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Abstract 
 
We prove that any collection which tiles the positive integers must contain one of two types of sub-collec- 
tions. We then use this result to prove a variation of the Ratio Test for convergence of series. This version of 
the Ratio Test shows the convergence of certain series for which the Root Test (which is known to be more 
powerful than the conventional Ratio Test) fails. This version of the Ratio Test is also used to prove a ver- 
sion of the Banach Contraction Principle for self-maps of a complete metric space. 
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1. Introduction 

It is shown in [1] that tiling results can be used in some 
fixed-point theorems to circumvent tedious and compu-
tational analytic arguments. We show in this paper that 
tiling results can also be used to improve the Ratio Test 
for convergence of series. The classical Ratio Test is 
known to be dominated by the Root Test; if the Ratio 
Test demonstrates that a series converges, the Root Test 
would also yield this result. The improved Ratio Test 
presented in this paper can be used to demonstrate the 
convergence of some series for which the Root Test will 
not yield conclusive results. 

2. A Simple Tiling Result 

On the real line, let , and let j k  ,t j k  denote the 
tile extending from 1 2j   to 1 2k  ; that is, the 
closed interval  1 2, 1j k  2 . Since we are only con-
cerned with integers in this paper, notice that this tile 
covers all the integers from j through k inclusive. 

Lemma 2.1 Let T be a collection of distinct tiles of the 
above form such that every positive integer is covered by 
at least one tile in T. Then either 

1) N such that sup    : ,k t N K T  
*T

, , or 
2) there is a sub-collection  of T ,  

  * , : 1,2,n nT T n     such that for each n, 

1n n   , 1n n  
T

 , and each positive integer belongs 
to either one or two tiles in . *

Proof: Suppose that 1) does not hold. We can there-
fore assume that, for each n,  only finitely many pairs 
 ,p q  with p n q   and  ,q Tt p . Let  

  1,t k max :q k T , and let 1 11, q   . 
Having chosen n  and n  such that all positive in-

tegers < n  belong to one of the tiles  1 1, ,t   ,  
 ,t n n , let 1 xma : ,   withk j k  1n nj k       

and   t j T,k  . Let n+1 = max{j: j  n+1 and t[j, n+1] 
T}. Note that 

1) n+1 > n by construction, and all positive integers 
<n+1 belong to one of the tiles t[1, 1], ···, t[n+1 ,n+1]  

2) n+1 > n: if n+1  n, then we should have chosen 
n+1 instead of n, since t[n , n] is a proper subset of 
t[n+1, n+1], contradicting the maximality of n . 

Notice that no three consecutive tiles of the form t[n, 
n] overlap. If k  t[n+j, n+j] for j = 0,1,2, then n+j  k 
 n+j for j = 0,1,2. But then k  n < n + 1 and n+2 > n+1 
 n + 1  t[n+2, n+2], contradicting the maximality of 
n+1. Therefore each integer k either belongs to a unique 
tile t[n, n] or to two consecutive tiles: t[n, n] and 
t[n+1, n+1]. 

The collection   * , : 1,2,n nT t n    . 

3. An Application of Lemma 2.1 to the  
Ratio Test 

We now use Lemma 2.1 to prove our version of the Ra-
tio Test. 

Theorem 3.1 (Ratio Test)—Assume that a1 > a2 



J. D. STEIN JR.  ET  AL. 301 
 
> ··· > 0 and 

x
 Assume further that  M lim 0.na    

(0,1) such that, for every integer n, there exist integers j, 
k with j < n < k and aj+1 + ··· + ak+1 < M(aj + ··· + ak).  

Then  converges. 
1

n
n

a





Proof: Suppose that, for n > 1, b2 + ··· + bn+1 < M(b1 
+ ··· + bn). 

