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Abstract

In this paper, we proposed a general form of a multi-team Bertrand game. Then, we studied a two-team Ber-
trand game, each team consists of two firms, with heterogeneous strategies among teams and homogeneous
strategies among players. We find the equilibrium solutions and the conditions of their local stability. Nume-
rical simulations were used to illustrate the complex behaviour of the proposed model, such as period dou-
bling bifurcation and chaos. Finally, we used the feedback control method to control the model.

Keywords: Bertrand Game, Non-Convex Dynamical Multi-Team Game, Incomplete Information Dynamical
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1. Introduction

Game theory [1,2] is the study of multi-person decision
problem. Such problems arise in economics. The game is
called incomplete information if at least one of the
players does not know the other player's payoff, such as
in an auction when the bidders do not know the offers of
each other. Otherwise, it is called complete information
game. Also, the game can be classified to static or dyna-
mic game. There are two famous economic games, the
first is the Cournot game [3] and the second is the
Bertrand game [4]. In economic games, the first step is to
construct the game. The second step is to solve the game
(get their Nash equilibrium) and study the stability of
these equilibria. Nash [5] showed that in any finite game
there exists at least one Nash equilibrium.

Nature push us to make teams in all fields. This has at
least two main advantages. The first is the improvement
of our profit and the second is that living in a team
reduces the risk. For example, in the forest animals live
in teams (herds). Since looking for food in a team is
more efficient than doing it alone and reduces predation
risk due to early spotting of predators and that existing in
a team gives a higher probability that the predator will
attack another member of the team. Another example is
the competition between firms in the market. Suppose
M  branches of McDonald fast food shops compete
against N branches of Kentucky fast food shops.

Multi-team game has been studied in [6]. In their work,
they proposed and applied the concept of multi-team
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game in the hock-dove game, prisoner dilemma game
and Cournot game. Also, the Cournot multi-team game
has been studied in [7-11]. The standard static Bertrand
game has been studied in [12]. A duopoly Bertrand game
with bounded rationality is studied in [13]. Multi-team
bertrand game is studied in [14] with two teams but the
second team consists of one player.

We will construct the model in Section 2. In Section 3,
we will analysis the model, i.e., we will find its equi-
librium points and their stability conditions. Some nume-
rical analysis will be done in Section 4 to show the com-
plexity behaviour of the model. Finally in section 5, we
will use the feedback control method to control our
model.

2. The Model

Bertrand game is a model of competition used in eco-
nomics. It describes interaction among firms that set
prices and their customers that choose quantities at that
price. In this game there are at least two firms producing
homogeneous products and compete by setting prices
simultaneously. Consumers buy everything from a firm
with a lower price. If all firms have the same price,
consumers randomly select among them.

Suppose there are totally n firms (produce certain
product) in the market and these firms are divided into
N teams. Let p; be the price per unit of that product
produced by the firm j in the team i and let c; be
the marginal cost of producing one unit of that product
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by the firm ] in the team 1. Then, the payoff of the
firm j in the team i, if it played without the team, is
given by the following equations;

T :(pij _cij)(a_b Pij + 2Py — pij)s

, . (1
|:1,"',N, J :19"':Ni9

where N is the number of teams and N; is the
number of firms in the team i. The positive constants
a,b are the demand parameters where b is the slop of
the demand function.

We propose that, firms in the same team share some of
their payoffs with their team mates. So, let 8,ij be the
payoff rate that firm j will takes from the payoff of
firm | in the same team 1. It is clear that 0 < glij <1,
Zlgl'j <1 and ng,'j <1. For example, the final payoff
of the first firm (j=1) of the first team (i =1), if he
played with the team, is given by the followimg;
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where N, is the number of firms in the first team. In
general, the final payoff of the firm j in the team i is
given by;

N N
Hij_[l—lz‘fh]’fiﬁ;gu}ﬂn ()
#] ]

In the case of two teams (N =2) where each team
consists of two firms (N, =N, =2) and from Equation
(1), we get the following payoffs of the firms in each
team;

Py =G ) (a=b Py + Py + Py + Py
Pi=C) (3= iy + Py + Doy + s )
(P2 =Cyy ) (a=b Py + Py + Py + P )
Ty = (P2 —Cp ) (@=D Py + Doy + Py + P ).

