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Abstract 
 
Let {Xn, n ≥ 1} be a sequence of independent and identically distributed positive valued random variables 
with a common distribution function F. When F belongs to the domain of partial attraction of a semi stable 
law with index , 0 <  < 1, an asymptotic behavior of the large deviation probabilities with respect to prop-
erly normalized weighted sums have been studied and in support of this we obtained Chover’s form of law of 
iterated logarithm. 
 
Keywords: Large Deviations, Law of Iterated Logarithm, Semi-Stable Law, Domain of Partial Attraction, 

Weighted Sums 

1. Introduction 
 
Let {Xn, n ≥1} be a sequence of independent and identi-
cally distributed (i.i.d) positive valued random variables 
(r.v.s) with a common distribution function F. Let BV 
[0,1] be the set of all continuous bounded variation func-
tions over [0,1]. Set  

n

n k
k=1

S = X , n 1 , and 
n

n k
k=1

k
T = f X

n
 
 
 

 ,  

where f is a member of BV[0,1]. Let {nk, k ≥ 1} be a 
strictly increasing subsequence of positive integers such 

that  k+1

k

n
r 1

n
   as k  . Kruglov [1] established 

that, if there exists sequences (ak) and (bk) of real con-
stants, bk   as k  , such that 

 kn
k α

k
k

S
Lim P a x = G x

b

 
   

 
 

at all continuity points x of G, then G is necessarily a 
semi stable d.f with characteristic exponent, 0 <   2. 
When  = 2, semi-stable becomes normal. 

It is known that probabilities of the type  n nP S > x  , 
or either of the one sided components, are called large 
deviation probabilities, where {xn, n ≥ 1} is a monotone 
sequence of positive numbers with xn   as n   

such that pn

n

S
0

x
 . In fact, under different conditions 

on sequence of r.v.s, Heyde [2-4] studied the large devia-
tion problems for partial sums. In brief, for the r.v.s 
which are in the domain of attraction of a stable law and 
r.v.s which are not belong to the domain of partial attrac-
tion of the normal law, Heyde [2] and [3] established the 
order of magnitude of the larger deviation probabilities, 
where as in Heyde [3], he obtained the precise asymp-
totic behavior of large deviation probabilities for r.v.s in 
the domain of attraction of stable law. 

When r.v.s. has i.i.d symmetric stable r.v.s, Chover [5] 
obtained the law of iterated logarithm (LIL) for partial 
sums by normalizing in the power and for r.v.s which are 
in the domain of attraction of a stable law, Peng and Qi 
[6] obtained Chover’s type LIL for weighted sums, 
where the weights are belongs to BV[0, 1]. Many authors 
studied the non-trivial limit behavior for different 
weighted sums. See Peng and Qi [6] and references 
therein. 

Probability of large values plays an important role in 
studying non-trivial limit behavior for stable like r.v.s. 
As far as properly normalized partial sums of stable like 
r.v.s, we can use the asymptotic results of Heyde [2-4]. 
(See Divanji [7]). However the observations made by 
Heyde [2-4] on the large deviation probabilities implic-
itly motivated us to study the large deviation probabili-
ties for weighted sums. In fact, when the underlying i.i.d 
positive valued r.v.s are in the domain of partial attrac-
tion of a semi stable law of Kruglov’s [1] setup, denoted 
as F  DP (), 0 <  < 1, a precise asymptotic behavior 
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of the large deviation probabilities of Heyde [2-4] can be 
obtained for weighted sums. In support of this can be 
considered for Chover’s type of non-trivial limit behav-
ior for weighted sums. 

In the next section we present some lemmas and main 
result in Section 3. In the last section, we discuss the 
existence of Chover’s form of LIL for weighted sums. In 
the process i.o, a.s and s.v. mean ‘infinitely often’, ‘al-
most surely’ and ‘slowly varying’ respectively. C, , k 
and n with or without a super script or subscript denote 
positive constants with k and n confined to be integers. 
In the sequel, observe that when  < 1, ak can always be 
chosen to be zero. 
 
2. Lemmas 
 
Lemma 2.1 
Let F  DP (), 0 <  < 1. Then there exists s. v. func-
tion L, such that 

  
 X

x 1 F x
Lim =1

L x






. 

