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Abstract 
 
This paper deals with Bayesian inference and prediction problems of the Burr type XII distribution based on 
progressive first failure censored data. We consider the Bayesian inference under a squared error loss func-
tion. We propose to apply Gibbs sampling procedure to draw Markov Chain Monte Carlo (MCMC) samples, 
and they have in turn, been used to compute the Bayes estimates with the help of importance sampling tech-
nique. We have performed a simulation study in order to compare the proposed Bayes estimators with the 
maximum likelihood estimators. We further consider two sample Bayes prediction to predicting future order 
statistics and upper record values from Burr type XII distribution based on progressive first failure censored 
data. The predictive densities are obtained and used to determine prediction intervals for unobserved order 
statistics and upper record values. A real life data set is used to illustrate the results derived. 
 
Keywords: Burr Type XII Distribution, Progressive First-Failure Censored Sample, Bayesian Estimations, 

Gibbs Sampling, Markov Chain Monte Carlo, Posterior Predictive Density 

1. Introduction 
 
Censoring is common in life-distribution work because 
of time limits and other restrictions on data collection. 
Censoring occurs when exact lifetimes are known only 
for a portion of the individuals or units under study, 
while for the remainder of the lifetimes information on 
them is partial. There are several types of censored tests. 
One of the most common censored test is type II cen- 
soring. It is noted that one can use type II censoring for 
saving time and money. However, when the lifetimes of 
products are very high, the experimental time of a type II 
censoring life test can be still too long. A generalization 
of Type II censoring is progressive Type II censoring, 
which is useful when the loss of live test units at points 
other than the termination point is unavoidable. Recently, 
the Type-II progressively censoring scheme has received 
considerable interest among the statisticians. See for 
example, Kundu [1] and Raqab [2]. For the theory 
methods and applications of progressive censoring, one 
can refer to the monograph by Balakrishnan and Aggar- 
wala [3] and the recent survey paper by Balakrishnan [4].  

Johnson [5] described a life test in which the ex- 

perimenter might decide to group the test units into 
several sets, each as an assembly of test units, and then 
run all the test units simultaneously until occurrence the 
first failure in each group. Such a censoring scheme is 
called a first-failure censoring scheme. Jun et al. [6] 
discussed a sampling plan for a bearing manufacturer. 
The bearing test engineer decided to save test time by 
testing 50 bearings in sets of 10 each. The first-failure 
times from each group were observed. Wu et al. [7] and 
Wu and Yu [8] obtained maximum likelihood estimates 
(MLEs), exact confidence intervals and exact confidence 
regions for the parameters of the Gompertz and Burr type 
XII distributions based on first-failure-censored sampling, 
respectively. If an experimenter desires to remove some 
sets of test units before observing the first failures in 
these sets this life test plan is called a progressive 
first-failure-censoring scheme which recently introduced 
by Wu and Kuş [9]. 

In many practical problems of statistics, one wishes to 
use the results of previous data to predict a future 
observation from the same population. One way to do 
this is to construct an interval which will contain the 
future observation with a specified probability. This 
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interval is called a prediction interval. Prediction has 
been applied in medicine, engineering, business, and 
other areas as well. Hahn and Meeker [10] have recently 
discussed the usefulness of constructing prediction inter- 
vals. Bayesian prediction bounds for future observations 
based on certain distributions have been discussed by 
several authors. Bayesian prediction bounds for obser- 
vables having the Burr type XII distribution were ob- 
tained by Nigm [11], AL-Hussaini and Jaheen [12,13], 
and Ali Mousa and Jaheen [14,15]. Burr type X described 
by Jaheen and AL-Matrafi [16]. 

Recently, Alamm et al. [17] obtained Bayesian pre- 
diction intervals for future order statistics from the gene- 
ralized exponential distribution. Kundu and Howlader 
[18] studied Bayesian inference and prediction of inverse 
Weibull distribution for Type-II censored data. Ahmadi 
et al. [19] considered the Bayesian prediction of order 
statistics based on k-record values from exponential 
distribution. Ahmadi and MirMostafaee [20] obtained 
prediction intervals for order statistics as well as for the 
mean life time from a future sample based on observed 
usual records from an exponential distribution. Ali 
Mousa and Al-Sagheer [21] discussed the prediction 
problems for the Rayleigh based on progressively Type- 
II censored data. The Burr system of distributions 
includes twelve types of cumulative distribution func- 
tions which yield a variety of density shapes and were 
listed in Burr [22]. Its has applied in business, chemical 
engineering, quality control, medical and reliability 
studies. 