Then b2 + ··· + bn + bn+1 < Mb1 + M(b2 ··· +bn)  (1 – 
M) (b2 ··· +bn) < Mb1 – bn+1; adding (1 – M)b1 to both 
sides and dividing by (1 – M) yields b1 + ··· + bn <  

1

1 M
 (b1 – bn+1). 

This inequality also holds if n = 1, for then b2 < Mb1 

 b2 < Mb1 + b1 – b1  b2 < b1 + (M – 1)b1  (1 – M)  

b1 < b1 – b2  b1 < 
1

1 M
 (b1 – b2). 

If 1 < j < k, we say that the tile t[j, k] belongs to the  

collection T if aj + ··· + ak < M(aj–1 + ··· + ak–1) < 
1

1 M
 

(aj–1 – ak).  
The hypothesis enables us to apply the Lemma, and 

we can conclude that either  
1) N such that sup {k: t[N, k]  T } = +, or 
2) there is a sub-collection  of T of the type de-

scribed in the Lemma. 

*T

If (1) holds, we can assume WLOG that N = 2, and so 
 an increasing sequence of integers  with 

 and 
 :1, 2,nq 

11 q  1n nq qa2 1a a M a    . Therefore  

 1 1 1 1

1

1 1n nq qa a a
1

a a
M M 

 
     , so the 

partial sums of 
1

j
j

a



 form a bounded monotone se-

quence.  
We can therefore assume from the Lemma that we 

have a sub-collection  of T consisting of tiles t[pn, qn] 
such that each integer belongs to either one or two tiles 
in , and such that pn < pn+1 and qn < qn+1 for each in-
teger n, so if an integer belongs to two tiles in , they 
are consecutive tiles. 

*T

*T
*T

Observe that . We can subdivide the  
1 1

 
n

n

q

n
n n k p

a
 

  

   ka

right-hand side summation over the tiles t[pn, qn] into 
three parts: tiles of length 1, tiles of length longer than 1 
which do not overlap other tiles in , and tiles of 
length longer than 1 which overlap other tiles in . 

*T
*T

The summation over tiles of length 1(qn = pn): if there 
are only a finite number of such tiles, the sum of these 
terms is clearly finite. If there are infinitely many such 
terms, since the sequence {an: n = 1,2, ···} is decreasing, 
the summation over all such terms is dominated by the 
geometric series whose first term is a1 and whose ratio is 

M. 
Once the tiles of length 1 have been eliminated, we 

can renumber the remaining tiles as {t[pn, qn]: n = 1,2, ···} 
with pn < pn+1 and qn < qn+1. We look at two types of 
blocks consisting of consecutive tiles t[pk, qk], t[pk+1, 
qk+1], ···, t[pn, qn]. In the first type of block, consecutive 
tiles do not overlap; in the second, consecutive tiles 
overlap. The remaining tiles can be divided into alter-
nating blocks of these two types simply by continuing to 
examine successive tiles to see whether they overlap or 
not. 

There are two cases: either there are infinitely many 
blocks of each of the two types, or there are only finitely 
many blocks of each of the two types; this last case oc-
curs when all but finitely many tiles belong to a single 
block. We examine the first case, and then discuss how 
the analysis presented therein also handles the second 
case. 

If consecutive tiles t[pk, qk], t[pk+1, qk+1], ···, t[pn, qn] do 
not overlap, then pk < qk < pk+1 < qk+1 < ··· < pn < qn. The 
inequality pj < qj is strict because the tiles of length 1 
were treated in the discussion above, and the inequality 
qj < pj+1 is strict because consecutive tiles do not overlap. 
Then 

  1 1
1

1
  

1

j

k k n n
j

qn

k p q p
j k p

a a a a a
M  

 
q

         . 

This sum dominates the contribution from a typical 
block of consecutive non-overlapping tiles. Since pk < qk 
< pk+1 < qk+1 < ··· < pn < qn , the terms in the above sum 
decrease within a particular block, and since there is a 
gap between this block and the next block of consecutive 
non-overlapping tiles, the last term from the above sum 
is greater than the first term in the corresponding sum 
from the next block. Adding up the dominating sums 
from all such blocks and using the Alternating Series 
Test results in a convergent series. 