Lemma 2.2 
Let F  DP (), 0 <  < 1 and let  

 n

1
B = inf x > 0: 1 F x

n
  
 


 . Then Bn = n1/ l(n), 

where l is a function s. v. at . 
The above lemmas can be referred to Divanji and 

Vasudeva [8]. 
Lemma 2.3 
Let L be any s. v. function and let (xn) and (yn) be se-

quence of real constants tending to  as n . Then for 

any  > 0, 
 
 

n nδ
n

n 
n

L x y
Lim y =

L x
  and 

 
 

n nδ
n

n
n

L x y
Lim y = 0

L x


 
. 

This lemma can be referred to Drasin and Seneta [9]. 
Lemma 2.4 
Let F  DP (), 0 <  < 1. Let (xn) be a monotone se-

quence of real numbers tending to ∞ as n→∞ and Bn 
defined in Lemma 2.2. Then p1 1

n n nB x S 0   , as 
n→∞. 

This lemma can be referred to Vasudeva and Divanji 
[10]. 

Lemma 2.5 
Let F  DP (), 0 <  < 1. Let (xn) be a monotone se-

quence of real numbers tending to ∞ as n→∞ and Bn 
defined in lemma 2. Then p1 1

n n nx B T 0    as n → ∞, 
with Bn defined in Lemma 2.2. 

Proof 
Since f  BV[0,1]. Hence there exists a constant C 

such that f(x)≤ C and 
n-1

k=1

k k+1
f f

n n
      
   

 C , for all 

n ≥ 1.  
Therefore 

 

n

n k
k=1

n-1

k n
1 k nk=1

k
T = f X

n

k k+1
f f S + f 1 S 2C max

n n  

 
 
 
          
    



 kS

 

Dividing on both sides by xnBn, we have 

n

1 k n
n n n n

T
2C max

x B x B 
 kS

 Observe that Xi’s are i.i.d posi- 

tive valued r.v.s which are in the domain of partial at-
traction of a semi-stable law and hence 

k

1 k n
n n n n

S S
max

x B x B 
 n  and by lemma 2.4 we have 

pn

n n

S

x B
 . This gives pn

n n

T
0

x B
 , as n  . 

 
3. Main Results 
 
Theorem 3.1 

Let F  DP (), 0 <  < 1. Let (xn) be a monotone se-
quence of real numbers tending to ∞ as n→∞ and Bn 

defined in lemma 2.2. Then 
 
 

n n n

n
n n

P T x B
Lim = 1

n P X x B




. 

Proof 
To prove the assertion, it is enough to show that 

 
 

 
 

n n n

n n n

n n n

n n n

P T x B
0 < Liminf

n P X x B

P T x B
LimSup < .

n P X x B










 



 

Let  > 0 and define  i i n

i
A = f X 1+ε x B

n

     
  

n  

and 
n

i j n n
j=1, j i

j
B = f X ε x B

n

     
   

 1, 2, ,i n, . 

Proceeding on the lines of Heyde [4] and Lemma 3.1 
of Vasudeva [12], we get, 

       

     

n n

n n n i i j
i=1 j=1

1 1 1

P T x B P A P B P A

n P A P B n P A

 
   

 
   

 
  (1) 

From Lemma 2.5, we have pn

n n

T
0

x B
 , as n   

and given  > 0 with 1 – 2 > 0, we can choose N1 so 

Copyright © 2011 SciRes.                                                                                  AM 
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n
large such that P(Bi) > 1 – 2 for all n  N1 and for all  

. Further from Lemma 2.5, we see that 
nP(Ai)  0 as n  , so that we can choose N2 so large 
that n P(Ai) < , for n  N2. Thus for n  N = max (N1, 
N2), we obtain from (1), 

, this im-
plies 

1,2,3, ,i  

 n n nP T x B      n nn 1 2 P X 1+ε x B 

 
 

    
 

 
  

 

n nn n n

n n n n

n n

n n

n 1 2 P X 1+ x BP T x B

n P X x B nP X x B

P X 1+ x B
1 2

P X x B

 




 


 


 



. 

Using Lemma 2.1, we have  

 
 

 
 

  
 

 
 

  
 

α α
n nn n n n n

α α α
n n n nn n

n n

α
n n

L 1+ x BP T x B 1 2 x B

n P X x B L x Bx B1+ε

L 1+ x B1 2

L x B1+







 







 

Choose  > 0 sufficiently very small such that 

  
 

n n

n
n n

L 1+ x B
Lim =1

L x B




, one can find a constant C1 > 0 

such that  

 
 

n n n
1

n n n

P T x B
Liminf > C 0

n P X x B





. 