The probability density function (pdf) and cumulative 
distribution function (cdf) of the Burr type XII dis- 
tribution denoted by Burr  ,   are given, respec- 
tively, by 

      
11= 1 , > 0, > 0, >f x x x x

   
   0 , (1) 

and 

   = 1 1 , > 0,F x x x
 

            (2) 

The two-parameter Burr type XII distribution has 
unimodal or decreasing failure rate function  

    11= 1h x x x 
  . It is clear that the parameter  

  does not affect the shape of failure rate function 
 and h x   is the shape parameter. Also,  h x  has 

a unimodal curve when > 1,  achieving a maximum at  

 1 c
1

= ,x




 and it has decreasing failure rate func-  

tion when 1  . Thus the shape parameter   lays an 
important role for the distribution. Its capacity to assume 
various shapes often permits a good fit when used to 
describe biological, clinical or other experimental data. 

Rodriguez [23] introduced the basic statistical property 
of Burr type XII model. Lee et al. [24] obtained the 
Bayes and empirical Bayes estimators of reliability 
performances of this model under progressively type-II 
censored samples. 

In this paper first we consider the Bayesian inference 
of the shape parameters for progressive first failure 
censored data when both parameters are unknown. We 
assumed that the shape parameters   and   have the 
gamma prior and they are independently distributed. As 
expected in this case also, the Bayes estimates can not be 
obtained in closed form. We propose to use the Gibbs 
sampling procedure to generate MCMC samples, and 
then using the importance sampling methodology, we 
obtain the Bayes estimates of the unknown parameters. 
We perform some simulation experiments to see the 
behavior of the proposed Bayes estimators and compare 
their performances with the maximum likelihood 
estimators (MLEs). 

Another important problem in life-testing experiments 
namely the prediction of unknown observables belonging 
to a future sample, based on the current available sample, 
known in the literature as the informative sample. For 
different application areas and for references, the readers 
are referred to AL-Hussaini [25]. In this paper we 
consider the prediction problem in terms of the 
estimation of the posterior predictive density of a future 
observation for two-sample prediction. We also construct 
predictive interval for a future observation using Gibbs 
sampling procedure. An illustrative example has been 
provided. 

The rest of this paper is organized as follows: In 
Section 2, we describe the formulation of a progressive 
first-failure-censoring scheme. In Section 3, we cover 
Bayes estimates of parameters using MCMC technique 
with the help of importance sampling technique. Monte 
Carlo simulation results are presented in Section 4. 
Bayes prediction for future order statistic and upper 
record values are provided in Section 5. and Section 6, 
respectively. Data analysis is provided in Section 7, and 
finally we conclude the paper in Section 8. 
 
2. A Progressive First-Failure-Censoring  

Scheme 
 
In this section, first-failure censoring is combined with 
progressive censoring as in Wu and Kuş [9]. Suppose 
that  independent groups with  items within each 
group are put on a life test, 1  groups and the group in 
which the first failure is observed are randomly removed 
from the test as soon as the first failure (say 1: : :m n k ) has 
occurred, 2  groups and the group in which the second 
first failure is observed are randomly removed from the 

n k
R

X R

R

p
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test when the second failure (say 2: : :m n k ) has occurred, 
and finally  groups and the group in which 
the  first failure is observed are randomly 
removed from the test as soon as the m-th failure (say 

) has occurred. The  

1: : : 2: : : : : :m n k m m n k  are called progressively 
first-failure-censored order statistics with the progressive 
censoring scheme . It is clear that 

 is number of the first failure observed 

X R

, mR

mR m n
h

< <R R

R

m t

: : :m m n k

m n kX X
X R

m

< X R

 1 2, ,R R 
 1 < m n  

and 1 2 m . If the failure times of the 
 items originally in the test are from a continuous 

population with distribution function 

=n m
k

R R   R
n

 F x  and pro- 
bability density function  f x

: : 2:m n kX XR R

:, , ,

F x



< <




1 1

... m

n R

R 





, the joint probability 
density function for  is given 
by 

1:

 
1: : : 2: : :

: : :
1

= 1

m n k m n k

m
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C

= 0,0,

      (3) 

        (4) 

where 

         (5) 

Special cases 
It is clear from (3) that the progressive first-failure 

censored scheme containing the following censoring 
schemes as special cases: 

1) The first-failure censored scheme when  
. R

= 1k

= 1k

2) The progressive type II censored order statistics if 
. 

3) Usually type II censored order statistics when 
 and  = 0,0,

 ,0

, , , X

,R n 

R



m
= 1k

 k

. 
4) The order statistics case when  and  

.  = 0,0,

X XR R

R
Also, It should be noted that  

1; , , 2; , , ; , ,m n k m n k m m n k  can be viewed as a progres- 
sive type II censored sample from a population with 
distribution function 1 1 F x  . For this reason, 
results for progressive type II censored order statistics 
can be extend to progressive first-failure censored order 
statistics easily. Also, the progressive first-failure-cen- 
sored plan has advantages in terms of reducing the test 
time, in which more items are used, but only  of 

 items are failures. 
m

n k
 
3. Bayes Estimation 
 
In this section, we present the posterior densities of the 
parameters   and   based on progressively first 

failure censored data and then obtain the corresponding 
Bayes estimates of these parameters. To obtain the joint 
posterior density of   and  , we assume that   

d an   are independently distributed as gamma  1 1,b  
and gam

a
ma  2 2  priors, respectively. Therefore, the 

prior density functions of 
,a b

  and   becomes 

   
1

1

a

a
11 e if >

0 i

b
 








1 1a b  

1 1 1, =a b







0

f

π

 0,

    (6) 

   
2

2

2

a

a
12 2a b 

2 2 2, =a b
e if >

0 i ,

b  










0

f

π

 0

   (7) 



,
The gamma parameters a1, b1, a2 and b2 are all assu- 

med to be positive. When 1 1  2 2  
we obtain the non-informative priors of 

= = 0a b  0= =a b
  and  . 

Let ,  be the progressively first- 
failure-censored order statistics from Burr type XII 
distribution, with censoring . From (3), the likelihood 
function is given by 

: :i mX R
:n k = 1,2,i 

R

, ,m

 , = Ck   ikm m
i idata x x

    
 


R  1 11

1

m
m

i
 1

i

,  (8) 

where  is defined in (5) and C X  is used instead of 
. : : :i m n k

The joint posterior density function of 
X R

  and   
given the data is given by 
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Therefore, the posterior density function of   and 
  given the  can be written as data

 

   

 

1
i

i

i

x

x

x











1 11 2 1

=1

2
=1

π ,

e 1
1

exp log 1

i
m km a m a b

i
i

m

i

data

x

b k

 

 

 



     

  







 
 
 

  
  

  

R
 (10) 

The posterior density (10) can be rewritten as 

       , a1 2g, , ,data g data data h dat       

(11) 

here,  1 ,g data   is a gamma density function with 
the shape and scale parameters as ( ) and  2m a

2
=1

log 1
m

i
i

b k x   
 

  , respectively,  g data  is a  2

proper density function given by 
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Moreover 

     

=1

, = 1
i

m k

i
i

h data x
 




R
.  

Therefore, the Bayes estimate of any function of   
and  , say  ,g    under the squared error loss func- 
tion is (see Equation (13)) Figure 1. Posterior density function of β. 

It is not possible to compute (13) analytically. We 
propose to approximate (13) by using importance samp- 
ling technique as suggested by Chen and Shao [26]. The 
details are explained below. 

 
     1 1 2 2, , , , , ,N N      . 