Finally, assume that consecutive tiles t[pk, qk], t[pk+1, 
qk+1], ···, t[pn, qn] overlap. Because t[pj, qj] and t[pj+1, qj+1] 
overlap, qj is common to both tiles, so pj < pj+1 < qj . No 
integer belongs to three tiles, so qj does not belong to 
t[pj+2, qj+2], and so qj < pj+2 . Therefore pk < pk+1 < qk < 
pk+2 < qk+1 < ··· < qn–2 < pn < qn–1 < qn. We use the same 
initial estimate as in the previous case, but permute the 
final dominating sum slightly. 

   

 
    

1 1
1

1

1 1

1
 

1

1

1

j

k k n n
j

k n

k k n n

qn

k p q p
j k p

p q

p q p q

a a a a a
M

a a
M

a a a a

 
 



 

q
      

 


      

  



 

The sum in brackets consists of two components: the 
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first term ( 1k nq ) and the sum [(apk – aqk) + ··· + 
(apn–1 – aqn–1)]. If we add up the first terms from all 
blocks of consecutive overlapping tiles, the sum con-
verges by the Alternating Series Test, and the same can 
be said of all the bracketed sums of the form [(apk – aqk) 
+ ··· + (apn–1 – aqn–1)]. This completes the proof in the 
case where there are infinitely many blocks of each of 
the two types. 

pa a 

If all but finitely many of the tiles belong to a single 
block, the dominating sum is a sum over infinitely many 
tiles. The identical analysis (with upper limit of  in-
stead of n) shows that the dominating sum is an alternat-
ing series which converges by the Alternating Series 
Test. 

The classical Ratio Test requires that the ratio of suc-
cessive terms be dominated by a constant <1. In the Ra-
tio Test presented in Theorem 1, the information is not 
necessarily obtainable about individual terms, but about 
blocks of consecutive terms. As a result, this ratio test 
might be useful in situations when the individual terms 
of the series are not known, but information about blocks 
of consecutive terms is available. 

4. Necessity of the Contractivity Hypothesis 

In the classical Ratio Test, it is not required that succes-
sive terms decrease, although that is a trivial conse-
quence of the hypothesis that the ratio of successive 
terms be less than 1. The Root Test does not require that 
successive terms decrease, so one might wonder if this 
hypothesis is really needed in Theorem 1. The following 
example addresses this question. 

Example 4.1. Let M = 0.9. For n = 0,1,2, ··· define  

3 1 1na n   3 2

1

10na
n   3 3

1

10na
n   

Let  and  for n = 0,1,2, ···  3 1np n  3 4nq n 
Notice that each integer belongs to at least one and at 

most two intervals  ,n np q . 
We want to ensure that  

. To show this,  1 1  n nn n
p q pa a M a a      q

notice that  

   

 

 

1 1 1 1 2 11

10 10 1 10 1 10 10 1

13 2

10 1

130 20

10 1

n n n n n n

n

n n

n

n n

    
 













 

So 
 1 1 

130 20

100 1nn
p q

n
a a

n n 


  


 . 

Also 

 

 

1 1 1 1 9 12 1
0.9 

10 10 1 10 10 1

9 22 12

10 10 1

198 108

100 1

n n n n n n

n

n n

n

n n

          

    

        







 

So    
198 108

 
100 1nn

p q

n
M a a

n n


  


 . 

Therefore, .  1 1  
n nn n

p q pa a M a       qa

Since 3 1 3 2 3 3lim lim lim 0,n n n
n n n

a a a    
  

0.

 so  

lim n
n

a


  

Note also that 
1

n
n

a




  diverges, since it dominates the 
harmonic series. 