-
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T
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Ty

Using the assumption in Equation (2) of sharing some
of the payoffs and Equation (3), we get the final payoffs

of the firms as follows:

In this model, we assume that the firms in the first
team use the marginal profit method [15], to expect their
profit for the next time according to the following
equations;

Gl
p1lj+1 = pltj +a1j(p11j)_1[1’ i=L2 ©)
0py;
where «; is the speed (rate) of adjustment and it is a
function of the price p,;. The firms in the second team
use Nash equilibrium [2], to make their decision for the
next step by solving the following equations;
omy,
—0 =0, j=1,2. (6)
0 Py

In this model, we assume that the speed of adjustment
will be linear and take the form alj(pfj ) =ay pltj , and
a,; > 0. Substituting from Equation (4) in Equations (5)
and (6), we get the following system (7);

Then, Equation (7) describe a system of two teams,
each team consists of two firms with homogeneous
strategies among each firms in each team and heteroge-
neous strategies among teams.

3. The Analysis of the Model

The steady state (equilibrium) solutions are very interest
[16]. In the context of difference equations, an
equilibrium solution x is defined to be the value that
satisfies the relations X, =X =X . Then, we can get
the equilibrium solutions for our model by the following.
Let

t+1

t+1

2
t+1

2
t+1 ‘n
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1 t t t )
P, =—(a+bcy,+py,+Pp,+P,)+———
21 2b( 21 22 11 12) 2b(1—6‘122

)(péz—czz),

1
=—(a+bc, +p, +pl,+p, )| +—2—
P2 Zb( 22t Pa + Py plz) 2b(

1-¢&5,

P =Pyt pltl[(l_gllz)(a"'bcn =2bpj, + pj, + Py + p;2)+g;l(plt2 _CIZ):| >

P =Pt pfz[(l_gil)(a"'b Co=2bpj, + Py + Py + p;2)+‘9112(p1t1 _Cll)] ,

(N

j(Pa=ca)
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pit=pl=p,,pS = p, = p,, Then, using .Equation (8),. the equilibrium points are
®) given by solving the following system:

p21 = p21 = Pas pzz = pzz = Py

ay prl[(l_gllz)(a"‘bcn =2bp, + P+ Pyt p22)+‘9;](p12_012):|20’

a, pfz[(l_g;|)<a+b Cp=2bp, + Py + Py + pzz)"'gllz(pn —C”):|=O,

—)(pzz 2), ©)

p :i(a+bc + Py + Py + P )+ !
21 2b 21 22 11 12 2b(

512

1
P2 :Z_b(a+bczz TPyt Pt p]2)+2b(1—8221)(p21 _C21)~

the fourth one is the coexistence equilibrium one. The

We get three boundary equilibrium solution points and I
E 0,0 where
first boundary equilibrium one is given by t

d, =4b’(1-&} )(1-&3, ) - (1-&3, + &) )(1-55 + 3,
Il=a< )(2b( )+(1 812+6‘21))+02](2b2(1 812)(1 521) 8122(1—5]22+5221))+C22b(1—522])(1—€]22—822]),
L, =a(l-¢ )(2b( 2)+(1- 521+glz))+c21b(1 & )(1-23 - 512)+022(2b2(1 & )(1-e3)- 5221(1—5221+5122)).

The second boundary equilibrium one is given by E, = (0, P, ,3—1 ,2—2], where
2 2

n, =2b(1-&; )((1+2b)(1—gf2)+g§1 )(a(l+2b)(1—52'1)—gl'2 c, +b(1—gz'1)c12)
+2b(1-¢) CZI(b(4 )(1 glz)(l—g;)—5,22((1+2b)(1_5122)+2b.922[))
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and The third boundary equilibrium one is given by
o (atbc,)d, +m+n,  ghc, ) omom)
12 2bd, 2p(1-¢},) 0, 7a, )
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m, = 2b(1—5122 )((1+2b) (1—5221)+ & )(a(1+ 2b)(1-¢,) +b(1 -&, )c11 -&, Clz)
+2p(1-¢ )(1- &2 )cﬂ(—.gfz(4b2 ~1)+b((1+20)(1-£} )+2bs,22))