Step 8: An approximate Bayes estimate of   under a 
squared error loss function can be obtained as 
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Importance Sampling 
Importance sampling is a useful technique for esti- 
mations, now we would like to provide the importance 
sampling procedure to compute the Bayes estimates for 
parameters of the Burr type XII distribution, and any 
function of the parameters say  , =g    . 

where M  is burn-in. 
Step 9: Obtain the posterior variance of  = ,g    

as As mentioned previously that  1 ,g data   is a 
gamma density and, therefore, samples of   can be 
easily generated using any gamma generating routine. 
However, in our case, the proper density function of   
Equation (12) cannot be reduced analytically to well 
known distributions and therefore it is not possible to 
sample directly by standard methods, but the plot of it 
(see Figure 1) show that it is similar to normal 
distribution. So to generate random numbers from this 
distribution, we use the Metropolis-Hastings method 
with normal proposal distribution. Using Metropolis- 
Hastings method, simulation based consistent estimate of 
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4. Monte Carlo Simulations 
 
In order to compare the proposed Bayes estimators with 
the MLEs, we perform a Monte Carlo Simulation study 
using different sample sizes (n), different effective 
sample sizes (m), different sampling schemes (i.e., dif- 
ferent i  values) and for different priors (non-infor- 
mative and informative). We used two sets of parameter 
values 

R

= 2, = 1   and = 1, = 1 

= = 0d
= = 1,c d

 mainly to com- 
pare the MLEs and different Bayes estimators and also to 
explore their effects on different parameter values. For 
prior information we have used: Non-informative prior, 
Prior 1 with a b , and informative prior, 
Prior 2 with  when 

= =
= 2,a b

c
= 1, = 2, = 1   

and  when =a b = 1 = 1 = 1, = 1, = 1  . For Prior 2 
we have chosen the hyper-parameters in such a way that 
the prior mean became the expected value of the 
corresponding parameter. 

  can be obtained using Algorithm 1 
as given below: 

Algorithm 1: 
Step 1: Start with an .     0 0, 
Step 2: Set . = 1t
Step 3: Generate  t  from 2 . g data  using the 

method developed by Metropolis et al. [27] with the 
N   1 2,t  

2
 proposal distribution.  

where  is variances-covariances matrix. 
Step 4: Generate  t  from   1 . ,tg data . 

 t  and   .t  Step 5: Compute 
Step 6: Set  = 1.t t

It is clear from Tables 1 and 2 that the proposed Bayes Step 7: Repeat Step 3 - 6 N times and obtain 
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Table 1. Average values of the different estimators and the corresponding MSEs it in parentheses when β = 2 and α = 1. 

MLE Bayes (proir 1)  Bayes (prior 2) 
k n m Scheme 

             

1 30 20  010,19  2.1261 1.0435 2.1479 1.0395  2.1237 1.0374 

    (0.2045) (0.0748) (0.2190) (0.0724)  (0.1720) (0.0621) 

    0 1 05 ,10 ,5  2.1555 1.0552 2.1546 1.0513  2.1342 1.0465 

    (0.2090) (0.0829) (0.2109) (0.0807)  (0.1706) (0.0657) 

    019 ,10  2.1613 1.0577 2.1802 1.0907  2.1457 1.0785 

    (0.2332) (0.0769) (0.2636) (0.0984)  (0.1988) (0.0753) 

 40 20  020,19  2.0908 1.0366 2.1153 1.0298  2.0983 1.0277 

    (0.1537) (0.0602) (0.1644) (0.0582)  (0.1351) (0.0504) 

    0 2 05 ,10 ,5  2.1283 1.0626 2.1216 1.0563  2.1058 1.0489 

    (0.1628) (0.0799) (0.1621) (0.0777)  (0.1364) (0.0632) 

    019 ,20  2.1699 1.0891 2.2516 1.4817  2.2113 1.3008 

    (0.2387) (0.1147) (0.3793) (0.5266)  (0.2847) (0.1936) 

 40 30  010,29  2.0849 1.0335 2.0980 1.0321  2.0862 1.0312 

    (0.1232) (0.0478) (0.1290) (0.0469)  (0.1092) (0.0424) 

    0 1 010 ,10 ,10 



 2.1098 1.0375 2.1114 1.0359  2.1012 1.0344 

    (0.1247) (0.0479) (0.1262) (0.0468)  (0.1104) (0.0426) 