5. An Example for Which Theorem 3.1  
Succeeds Where the Root Test Fails 

It is well known that, although the Ratio Test is easier to 
apply than the Root Test, the Root Test is more dis-
criminating (see [2], Theorem 3.37). We now present a 
series for which the Ratio Test of Theorem 3.1 demon-
strates convergence, but for which the Root Test is in-
conclusive. 

Example 5.1 The basis of our example is the follow-
ing: suppose M   (0,1), a1 and an integer n are given,  

and 
 2 1 1n

M
a a

M n M 1a
 

      
   

Then    1 11   n .M n M a Ma  

 
 

 
 

1 1 1

2 1 1

1  

.

n n

n n

na M a n a

a a M a a

 



   

      
 

Notice that    1 1M n M n n M 1     
1 1.n na

, and so 
a a     

Now let b, c > 0, and consider 

1

lim
x

x

b
u

cx d

    
.  

Taking natural logarithms of both sides yields  
 ln ln1

ln  lim ln lim
x x

b cx db
u

x cx d x 

     
, and ap-  

plying L’Hopital’s Rule we obtain ln lim 0
1

c
cx d

x
u





  , 

and so u = 1.  
Consequently we see that for any  > 0, we can always 

find an integer N such that n > N   

 

1

1 1 .
1  

nMa

M n M


 
    

 

Copyright © 2011 SciRes.                                                                                 APM 



J. D. STEIN JR.  ET  AL. 303 
 

We use this to construct a series  of decreasing  
1

n
n

 b





terms which satisfies the hypotheses of the Theorem, but 
for which the Root Test is inconclusive.  

Let b1 = 1, let a1 = b1, and choose an integer N1 such 

that n > N1  
 

1

1 1
1

1  2

nMa

M n M

 
    

 and 

 
1    1

1  

Ma

M n M


 
. 

Let 
 1 1

1
2

1

 
1  N

Ma
b b

M N M
  

 
 . 

Having defined 
1pNb


, let 1 b 
11 pNa b


  and 
choose an integer 1  p pN N   such that   1pn N  

 

1

1 1
1

1  2

nMa

M n M p

 
     

 and 
 

1 1
1  

Ma

M n M


 
. 

Let 
 2 1

1
  

1

1  
1  p pN N

p

Ma
b b .

M N M 


   
 

  As  

constructed, the sequence  satisfies the  : 1, 2,nb n  


hypotheses of the theorem, and so  converges. 
1

n
n

b



However, by construction we also have 
lim sup 1n

n
n

, and so the Root Test is inconclusive for 
this series. 

b 

b

6. Applications 

Our first application is that the tiling result of Lemma 2.1 
also applies to the Comparison Test for convergence of 
series. 

Let  be a convergent series of positive terms. 

Let  be a series of positive terms. If k  n, let C[k, n] 

1
n

n

b





1
na

n






be the statement:  k n k n . We will 
also let [p, q] = {k: k is an integer, p  k  q }. 

a a b     

Theorem 6.1 Suppose N  n  N   p, q with p   

n  q and C[p, q]. Then  converges. 
1

n
n

a





Proof: We can assume WLOG that N = 1. If  an in-

teger p  sup {q: C[p, q] }= +, then  converges  
1

n
n

a





because if C[p, qk] for q1 < q2 < ···, then the partial sums 

1

kq

j
j

a

  form a bounded monotone increasing sequence. 

We can therefore assume that, for each n,  only 
finitely many pairs (p, q) with  and C[p, q]. 
Applying the Lemma, we can find a sequence of tiles  

p n q 

{t[n , n]: n = 1,2, ···} such that C[n , n] for each n and 

each integer k either belongs to a unique interval [n , n] 
or to two consecutive intervals: [n , n] and [n+1, n+1]. 

