) denote the
spectral projection of a self-adjoint operator B corre-

sponding to the Borel set S < R. By functional calcu-
lus, we get

P e e (H(t,))—> P e, e (H(t)) as t, >t,
in the operator norm. Therefore, by standard arguments
dim P[—EO,-Eoo] (H (t2 )) =dim P[—EO,-Eoo] (H (tl))’

For t, close enough to t . It follows from lemma
2.2 that

and Vv, ,

dimpP . . (H(t))=1 (VteR).

Remark: We mention that the hypothesis for the curve

p(t) can be relaxed to the condition that p(t) is as-
ymptotic to a straight line.
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