    029 ,10  2.1076 1.0227 2.1217 1.0521  2.1107 1.0472 

    (0.1282) (0.0404) (0.1474) (0.0495)  (0.1252) (0.0454) 

5 30 20  010,19  2.1216 1.1553 2.1153 1.1621  2.0930 1.1173 

    (0.1256) (0.1938) (0.1443) (0.2161)  (0.1105) (0.1191) 

    0 1 05 ,10 ,5  2.1248 1.2139 2.1064 1.2309  2.0769 1.1430 

    (0.1354) (0.3638) (0.1304) (0.4289)  (0.1107) (0.1597) 

    019 ,10  2.1587 1.3123 2.1876 1.5205  2.0978 1.2244 

    (0.2067) (0.6337) (0.2414) (0.6087)  (0.1176) (0.2232) 

 40 20  020,19  2.0912 1.1296 2.0892 1.1368  2.0718 1.0986 

    (0.1104) (0.1746) (0.1098) (0.1958)  (0.0879) (0.1079) 

    0 2 05 ,10 ,5  2.1319 1.3064 2.1092 1.3431  2.0693 1.1777 

    (0.1422) (0.6831) (0.1356) (0.3264)  (0.0854) (0.2140) 

    019 ,20  2.1899 1.3083 2.2930 1.3201  2.0816 1.2282 

    (0.3599) (0.7242) (0.3409) (0.4956)  (0.1251) (0.4388) 

 40 30  010,29  2.0613 1.0883 2.0558 1.0894  2.0476 1.0747 

    (0.0773) (0.0867) (0.0763) (0.0814)  (0.0666) (0.0689) 

    0 1 010 ,10 ,10  2.0699 1.1200 2.0585 1.1233  2.0476 1.0974 

    (0.0827) (0.1375) (0.0811) (0.1482)  (0.0668) (0.0956) 

    029 ,10  2.1027 1.1799 2.1229 1.2895  2.0803 1.1817 

    (0.1133) (0.2287) (0.1314) (0.3844)  (0.0902) (0.1535) 
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Table 2. Average values of the different estimators and the corresponding MSEs it in parentheses when β = 1.0 and α = 1.0. 

MLE Bayes (proir 1)  Bayes (prior 2) 
k n m Scheme 

             

1 30 20  010,19  1.0720 1.0531 1.0824 1.0491  1.0733 1.0455 

    (0.0498) (0.0729) (0.0535) (0.0706)  (0.0487) (0.0610) 

    0 1 05 ,10 ,5  1.0785 1.0463 1.0779 1.0425  1.0713 1.0377 

    (0.0495) (0.0766) (0.0499) (0.0738)  (0.0450) (0.064) 

    019 ,10  1.0781 1.0524 1.0887 1.0961  1.0755 1.0697 

    (0.0528) (0.0792) (0.0601) (0.1042)  (0.0520) (0.0770) 

 40 20  020,19  1.0520 1.0445 1.0645 1.0375  1.0584 1.0337 

    (0.0413) (0.0743) (0.0449) (0.0719)  (0.0393) (0.0624) 

    0 2 05 ,10 ,5  1.0649 1.0466 1.0596 1.0407  1.0557 1.0343 

    (0.0444) (0.0749) (0.0459) (0.0725)  (0.0402) (0.0699) 

    019 ,20  1.0848 1.0702 1.1040 1.1158  1.1042 1.0901 

    (0.0566) (0.0944) (0.0472) (0.0923)  (0.0458) (0.0919) 

 40 30  010,29  1.0497 1.0190 1.0562 1.0179  1.0525 1.0170 

    (0.0316) (0.0465) (0.0332) (0.0455)  (0.0302) (0.0417) 

    0 1 010 ,10 ,10 



 1.0627 1.0098 1.0639 1.0087  1.0602 1.0080 

    (0.0354) (0.042) (0.0357) (0.0413)  (0.0333) (0.0378) 

    029 ,10  1.0624 1.0264 1.0747 1.0615  1.0671 1.0456 

    (0.0408) (0.0544) (0.0372) (0.0476)  (0.0355) (0.0428) 