N 2b(1—5112 )czz(b(4b2 _1)(1_5122 )(1 -& )—gzzl((1+ 2b)(1 —3221)+ 2be], ))

and The most important one is the coexistence one
; :(a+bcu)d3+m1+m2 _ ‘9;1(:12 ) E4:(p?pp?zap;pp;z)sWhere
2bd, 2b(1—5112)
o _2a(B,-B,)+c, (D,B,~F,B,)+c, (E:B, —H,B,) +, (F,B, ~D,B;) +¢y, (H,B, ~E,B,)
" A4Bs_A3B4 '
o :2a(82—Bl)+c“(DIBZ—FZBI)+C,2(EIBZ—HZBI)+021(FIBZ—DZB,)+022(HIBZ—EZBI)
. A B —AB, ’
Dt = 2a(A - A)+¢, (DA —FA ) +c, (B, A —HA )+, (RA —D,A ) +cy (HyA - EA3)
21 B A3 B A4
bt = 2a(A, - A)+c, (DA -FA)+c, (EA —H,A)+c, (FA —D,A )+C, (H A - EA)
12 B A\l B AZ
where, B =
A= 4(1+2b)(1—5122)(1—5221)+2(5122(1—5122)+g§1(l—g§1))
2 1 1 1 1 1 1
—8b” (12, ) (12, ) +2(1- &), + &3, ) (1+ &), - 23, (1-2%)((1+20)(1-23 )+ 23 ) ’
(1—5112)((1+2b)(1—g;1)+g}2) B, =

A =
-8b* (1—6‘112)(1—6‘;1)-‘:-2(1—6‘]12 +g§1)(1+3112 —g;,)
(1-&)((1+2b)(1-5) )+ 23, )

4(1+2b)(1—5122)(1—5221)+2(5122(1—5122)+5221(1—5221))

(1—5221)((1+2b)(1—3122)+5221)

B, = _ Zb(l—gllz—gél)
-8b* (1—5122)(1—5221)+2<1—5122+3221)(1+5122—5221) bo(1420)(I-gy) e,
(1-2)((1+2b)(1-&3) )+ &) ’ . R R ()
B, = (1-23)((1+2b) (12}, )+ &3, )
_8b2(1—5122)(1—5221)+2(1—ng+5221)(1+ng—5221) . 2b(1 2 521)
(1-22)((1+20)(1-3) + 3 2 _(1+2b)(1—521)+glz’
A = 5 _4b2(1—6‘122)(1—8221)—28122<1+€221—6‘122)
4(1+2b)(1—g}2)(1—g;1)+2(g}2(1—g}2)+g;1(1—s;1)) t (1—5221)((1+2b)(1—5122)+3221)
(1—5,12)((1+2b)(1—5‘;1)+£112) , B 2b<1—€1lz—5§1)
A, = C(te2b)(1-eh) vl
4(1+2b)(1_8112)(1_5;1)+2(5112(1_5112)+5;1(1_52]1))’ . :4b2(1—81]2)(1—8;1)—282]1(14-8112—82]1)
(1-24)((+2b) (1= )+ 21, ) ‘ (1= )((1+2b) (12}, )+ &,
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2b(1—5,22—5221)
(1+2b)(1-8% )+ &3,
B 4b* (1—5122)(1—5221)—25221(1+5122 —5221)
(1-23)((1+20)(1- 23 )+ &)
2(3122 +b(1—8221))
(1+2b)(1—g§1)+g§’
—2(1—5122)(5122 +b(1—€221 ))
(1-22)((a+2p)(1-2% )+ 22 )
- 2(8112+b(1—6‘2]1))
T (1+2b)(1_5;1)+5112 ’
—2(1—8112)(8112 +b(l—{;‘;1))
(1-2h)((+2b)(1-2h )+ )
2(5221 +b(1—5122))
(1+2b)(1_5122)+5221 ’
—2(1—8221)(8221 +b(l—e‘122 ))
(1—532)((1+2b)(1—g§1)+gfz)
2(5;1+b(1—5112))
(1+2b)(1-¢), )+ &),
—2(1—8;1)(82]1 +b(l—gll2 ))
(1-2h)((1+2b) (1= )+ 1 )

