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Abstract

In this paper, we study the following problem

A u+V (x)|ul”? u=K(x)f(u)+h(x) inR",

uer”’(RN), u>0 inRY,

*)

1

. . .. . , 1
where 1< p <N, the potential ¥ (x) is a positive bounded function, 4 e L” (RN), —+—=11<p<N, h>0,
p

h#0, f(s) is nonlinearity asymptotical to s” ' at infinity, that is, f (s) ~ O(S" _])

p
as s — +oo. The aim of this

paper is to discuss how to use the Mountain Pass theorem to show the existence of positive solutions of the present
problem. Under appropriate assumptions on V', K, & and f, we prove that problem (*) has at least two positive
solutions even if the nonlinearity f (s) does not satisfy the Ambrosetti-Rabinowitz type condition:

0£F(u)£j;f(s)ds£pief(u)u, w0, 60,
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1. Introduction and Preliminaries

In this paper, we study the following problem
~Au+V (x| u=K(x)f(u)+h(x) nR", w
ueW" (RY), u>0 inR",
where
A =div(|Va|"* Va), he 1 (RY),
1

—'+l:1, I<p<N, h=20, h=0,
p P

and the function V, K and [ satisfy the following
conditions:

() V:R" - R is continuous and there exist
a, a, A, B>0 such that

a

—+pB<V(x)<4
1+|x|
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(F) f(1)eC(RR), f(t)=0 if t<0.

)
_f(1)
(F) lim 5= =0-
(F,) There exists ¢ e (p, P —1) ,such that
lim /(1) =0, where p M
n—n 4 N—p

() tim 20 e (1400).

t—>+o P
(K,) K is a positive continuous bounded function and

there exists R,> 0 such that

sup{%:s > 0}<inf{%:|x| > Ro}.

Throughout this paper, we define the following
Weighted Sobolev space

W= {u e D"’ (RN):J’R,V |:|Vu|p +V(x)u”}dx < +oo}
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L. WANG 1069

Clearly, w"? (RN ) c W . Wis a Hilbert space with its
scalar product and norm are given by

(u,v) = .[RN [|Vu|p72 VuVv+ V(x)u”’ledx
and [u” = [ [[Vaf +V (x)u” |,

because of (¥;) it is equivalent to the standard
whe (RN) norm. So, We associate with (1.1) the func-
tional /:W — R defined by
I(u) = lIRN [|Vu|p + V(x)up]dx
p

vh (x)udx,

—IRNK(x)F(u)dx— &N

where F (u) = J'(;‘f(t)dt .By (/) and (K,) there
exists C, >0 such that
K(x)<CV(x), forall xeRY. (1.3)

(1.2)

Thus, / is well defined on Wand [ eC' (W, R) with
(1) )= o ol vawvr ) o
- R“’K(x)f(u)‘)dx_'[wr h(x)vdx,

forall veW . We also use the notation:
1
lu|, = (.[RN lu| dx)’ for all e (1,+).
Under the conditions (£, )and (F,), we are able to
prove / hasa Mountain Pass geometry. Namely setting

r={yeC([0.1],/),7(0)=0, and I(y(1))<0},
wehave T#J and c= Lriﬁlrg%l(;/(t)) > 0.

The value ceR is called the Mountain Pass level
for 7. Ekeland’s variational principle implies that there
exists a Cerami sequence at ¢, namely a sequence
{u,} = W such that

I(u,)— c and "I’(un)

as n — +oo,

w” (1"'"”»")_)0 (1.4)
where " denotes the dual space of W . At this point,
to get an existence result, it clearly suffices to show that
{u,} is bounded and then that {u,} has a strongly
convergent subsequence whose limit is a non-trivial
critical point of /. These two steps consist the heart of
the proofs of Theorems 1.1 below.

For problems like (1.1) as p = 2, in most works, the
following superlinear condition of f(¢), the so-called
Ambrosetti-Rabinowitz type condition is assumed

0<F(u)<['f(s)ds< pief(u)u, u>0, 6>0.(1.5)

Our equation does not satisfy (1.5) under assumption

Copyright © 2011 SciRes.

of (F,). The difficulty to prove that {u,} is bounded
is linked to the fact that we are considering an non-
linearity asymptotically problem.