Note that, for any n, 

1 1 1 1 1

  2 2
j jn n

j j

n n

j k k j
j j k j k j j

a a b b
  

 



      

    jb        

since each k appears in a maximum of two [j, j]. So the  

partial sums of 
1

j
j

a



  form a bounded monotone se-

quence, and so 
1

j
j

a



 converges. 

The second application uses Theorem 3.1 to obtain a 
different version of the Banach Contraction Principle. As 
mentioned earlier, [1] shows the use of tiling arguments 
in fixed-point theorems; Theorem 6.2 represents another 
such application. There may well be similar applications 
to other fixed-point theorems than the one presented here, 
especially in light of the fact that convergent series are 
frequently used in demonstrating the existence of fixed 
points. 

Theorem 6.2 Let (X, d) be a complete metric space, 
and assume that T is a self-map of X satisfying d(Tx, Ty) 
< d(x, y). Suppose there is an M  (0, 1) such that for 
each pair x, y 


  X, there is a positive integer n = n(x, y) 

such that d(Tx, Ty) + ··· + d(Tn+1x, Tn+1y) < M [d(x, y) 
+ ··· + d(Tnx, Tny)]. Then T has a unique fixed point. 

Proof: The proof of this corollary uses standard ideas, 
and will be abbreviated. Start with the pair (x, Tx), and 
use the hypothesis iteratively to obtain a convergent (by  

Theorem 1) series 
n 1




 d(Tnx, Tn+1x). The convergence of  

this series implies that the sequence of iterates {Tnx: n = 
1, 2, ···} is Cauchy, and its limit can be shown by the 
usual methods to be a fixed point of T. Note that the con-
tractivity hypothesis d(Tx, Ty) < d(x, y) is needed to sat-
isfy the requirement that the terms of the series decrease. 

To show that the fixed point is unique, suppose that x 
and y are two distinct fixed points. Let n be an integer 
such that      1 1, ,n nd Tx Ty d T x T y M d x y     ,  

 ,n nT y 
  ,d x y

d T x  . Since both x and y are fixed points, 
each summand on both sides is , and the ine-
quality reduces to nd(x, y) < Mnd(x, y) < nd(x, y). This is 
impossible unless x = y. 

We conclude by presenting an example for which the 
standard Banach Contraction Principle is inapplicable, 
but for which Theorem 6.2 demonstrates the existence of 
a fixed point.  

Example 6.3 Let X be the closed interval  0,1 2  
with the usual metric. Define . Then the hy-
potheses of Theorem 6.2 hold, but T is not a strict con-
traction in the sense of the Banach Contraction Principle. 

2Tx x

Proof: Note first that . We assume WLOG 2T x x 4
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   
   
  

2 2, ,

1 .

d Tx Ty d x y y x y x

y x y x y x

y x y x

    

    

   

 

that x y  in the rest of the proof. 

    
    

2 2,

, ,

d Tx Ty y x y x y x

d x y y x d x y

    

   ,
 

since . 1x y

Note that 
 
 

2 2,

,

d Tx Ty y x
y x

d x y y x


 




1

1

, .

. Since y and x  

So the question of the existence of M reduces, on divi-
sion by  y x , to whether it is possible to find M with 
0 M 1   and     2 2 1 1y x y x M y x        . 
The constant M = 0.8 satisfies this inequality, because 
1 y x   and 2 20.5 y x   0.8 1y x. So     

      2 2 1y x y x y x1.6 1.5y x       , complet-
ing the proof. 

can be chosen so that  is arbitrarily close to 1, 
there cannot be a constant M with  and 

. So the standard Banach Contrac-
tion Principle does not apply to this example. 

y x

,
0 M 

 x Ty 

0 M
2 2x T y

,d T Md x y

The authors would like to thank Prof. Jacek Jachymski, 
Mr. Merrick Sterling, and the referee for suggestions 
related to this paper. 

However, we can show that there exists a constant M 
with  such that  

       , , ,d T d Tx Ty M d Tx Ty d x y      
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