5 30 20  010,19  1.0626 1.1537 1.0596 1.1596  1.0508 1.1231 

    (0.0338) (0.1590) (0.0333) (0.1719)  (0.0276) (0.1120) 

    0 1 05 ,10 ,5  1.0566 1.2306 1.0473 1.0473  1.0335 1.1689 

    (0.0344) (0.2894) (0.0336) (0.3023)  (0.0251) (0.1600) 

    019 ,10  1.0802 1.0955 1.0897 1.1904  1.0481 1.2393 

    (0.0562) (0.3197) (0.0519) (0.3117)  (0.0312) (0.2527) 

 40 20  020,19  1.0451 1.1399 1.0442 1.1465  1.0368 1.1137 

    (0.0292) (0.1459) (0.0291) (0.1587)  (0.0247) (0.1039) 

    0 2 05 ,10 ,5  1.0515 1.2175 1.0394 1.2370  1.0260 1.1416 

    (0.0315) (0.3494) (0.0304) (0.4127)  (0.0223) (0.1607) 

    019 ,20  1.2031 1.3067 1.0369 1.2524  1.0469 1.0899 

    (0.0509) (0.3637) (0.0495) (0.2956)  (0.0365) (0.2786) 

 40 30  010,29  1.0447 1.1133 1.0419 1.1155  1.0375 1.0947 

    (0.0202) (0.1546) (0.0200) (0.1404)  (0.0171) (0.0871) 

    0 1 010 ,10 ,10  1.0565 1.1454 1.0505 1.1489  1.0446 1.1214 

    (0.0262) (0.1557) (0.0254) (0.1455)  (0.0214) (0.1041) 

    029 ,10  1.0461 1.1684 1.0591 1.2809  1.0386 1.1714 

    (0.0285) (0.2218) (0.0328) (0.2627)  (0.0222) (0.1539) 
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estimators perform very well for different  and . 
As expected, the performance in terms of average and 
the MSE of the Bayes estimators under Prior 1 and the 
MLE is very similar. The Bayes estimators under Prior 2 
clearly outperform the MLEs in term of average and 
MSE. Note that prior 2 is more informative than prior 1, 
because in most cases the MSEs of prior 2 is smaller than 
that of prior 1. 

n m where 

 
5. Bayesian Prediction for Future Order  

Statistics 
 
Suppose that 1: : : 2: : : : : : , is a progres- 
sive first-failure-censored sample of size  drawn 
from a population whose pdf is Burr 

, , ,m n k m n k m m n kX X XR R R
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, defined by 
(1), and that 1 2  is a second independent 
random sample (of size ) of future observations from 
the same distribution. Bayesian prediction bounds are 
obtained for some order statistics of the future obser- 
vations . On the other hand, let  

1: : : 2: : : : : :m n k m n k m m n k  and 1 2  represent 
the informative sample from a random sample of size , 
and a future ordered sample of size , respectively. It is 
further assumed that the two samples are independent 
and each of their corresponding random samples is 
obtained from the same distribution function. Our aim is 
to make Bayesian prediction about the 
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By using the binomial expansion, the density (16) 
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The Bayes predictive density function of sY  is given 
by 

         
0 0

= , π , ds ss sg y data g y data d ,     
     

(19) 

where  π , data   is the joint posterior density of   
and   as given in (11). It is immediate that  

   ssg y data  can not be expressed in closed form and 
hence it can not be evaluated analytically. 

A simulation based consistent estimator of  

    ,ssg y data  can be obtained by using the Gibbs 
sampling procedure as described in Section 3. Suppose 
  , , = 1, 2, ,i i i   N  are MCMC samples obtained 

from  π , ,data   using Gibbs sampling technique, 
the simulation consistent estimator of     ,ssg y data  
can be obtained as 
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and    ,ssG y    denotes the distribution function 
corresponding to the density function    , ,ssg y    
here 
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where  ja s  and  jn s  are defined in (18). It should 
be noted that the MCMC samples  
  , , =i i 1, 2,i  , N  can be used to compute  

   ˆ ssg y data  or    dataˆ
ssG y  for all sY . Moreover, 

a symmetric 100 %  predictive interval for sY  can be 
obtained by solving the non-linear Equations (24) and 
(23), for the lower bound,  and upper bound,  L U
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We need to apply a suitable numerical method as they 
cannot be solved analytically. 
 