The stability of this equilibrium solutions is based on
the eigenvalues of the Jacobian matrix of the system (7),
which is given by (10);
where

e :(1_5112)(a+b C,, —4bpy, + Py + Py + pgz)

1 t
T &y ( P _CIZ)

4

2 >

1

3

4

3

1

>

and
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72 =(1_551)(a+bclz_4bp1{z+ P+ Py + péz)

+6), ( PL _Cn)

The equilibrium solution will be stable if the
eigenvalues 4,i=1,2,3,4 of the Jacobian matrix (10)
satisfy the conditions |4]<1,i=1,2,3,4.

The eigenvalues for the first equilibrium point E, are
givenby A =1+a,,7, 4, =1+¢,,7,,and

PR (1—6‘122+8221)(1—8221+8122)
O ap? (1—5122)(1—522])
equilibrium points it is very difficult to compute these

eigenvalues. Instead, we find the characteristic polyno-
mial, which has the following form:

P(A)=2"+a 1’ +a,4’ +a,;A+a,,
Then, the necessary and sufficient conditions [17], for
all roots of the characteristic polynomial P (l) to
satisfy the conditions that |ﬁ,|| <1,i=1,2,3,4 are the
following:
) P(I)=1+a,+a, +a,+a, >0,
2) P(-1)=1-a +a,-a,+a, >0,
3) fa,] <1,
4) |1—af| >|a, —a,a,

5) ‘(l—af)z —(a —a4a1)2‘

>

. For the other

(11

2
a,(1-a}) —(a,-a,a)(a -a,a,)

The coefficients of the characteristic polynomial for
the most important one (coexistence) are as follows:

a = _<2+0‘1171 T, 72)’
a = (l+a’11 71 )(1"'0‘12 72)
—a,,0, Py p12<1_‘9112 +&, )(1_‘9;1 +5112)
o, Py (1_‘9112) a Pia (1_‘9;1)
b b
(1—.9122 +é&, )(1—.9221 +gf2)

a0’ (1-e))1-23,)

I+a, 7
ap, p12(1_5;1+‘9112) I+ay,7,
L 1
2b 2b
| 1
2b 2b
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ayy pn(l_gllz +g;1) oy pll(l_‘gllZ)

a5 Pia (1 —&, )

2b(1-¢3))

a4y, pn(l_gllz)_
i, plz(l_gél)
(1—5122 +£221)

’ w(-22) |

(10)

(1_5221 +‘9122) 0
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_ ay p11(1_8112)((1_5122 )(1_5221 +5122)+(1_5221 )(1_5122 +5221))
4> (1-&, )(1-23, )
A, plz(l_gél)((l_glzz )(1_5221 +8122)+(1_5221)(1_8122 +5221))
4b2(1—512z )(1—5221)
_analz Py p]2((1_5112)(1_‘9;l +g|12)+(1_g;1)(1_5112 +g;1))
b
N ) p]l(l_gllz)(1+a1272)+a12 plz(l_‘g‘;l)(l—i_all}/l)_'_ (2"'“1171""0‘1272)(1"'5122 _5221)(1_5122 +‘9221)
b 2b2(1—5122 )(1—5221) '
a _ %% Pu plz(l_‘c‘;l)(l_gllZ +éy, )(1—8221 +&) . 1-&, +&,
* 4b? | 1-¢ 1-&
%% Pi plz(l_gllz)(l_gil +51]2)( 1-& +&, . 1-¢&, +&,
4p° 1-&,  1-&
a2 Py plz(l_‘("él +&, )(1_‘9112 +6, )(1_5221 +ép, )(1_5122 +5221)
4b2(1—5122)(1—5221)
+0(11 pll(l_gllz)(1+a127/2)(1—8221 +e) . 1-¢&, +&, +a12 plz(l_gél)(l—’_all}/l){1—8221 +&) . 1-&, +&,
4b? 1-&,  1-& 4b* 1-&,  1-é&

(-3 )(1-23)

Then, the equilibrium solution E, of the system (7)
is stable under the conditions (11). This means that in the
long run all firms are coexist. So, the market will be
stable.