There are a few works on asymptotically linear prob-
lems on unbounded domains. The first result is due to
Stuart and Zhou [1]. They study a problem of the type of

—Au-i—V(x)uzf(u), xeRY, (1.6)

assuming that it has a radial symmetry. Thanks to this
assumption, the problem is somehow set in R and
possesses a stronger compactness. Moreover in [2], a
problem of the form

—Au+K(x)u :f(x,u), xeRY

is studied, where K >0 is a constant and f (x,s) is
asymptotically linear in s and periodic in x € R" . Sub-
sequently, taking advantages of some techniques intro-
duced in [3], an extended study of radially symmetric
problems on R was done in [4]. Jeanjean ef al. in [5]
discussed (1.6) under some different conditions of
V(x) and f(u) , it gives results that (1.6) has a posi-
tive solution. Recently, under the assumptions (¥;) as
B=0 with 0<a<2 and (K,): K:RY >R is
smooth and there exist &, >0 such that

0<K(x)< | |ﬂ , Ambrosetti ef al. in [6] proved that
I+|x
problem
—Au+V (x)u=K(x)f(u) inR",
1.7
ueH'(RN),u>0inRN,N23, (1.7)
has a bound state for f(u)=u” with o-<p<x+§
and
N+2 44
- , 0<f<a,
colN=2 an-2) P
1, pza.

Moreover, it is also proved in [6] that, if f (u)=u"

in (1.7), then the restriction of o< p < is nece-

ssary to get a ground state (i.e. a least energy solution) of

(1.7). Liu et al. in [7] showed that (1.7) has a bound state

and ground state solution if f is asymptotically linear

at infinity and other assumptions of V,K and f .
Similar to [8,9] considered the problem

{—Au+u =K(x)f(u)+h(x) inRY,

ueHl(RN), N >3, (1.9)

u>0,
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1070 L. WANG

with lim M

t— t

=[/<+00. It studied the problem by the

case [/ <+ and /=40 to obtain the multiple posi-
tive solutions in these two cases.

Our result is motivated by some work on the existence
of positive solutions for asymptotically linear Schrod-
inger equations as well as by some ideas used for
bounded domain problems. Positive solutions of nonlin-
ear elliptic problems on a bounded domain have been
much studied (see, for example [3,10,11,12]). But to our

best knowledge, it seems that there few results about (1.1)

which is a p-laplacian equation with nonlinearity as-
ymptotic to u””' at infinity in R" . In this paper, we
shall extend the results of [9] to the more general case.
As is known, to seek a weak solution of (1.1) is equiva-
lent to find a nonzero critical point of / in W , so by
the Ekeland’s variational principle [13], we can get a

weak solution u, for he rr (RN ) suitably small easily.

Moreover, u, is the local minimizer of / and
I(u,)<0. However, under our assumptions it seems
difficult to get a second solution (different from u,) of
(1.1) by applying the Mountain Pass theorem. Since we
lose the (AR) condition, we must overcome the difficulty
of the lack of a priori bound in  for Palais-Smale se-
quences. On the other hand, once a (PS) sequence is
bounded in W , it also has some difficulties to show this
sequence converges to a different solution from u, .
When /=00, it seems difficult to get the boundness
result of {u,} =W, so we only discuss the case /<o
and obtain Theorem 1.1:
Theorem 1.1. Suppose that

heLP'(RN)’L l:] ]<p<N h>0,h#0.Let

p P
().(F)-(F,), (K,) beholdand />y with
4 =inf V i Py w,
([ [Vl +7 (x)u” Jax: we o)
[ K(urdr= 1}.

Then there exists d >0 such that problem (1.1) has
at least two positive solutions u,, u, € W satisfying
I(ug)<0 and I(u)>0 if |n <d.

2. Existence of Minimum Positive Solution

In this section, we prove the existence of minimum posi-

tive solution for
—Au+ V |u|
ueWw'r (RN ),

u=K(x)f(u)+h(x) inR", 1)
u>0 inRY,

by Ekeland’s variational method. To this end, we need
some lemmas.

Copyright © 2011 SciRes.

Lemma 2.1. Assume that (V;),(F)-(F,), (K,)
with /<o holdand O<ea < p. Let

heLp'(RN), i'+l:1 and {u,} =W be a bounded
PP

(PS) sequence of [ .Then {u,} has a strongly conver-
gent subsequence in W.