6. Bayesian Prediction for Future Record  

Value 
 
Let us consider that 1: : : 2: : : : : :  
is a progressive first failure censored sample of size  
with progressive censoring scheme 1 2 , 
drawn from a Burr type XII distribution and let  

1 2 1

, , ,m n k m n k m m n kX X XR R R

, ,R RR =
m

 mR,

, , , mZ Z Z
m

 is a second independent random sample 
of size 1  of future upper record observations drawn 
from the same population. 

The first sample is referred to as the “informative” 
(past) sample, while the second one is referred to as the 
(future) sample. Based on an informative progressively 
first failure censored sample, our aim is to predict the 

 upper record values. The conditional pdf of thS sZ  for 
given ,   is given see Ahmadi and MirMostafaee [20], 
by 
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where . ,F    is given in (2) Applying (2) in (26) we 
obtain 
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The Bayes predictive density function of sY  is then 

         
0 0

= , π , d ds ss sh z data h z data ,     
     

(28) 
As before, based on MCMC samples  

, a simulation consistent estima- 
tor of 
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N
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and a simulation consistent estimator of the predictive 
distribution of sY  say   .sG data   can be obtained as 
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i  is same as defined in (22) and  w  ,ssH z    
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It should be noted that the MCMC samples  

  , , = 1, 2, ,i i i   N  can be used to compute  

   ˆ

  , we simply obtain 

ss  or h z data    ˆ
ss

H z data  for all sZ . Moreover, 
a symmetric 100 %  predictive interval for sZ  can be 
obtained by solving the non-linear Equations (32) and 
(33), for the lower bound,  and upper bound,  L U
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In this case also it is not possible to obtain the 
solutions analytically, and one needs a suitable numerical 
technique for solving these non-linear equations. 
 
7. Illustrative Example 
 
In this section, we consider a real life data set and 
illustrate the methods proposed in the previous sections. 
A complete sample from a clinical trial describe a relief 
time (in hours) for 50 arthritic patients given by Wingo 
[28] and used recently by Wu et al. [29] is selected. The 
data are given in Table 3. 

Wingo [28] shows that the Burr type XII model is 
acceptable for these data. To illustrate the use of the 
estimation methods proposed in this article, we assume 
that the patients are randomly grouped into 25 groups 
with  patients within each group. The relief times 
of the groups are: {0.70, 0.84}, {0.50, 0.58}, {0.55, 
0.82}, {0.59, 0.71}, {0.61, 0.72}, {0.49, 0.62}, {0.36, 
0.54}, {0.36, 0.71}, {0.35, 0.64}, {0.55, 0.84}, {0.29, 
0.59}, {0.46, 0.75}, {0.46, 0.60}, {0.36, 0.60}, {0.52, 
0.68}, {0.55, 0.80}, {0.34, 0.84}, {0.34, 0.70}, {0.49, 
0.56}, {0.61, 0.71}, {0.57, 0.73}, {0.44, 0.75}, {0.44, 
0.81}, {0.8, 0.87}, {0.29, 0.50}. Suppose that the 
pre-determined progressively first-failure censoring plan 
is applied using progressive censoring scheme  

= 2k
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= 2, 2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 .R

= 20m

  
The following progressively first-failure censored data of 
size ( ) out of 25 groups of patients were observed: 
0.29, 0.29, 0.35, 0.36, 0.36, 0.44, 0.46, 0.46, 0.49, 0.49, 
0.5, 0.55, 0.55, 0.55, 0.57, 0.59, 0.61, 0.61, 0.70, 0.80, 

For this example, 5 groups of patients are censored, 
and 20 first failure times are observed. The maximum 
likelihood estimates (MLE’s) of   and ,  based on 
complete sample are  and , respectively. 
Using  the progressively first-failure censored sample 
the MLE's of 

4.5174 7.6686

  and ,  are 4.5093 and 7.6397, res- 
pectively. we apply the Gibbs and Metropolis samplers 
with the help of importance sampling technique to 
determine the Bayesian estimation and prediction inter- 
vals, we assumed that both the parameters are unknown. 