4. Numerical Simulations

In this section, we will use some numerical simulations
to show the complicated behaviour of the model (sta-
bility, period doubling bifurcation and chaos). Figure 1
shows the bifurcation diagram of the prices and profits
with respect to the adjust speed «,, while the other
parameters are constant and have taken the values
p), =030, p),=055, p5 =060, py =064,
£,=02, £,=03, &,=0.1, &,=04, ¢, =0.11,
c,=0.13, ¢, =021, ¢,,=023, a=1, b=3 and
a,=02.

__This figure shows that the equilibrium point

p =(0.5212497,0.5254234,0.5638708,0.5599204) is
locally stable for ¢, <0.7569938, after this value it
became periodic and finally the system became chaotic.
The same thing occur to the profits in figure 1B at the
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(1+a117/1 )(1"'0‘1272)(1_‘9221 +5122)(1_5122+5221)

same value of ¢, .

Figure 2 shows the effect of changing the parameters
S,ij. We get a bifurcation diagram for the prices and
profits with respect to &, with the values of the other
parameters are the same as in Figure 1 except that o,
became constant and takes the value «,, =0.9 and &/,
became variable.

We note that the small cooperation among the firms in
the same team ( &;, < 0.3459991 ) will lead to a complex
behaviour in the system, while the increasing this
cooperation will lead to the stability.

5. Chaos Control

As we seen in the last section, the adjustment rate o
and the payoff return 5|'j of the boundedly rational
firms play an important role in the stability of the market.
So, to avoid this complexity we will try to control the
chaos. We will use the feedback method [18] to control
the adjustment magnitude. Modifying the first equation
in our system will give us the following controlled
system;

AM
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0.6 T T T T v

05F Ty

0.5r Pll 04+
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Profit
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Figure 1. The bifurcation diagram of the prices and the profits with respect to a;;.
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1 1
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Figure 2. The bifurcation diagram of the prices and the profits with respect to &, .

t+1 1

P =Py +%p1‘1|:(1_512)(a+bcu ~2bpy, +py, + Py + p;2)+52|1(p1t2 _Clz):|7
tel _ I

P = Pnta, p1t2|:(1_321)(a+b €, —2bpj, + Py + Py, + p;2)+gllz(p1t1 _Cll):|’

t+1

2

Pa —zib(a+bczl+p§z+pf1+pfz%ﬁ(pirczz), (12)
2

Py :i(a"'b Cpy + Py + Py + pfz)"’ﬁ(p;l _021):

where the parameter k >0 is the control factor. The Jacobian matrix of the controlled system will be:

Copyright © 2011 SciRes. AM
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_ 1+ allpll(l_gllz_‘—g;l) anpu(l_gllz) anpn(l_gl]z)_
k+1 k+1 k+1 k+1
A, plz(l_gél +‘9112) I+ay,y, @, plz(l_g;l) a5 Py (1_5;1)
1 1 (1_5122 +‘9221) (13)
— — 0 A A
2b 2b 2b(1-¢7,)
1 1 (1—5221 +gl22) 0
o » T (=Y _

The original system is chaotic for the parameter values

p’, =030, p)=055, p) =060, pJ =064,
£h =02, £ =03, £2=0.1, £,=04, ¢, =0.11,
c,=0.13, ¢, =021, ¢, =023, a=1, b=3,

a, =1.1 and ¢, =0.2. But the controlled system is
stable (4 <1,i=1,2,3,4) for all the above parameters
values and for k > 0.4559977.

0.8

0.7

0.6

0.5

Price

04l P
03]
02]

01)
0.0

0.2 0.4 0.6 0.8 1.0

Figure 3. The bifurcation diagram of the prices with respect
to the controlling factor k.

0.65,

0.60

0.55 P E.

0.50 i

0.45

Price

0.40

0.35

0.30

0.250 100

200 300 400
t

Figure 4. The bifurcation diagram of the prices with respect

to the controlling factor k£ = 0.5.
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From Figure 3, we find that the controlled system
begin chaotic, periodic and then stable by increasing the
control factor K.

Figure 4 shows the stability behaviour of the
controlled system when k =0.5. This means that if the
firms in the first team adopt the feedback adjustment, the
price system can switch from a chaotic to a regular or
equilibrium state.