In order to complete the proof, we use truncation 
method. 

Define  

k k
k

k
X , if f X x B

Y = n

0, otherwise

     
  



n n  

Let k k

k k
R = f X f Y

n n
      
   

k ,  

n

1,n k
k=1

k
T = f Y

n
 
 
 

  and . Notice that  
n

2,n k
k=1

T = R

    n n n 1,n n n 2,nP T x B P T >x B +P T 0    . This implies 

 
 

 
 

 
 

1,n n n 2,nn n n

n n n n n n

P T x B P T 0P T x B
+

n P X x B n P X x B n P X x B

 


  
(2) 

Observe that 

   2,n 1 n n

1
P T 0 nP R 0 = n P f X x B

n

       
  

, for 

fixed n and f is continuous BV [0,1] and it attains bounds. 
Hence using Lemma 1, we have, 

 
   

 

 

n n
2,n

n n n n

n n

αα α
n n

α α
n nn n

n n

α

n n

1
n P f X x B

P T 0 n
=

n P X x B n P X x B

x B
L

1
f

n x B 1
f

L x B nx B

x B
L

1
f

n1
f .

n L x B

        
 

 
 
 
  

          
  

 
 
 
  

          
  

  (3) 

Using Karamata’s representation of s.v. function, one 
gets that 

   
   

 
 

n n

n n

n n

n n

n n n n
x B

1
f

x Bn
ε y y

y y
n n n n 0 0

n n
x B

1
f

n
y

y
n n x B

x B x B
L a

1 1
f f

n n
= exp dy dy

L x B a x B

x B
a

1
f

n
exp dy .

a x B





 
 
 

 
 
 

   
   
                             

 
 
 

 
 
               

 
 
 

 



 

Since a(x)  C as x  C and (y)  0 as y  , 
there exists C0 > 0 and 0 < , such that 

 

n n

0
n n

x B
a

1
f

n
C

a x B

 
 
 
  

      , (y)  0, for . n ny x B

This yield 

  0

n n

0
0 0

n n

x B
L

1
f

n C1
C exp log

1L x B 1f fn n



 
 
 

     
                                

. (4) 

Substituting (4) in (3), one can find some constant C1 
such that the second term in (2) becomes 

Copyright © 2011 SciRes.                                                                                  AM 
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 
 

-
2,n

1
n n

P T 0 1
C f

nP X x B n

          
. Since f  BV[0,1] and  

   1
f f 0 BV[0,1] , as n

n
     
 

 . Therefore we can 

find some constant C2 (>C1) such that 

 
 

2,n

2
n

n n

P T 0
Lim C <

n P X x B





 .      (5) 

Now consider the first term in the right of (2). By 
Tchebychev’s inequality, we get 

 
 

 
 

2
1,n1,n n n

2 2
n n n n n n

E TP T x B

nP X x B nx B P X x B




 
. 

Since

 
n n n

2 2 2
1,n k k m

k=1 k=1 m=1

k k
E T = f EY + f f EY EY ,

n n n

m     
     
     

   

for k m . Hence  

 
 

 
 

   

2
1,n1,n n n

n n n n n n

n n n
2 2

k k
k=1 k=1 m=1

n n n n n n n n

E TP T x B

nP X x B n x B P X x B

k k m
f EY f f EY EY

n n n
= +

m

n x B P X x B n x B P X x B

 

   




 

     
     
     

 

 
.

 (6) 

By Theorem 1, on page 544, of Feller [12] and Lemma 
2.1, one gets that 

 

 

 

n
2 2

k
k=1
2 2
n n n n

2- 2-n
2 n n n n

n n
2-k=1

2 2
n n n n

n
2- 2- n n

n n n n
k=1

2 2
n n n n

k
f EY

n

n x B P X x B

x B x Bk
 x B f L

k kn
f f

n n

n x B L x B

x Bk
 x B f x B L

kn
f

n

n x B L x B

1 k
f

n n

 
 



    



 
 
 



 
           

        

 
         

    

 








 

n n

n

k=1 n n

x B
L

k
f

n
.