Proof. It is sufficient to prove that for any &£>0,
there exist R(e)>R, (R,is given by (K,)) and
n(¢)>0 suchthatforall R>R(e) and n>n(¢)

o [Vl 7 () Jax < & 2.2)
For R, givenby (K,), define
C (Ry,a,B.a):=sup 1+(2R) :R>R,
| B(1+(2R)")+a|r?
1+(2R, )" ’
[ﬁ(l+(2R)a)+aJR0” ’
(2.3)
1+(2R)"
C,(Ry,a, B,a) =sup :R2R,
[ﬁ(l+(2R)“)+aJR“
~ 1+(2R,)” ’
[,6’(1+(2R)“)+a]R0“ ’
(2.4)
where a, f and a are given by (V). Then, by

(V,) ,(2.3) and (2.4), we have, forall R> R,

I/R” <C,(Ry,at, B.a)V (x), forall [x|<2R. (2.5)
and

1/R* <C, (R, Bra)V (x), forall |x|<2R. (2.6)

Let & (x):RY —[0,1] be a smooth function such
that

S (x)=

{0, 0<|x| <R,
2.7)

L |xz2rR,

and, for some constant C, >0 (independent of R),
C
|V§R (x)| < ?0,
Then, by (2.5), forall neN and R >R, we have
J.]RN V(uné:R )|p dx - RN (|Vun : é:R | + |un . V§R |)p dx
<o [[va, & f ar
(2.9)
. de

c Y
p-1 G
<2 {J.RN + {x: R<x|<2R}( R j u

<2"'[14C (R, B.a)-C} |

for all x e RY. (2.8)

n
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This implies that
o, &l <[22 +1427 C2C Ryt B.a) | u, ] 2.10)

for all neN and R2R,. By O<a<p, for any
&> 0, there exists R(&)>R, such that

re GlCle)
CrC, (Ro,a,ﬂ,a)

forall R>R(¢), (2.11)

-(p-1)
where C(g)z[g le p.By(1.4),
PE
"I’(un)w* —0 as n—oo,soforany &>0, there

un
exists n(5g>0 such that
u || <

"F(M**) nil = 4 0 p
(277 +14277CJC (R, . Boa) |
for all n>n(e).

&

w

(2.12)
Hence, it follows from (2.10) and (2.12) that

[CACARTEY E T W e B

forall n>n(g)and R 2 R,.Note that
(1(n,)o0,8e) = oo (Vi |7 9 (1,60) +7 () ur &
= Jon (K (x) £ (u, Ju, &g +h(x)u, & ) dx
= [ (Ve etv (x)ur & ) e+, |V,

B R'V(K(x)f(”»1)”n§1e+h(x)u,,§R)dx.

(2.13)

! anngx

(2.14)
For R>R(¢), using (2.6) and (2.11), we have,

ClC, (Ry, . B.a) - ¢/C(¢€)

RY R”
£C‘(98)C2(Ro,a,ﬂ,a)V(x), for all |x]<2R,
that is,
cy &
R—OPSC(S)V(x), for all |[x|<2R, (2.15)

Therefore, from (2.8) and (2.15), we get, for all
neN and R>R(¢),

.[]RN

< ijN |Vun

" VE,|dx

|Vun

Tdv+Ce) ] v ul [VE|" dx

, &
< gIRN |Vu,|” dx+C(¢)

rY R?

P dx (2.16)

u

n

< gIRN |Vun|p dx + C(g)ﬁg)jw V(x) P dx

u

n

14
<élu, |’

By (F1), (Ki) and (2.7), there exists 7 <(0,1) such

Copyright © 2011 SciRes.

that, forall neN and R2=R,
[ |K () £ (Y, & e <[y ¥ (x)uf Sy,
Since hel” (RN) , and ||u" || < C for some constant

C >0, it follows from (2.7) there exists R (g) > R, such
that

[ h(x)u, Epdx <[ (x)§R|p,
Combining (2.13), (2.14) and (2.16)-(2.18), for all
n>n(¢) and R>R(¢), we see that
e2(I'(u,)u,) = [|vu,,|” St V(x)u,ffRde
[ Va7,V Edx
—Jax K(x)f(x)unfRdx— N h(x)unéRdx
>, [|Vu,, rE +V(x)u5§R]dx—g

—nIRN V(x)ul&pdx—e.