Since we do not have any prior information available, we 
used noninformative priors  on 
both 

 1 1 2 2= = = = 0a b a b
  and  . The density function of  2g data  

as given in (12) is plotted Figure 1. It can be appro- 
ximated by normal distribution function as mentioned in 
the Subsection 3.1. Now using Algorithm 1, we generate 
10,000 MCMC samples and discard the first 1000 values 
as ‘burn-in’, based on them we compute the Bayes 
estimates of   and   as 4.4985 and 7.8716 res- 
pectively. As expected the Bayes estimates under the 
non-informative prior, and the MLE’s are quite close to 
each other. Moreover, the result of 90% and 95% highest 
posterior density (HPD) credible intervals of   and 

,  are given in Tables 4 and 5 for the future order 
statistics and future upper record values, respectively. 

 
Table 3. Relief time (in hours) for 50 arthritic patients. 

0.70 0.84 0.58 0.50 0.55 0.82 0.59 0.71 0.72 0.61 

0.62 0.49 0.54 0.36 0.36 0.71 0.35 0.64 0.84 0.55 

0.59 0.29 0.75 0.46 0.46 0.60 0.60 0.36 0.52 0.68 

0.80 0.55 0.84 0.34 0.34 0.70 0.49 0.56 0.71 0.61 

0.57 0.73 0.75 0.44 0.44 0.81 0.80 0.87 0.29 0.50 

 
Table 4. Two sample prediction for the future order statistics. 

 90% (HPD) credible intervals for  SY 95% (HPD) credible intervals for  SY

SY  [Lower, Upper] Length [Lower, Upper ] Length 

1Y  [0.1676, 0.4584] 0.9208 [0.1423, 0.4854] 0.3431 

2Y  [0.2677, 0.5142] 0.2465 [0.2406, 0.5311] 0.2905 

3Y  [0.3285, 0.5574] 0.2289 [0.3046, 0.5765] 0.2719 

4Y  [0.3653, 0.5844] 0.2191 [0.3451, 0.6049] 0.2598 

5Y  [0.4096, 0.6187] 0.2091 [0.3868, 0.6392] 0.2524 

6Y  [0.4429, 0.6464] 0.2035 [0.4247, 0.6681] 0.2434 

7Y  [0.4716, 0.6762] 0.2046 [0.4481, 0.7013] 0.2532 

 
Table 5. Two sample prediction for the future upper record values. 

 90% (HPD) credible intervals for SZ  95% (HPD) credible intervals for SZ  

SZ  [Lower, Upper] Length [Lower, Upper ] Length 

1Z  [0.3243, 0.8867] 0.5624 [0.2733, 0.9586] 0.6853 

2Z  [0.5070, 1.0476] 0.5406 [0.4615, 1.1457] 0.6842 

3Z  [0.6145, 1.1791] 0.5646 [0.5745, 1.2969] 0.7224 

4Z  [0.6908, 1.3219] 0.6311 [0.6543, 1.4591] 0.8048 

5Z  [0.7516, 1.4554] 0.7083 [0.7178, 1.6306] 0.9128 

6Z  [0.8012, 1.5941] 0.7929 [0.7655, 1.7949] 1.0294 

6Z  [0.8399, 1.7054] 0.8655 [0.8075, 1.9684] 1.1609 
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8. Conclusions 
 
In this paper, Bayesian inference and prediction pro- 
blems of the Burr type XII distribution based on pro- 
gressive first-failure censored data are obtained for future 
order statistics and future upper record values. The prior 
belief of the model is represented by the independent 
gamma priors on the both shape parameters. The squared 
error loss function is used. We used Gibbs sampling 
technique to generate MCMC samples and then using 
importance sampling methodology we computed the 
Bayes estimates. The same MCMC samples were used 
for two sample prediction problems. The details have 
been explained using a real life example. 
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