6. Acknowledgements

We would like to express our appreciation to the
Deanship of Scientific Research at King AbdulAziz
University, Saudi Arabia for its financial support of this
study, Grant No. 3-058/430.

7. References
(1]

R. Gibbons, “A Primer in Game Theory,” Simon and
Schuster, New York, 1992.

B. R. Myerson, “Game Theory: Analysis of Conflict,”
Harvard University Press, Cambridge, 1997.

A. Cournot, “Researches into the Mathematical Principles
of the Theory of Wealth,” Macmillan, New York, 1897.

J. Bertrand, “Theoriec Mathematique de la Richesse
Soaiale,” Journal des Savants, Vol. 67, 1883, pp. 499-
508.

J. Nash, “Equilibrium Points in an n-Person Games,”
Proceedings of the National Academy of Sciences, Vol.
36, No. 1, 1950, pp. 48-49. doi:10.1073/pnas.36.1.48

E. Ahmed, A. S. Hegazi, M. F. Elettreby and S. S. Askar,
“On Multi-Team Games,” Physica A: Statistical Mechan-
ics and Its Applications, Vol. 369, No. 2, 2006, pp. 809-
816. doi:10.1016/j.physa.2006.02.01 1

T. Puu, “Chaos in Duopoly Pricing,” Chaos, Solitons &
Fractals, Vol. 1, No. 6, 1991, pp 573-581.

T. Puu, “The Chaotic Monopolist,” Chaos, Solitons &
Fractals, Vol. 5, No. 1, 1995, pp. 35-44.

M. F. Elettreby and S. Z. Hassan, “Dynamical Multi-
Team Cournot Game,” Chaos, Solitons & Fractals, Vol.
27, No. 3, 2006, pp. 666-672.

[10] E. Ahmed and A. S. Hegazi, On Dynamical Multi-Team

(8]

1]

AM


http://dx.doi.org/10.1073/pnas.36.1.48
http://dx.doi.org/10.1016/j.physa.2006.02.011

1190

[14]

M. F. ELETTREBY ET AL.

and Signaling Games,” Applied Mathematics and Com-
putation, Vol. 172, No. 1, 2006, pp. 524-530.
doi:10.1016/j.amc.2005.02.030

S. S. Asker, “On Dynamical Multi-Team Cournot Game
in Exploitation of a Renewable Resource,” Chaos, Soli-
tons & Fractals, Vol. 32, No. 1, 2007, pp. 264-268.

E. Ahmed, M. F. Elettreby and A. S. Hegazi, “On Puu’s
Incomplete Information Formulation for the Standard and
Multi-Team Bertrand Game,” Chaos, Solitons & Fractals,
Vol. 30, No. 5, December 2006, pp. 1180-1184.

J. X. Zhang, Q. L. Da and Y. H. Wang, “The Dynamics
of Bertrand Model with Bounded Rationality,” Chaos,
Solitons & Fractals, Vol. 39, No. 5, 2009, pp. 2048-
2055.

D. Zhanwen, H. Qinglan and Y. Honglin, “Analysis of

Copyright © 2011 SciRes.

[15]

[16]

[17]

[18]

the Dynamics of Multi-Team Bertrand Game with Het-
erogeneous Players,” International Journal of Systems
Science, Vol. 42, No. 6, 2010, pp. 1047-1056.

G. Gigerenzer and R. Selten, “Bounded Rationality,”
MIT Press, Cambridge, 2002.

L. Edelstein-Keshet, “Mathematical Models in Biology,”
Random House, New York, 1988.

E. 1. Jury, “The Inners Approch to Some Problems of
System Theory,” IEEE Transactions on Automatic Con-
trol, Vol. 16, No. 3, 1971, pp. 233-241.
doi:10.1109/TAC.1971.1099725

E. M. Elabbasy, H. N. Agiza and A. A. Elsadany, “Ana-
lysis of Nonlinear Triopoly Game with Heterogeneous
Players,” Computers & Mathematics with Applications,
Vol. 57, No. 3, 2009, pp. 488-499.

AM


http://dx.doi.org/10.1109/TAC.1971.1099725