L x B

 
 
 
  

     




 

Using similar steps of (4), one can find some constant 
C3 such that 

 
0

n
2 2

k n
-k=1 3

2 2
k=1n n n n

k
f EY

C kn
f

n nn x B P X x B
 

 
         


 . Since f is 

continuous BV[0,1], then there exists C4(> C3) such that 

 

n
2 2

k
k=1

42 2
n n n n

k
f EY

n
C

n x B P X x B

 
 
  




.       (7) 

Observe that 

2
n n n

k m k
k=1 m=1 k=1

k m k
f f EY EY f EY

n n n

             
      

  . 

Now for 0 <  < 1, 

 

n n

n n

x B

k
f

n

k k
x B 0

x
k

f
n

EY E Y = x dP(X < x) P X x dx

 
 
 


 
 
 

     

Let 

n n

k m
k=1 m=1

2 2
n n n n

k k
f f EY EY

n n
A

n x  B P(X x B )

   
   
   




, 

2
n

k
k=1

2 2
n n n n

k
f EY

n
B

n x  B P(X x B )

  
  

  



 and 

 

n n
2x B

k
f

nn

k=1 0

2 2
n n n n

k
f P X x d

n

D
n x  B P(X x B )

 
 
 

 
 
       
 
 



  x

. 

Notice that A  B  D. Again using Lemma 2.1, we 
have 

 

 

 
 

 

n n

n n

2x B

k
f

nn
-

k=1 0

2- 2-
n n n n

2x B

k
f

nn
-

k=1 n n0

n n2- 2-
n n

k
f L x x dx

n

D
n x  B L x B

L xk
f x dx

n L x B

L x B .
n x  B



 



 

 
 
 

 
 
 

 
 
  

    
 
 

 
 
  

    
 
 

 

 
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Following similar steps of (4), we can find some con-
stant C5 and 0 > 0 such that 

 
   

0

n n
5 0

n n

L x x B
C 1+

L x B x



    
 

. 

Hence  

 

n n

0 0 0

2x B

k
f

nn
- -

5 0 n n
k=1 0

2- 2-
n n

k
C 1+ f x dx x  B

n

D
n x  B

   

 



 
 
 

 
 
  

    
 
 

 

. 

Also 
n n

0 0 0

x B

k
f

n
1 1 + 1
n n

00

1 k
x dx =  x  B  f

1 n
       

 

 
 
 

        
     0 and 

there exists C6 (>C5) such that 

 0

2
n

+
6 n

k=1

n n

k
C f L x B

n
D

n x  B

 

 

  
  

  
 n

. 

Let Mn = xn Bn, where xn   and Bn   as n  . 
Since F DP (), 0 <  < 1, then 

We know that 

 n
7α

n

nL M
C

M
            (8) 

Using (8) one can find some constant C8 such that 

0

2
n

+
8

k=1

2

k
C f

n
D

n

   
  

 


 . Since f is Continuous BV [0,1], 

therefore there exists C9 such that 0
n

+
9

k=1

k
f n

n
     

 
 C  

and hence 

D ≤ C9  B ≤ C9  A ≤ C9       (9) 

From (7) and (9), we claim that 

 
 

1,n n n

n n

P T x B
0

nP X x B





 as n, i.e., holds.  

Substituting (5) and (6) in (2), we get 

 
 

n n n

n
n n

P T x B
Lim Sup < 

n P X x B





. The proof of the theorem 

is completed. 
 
4. Chover’s Form of LIL 
 
Theorem 4.1 

Let F  DP (), 0 <  < 1. Then  

1
log log n 1

n

n
n

T
Lim Sup = e a.s

B




 
 
 

. 

Proof 
To prove the assertion, it suffices to show for any   

(0, 1), that 

 
1+

n nP T B log n i.o = 0


  
 

     (10) 

and 

 
1

n nP T B log n i.o =1



  

 
     (11) 

To prove (10), let  

An=   1+

n nT B logn


  and  
1+

n nx = B log n


 . By the 

above Theorem 3.1, one can find a C10 such that, 
   n 10 nP A C n P X x  . Using Lemma 2.1, 

   
 

 
 
 

n 10 n n

n n
10 1+α

nn

P A C n x L x

L B L x
 C n

L BB (log n)






. 

Applying Lemma 2.3 with  = 
2

  and using the  

boundedness of ,     1+
2

n 11P A C log n
 

 
  for some 

C11 > 0. Consequently  and (3) follows n
n = 1

P(A ) < 



from the Borel-Cantelli Lemma. 

Define, for large k,  
  k 1

k jm = min j :n β
 ,       (12) 

where  > 1 and  > 0 and from the relation 

k k k 1 k 1n n n nT = T T + T
 

, k  1, and in order to establish 
(11), it is enough if we show that   (0, 1), that 



 
1

m m m kk k 1 k
n n n mP T T 2B log n i.o  = 1







 
  

 
 (13) 

and 

 
1

m m kk-1 k
n n mP T B log n i.o  = 0



 

 
 

    (14) 

Define  
 1

n nz  = B log n





 and  

m m mk k-1 k
k n n nD = (T  T ) z , k 1  

1

. Note that 

m m m mk k  1 k k

d

n n n nT T T
   , k ≥ 1. By the above Theorem 

3.1, one can find a constant C12 > 0 and k1 such that for 
all k ( k1), 

     k k 1 mk

k-1

k mk
k

k 12 m m n

m
12 m n

m

P D C n  n P X 2 z

n
= C  n 1  P(X 2z )

n


  

 
   

 

. 
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Since F  DP (), 0 <  < 1 and under Kruglov’s [9] 

setup i.e.,  k+1

k k

n
Lim = r >1

n
 implies that there exists  

= r–1 (>1) such that 

k 1

k

m

m

n
< <1

n
λ  for all k  k1.    (15) 

  k k
k 13 m nP D C n P X 2z  m

, for some C13 > 0. 

Now following the steps similar to those used to get an 
upper bound of P(An), one can find a k2 such that for all 

k (k2),     1
2

k 14 kP D C log n
  

 
 , for some C14 > 0.  

Hence . In view of the fact that Dk’s are  
5

k
k=k

P D  = 



mutually independent, by applying the Borel-Cantelli 
Lemma, (13) is established. Observe that 

 

 

1

m m kk-1 k

1

mk

m m kk 1 k 1
mk-1

n n m

n

n n m
n

P T B log n

B
=P T B log n .

B











 

  
 
 
 
 
 

 

Again by Theorem 3.1, one can find a constant C15 and 
k3 such that for all k  k3, 

 

 

1

m m kk-1 k

1

k 1 m kk

n n m

15 m 1 n m

P T B log n

C n  P X B log n .













 


 










 

Again following the steps similar to those used to get 
an upper bound of P(An), one can find a k4 such that for 
all k (k4), 

 
 

1
k 1

m m kk 1 k
k

k

m
n n m 15 3

1m 2
m

n 1
P T B log n C

n
log n









   
 

   
 

 

By (12) we have  implies  δ

k

k 1
mn β 

k+1 k

k
mn β n


  m

k

 and (15), we have, nk+1   nk. There- 

fore, 
k+1 k k 1 k 1

k
m m m mn β n n n

 
  

 
       

k-1

k k1
m 1n = 

λ

 
    , where 1

1
=


. Hence 

 
k 1

1

k

k
m 1 1

kk 1
m

n

n



 

  





   and 

   
k 1

15 5k

k

m
13

1k = k k = km k2
m m

n 1 1
< .

n
log n log n








 

      
   

 
k

3
1

2






Therefore  
1

m m kk-1 k
n n mP T B log n i.o = 0



  

 
,  

which implies the proof of (11) follows from (13) and 
(14) and the proof of the theorem is completed. 

Another direct application of Theorem 3.1 is for the 
Cesàro sums of index r. Here we may write 

r
n k

r
n

Ak
f =

n A
 

 
 

, where 
 

   
r
n

Γ n+r+1
A =

Γ n+1 Γ r+1
. Using Ster-

ling approximation, we get 
 

r
r
n

n
A =

Γ r+1
 so that  

r
k

f 1
n n

      
   

 k
. The following result of Vasudeva [11] 

can be extended to domain of partial attraction of semi 
stable law and proof follows on similar lines of Theorem 
2, we omit the details. 

Theorem 4.2 
Let F  DP (), 0 <  < 1. Then  

1
log log n 1

n

n
n

T
Lim Sup = e a.s

B




 
 
 

, where  

rn

n k
k=1

k
T  = 1 X

n
  
 

  and r > 0. 
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