That is,

[V, | Eude+(1=n) [\ V (x) ) Edlx
<2e+ g”un || <Ce.

From 7 e (0,1) and (2.7), it is easy to see that (2.19)
implies (2.2).

In the following, we give a property of variational
functional / defined by (1.1):

Lemma 2.2. If (V'1), (F1)-(F3), (K)) hold,
h(x)eL” (RN) and K (x)e L* (RN . Then there exist
p,a,d > 0 such that [(u)HuH:p >a>0 for |h|p, <d.

Proof. It follows from (F)-(F3) that for any ¢ >0,

there exist g€ (p,p* —l) and C(g,q) >0 such that
for all s > 0,

2.17)

u,|, < &, for R=R(&).(2.18)

P

un

(2.19)

F(s)Slgs” +C(&,q)s™. (2.20)
p

By the Sobolev embedding and (1.3), we have

1(u) :% oo 19l +v () ]

[ K (x)F (u)dx [, h(x)udx.

Ll k) L o) -l
p p

1 1
> ;"u”p —E;JRN CoV (x)u”dx
-C,C(&.q) o V(x)u"“dx—C|h|p, e

1 +
2 L ol - el -1, o
1 -
[ 5-cae -l -, |
2.21)
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1072 L. WANG

Taking ¢ = ! and setting
C,
g(t)= %t”’l —Cs(&,q)t* for 1>0,we see that there
p

exists p>0 such that max g(s)=g(p)=d . Then it
follows from (2.21) that théré exists & > 0 such that

I(u)HuH:p >a >0 for |h|p <d.

Theorem 2.1. Assume that (7)), (Fy)-(F4), (K;) hold,
h(x)e (RY),h(x)20,h(x)#0. Let
B, ={ueW :|u|<p} if |h| <d ,d,p is given by
Lemma 2.2, then there exists u, € W R" ) such that

I(uo):mf{ (u):ueBp}<O,

and u, is a positive solution of problem (1.1).
Proof. Since h(x)e L’ (RN) , h(x)=0 and
h(x)#0, we can choose a function @ €W such that

[ h(x)e(x)dx>0. (2.22)

For t>0, we have
V4
I(tp)= t—JRN, [|qu|p +V(x) (/)"]dx
.[ K(x (x)p(x)dx

<—||<f>|| —tI

F(t)dx— tj
dx<0

for #>0 small enough. Hence
¢t :inf{l(u):u € Bp} <0. By the Ekeland’s vari-
ational principle, there exists {u,} B, such that

1) co<l(un)<co+l,
n

2) I(w)= I(un)—%”w—un" forallwe B,.

Then by a standard procedure, see for example [14],
we can show that {u,} is a bounded (PS) sequence of /.
Hence Lemma 2.1 implies that there exists

ew"” (RN) such that I'(u,)=0 and
1 (uo) =c, <0.

3. Existence of Second Solution

Next we prove that problem (1.1) has a Mountain Pass
type solution. For this purpose, we use a variant version
of Mountain Pass theorem ([13] Chapter 1V), which
allows us to find a so-called Cerami type (PS) sequence.
The properties of this kind of (PS) sequence are very
helpful in showing its boundedness. The following
lemma shows that I defied in (1.1) has the so-called
Mountain Pass geometry.

Lemma 3.1. Let (¥;).(F)—(F,), (K,) be hold and

Copyright © 2011 SciRes.

I>u with g given by (1.10). Then there exists
veW with ||v|| >p, p 1is given by Lemma 2.2, such
that 7(v)<O0.

Proof. By the definition of #° and /> 4" , we can
choose a nonnegative function @ € W suchthat ¢ >0

-[RN K(x)p"dx=1 and
u < J.]RN [|V¢|p + V(x)(/)”}dx <l
Therefore, by (F,) and Fatou’s lemma, we deduce that

- Lol - im () 22

IAH-oc RM tp
— lim — j h(x)tpdx

t—>+o f

dx

t~>+w

<Ll -Li<0.
p p

So the lemma is proved by taking v=t,p with
t, >1 large enough.

From Lemma 2.2 and Lemma 3.1, there is a sequence
{u,} =W such that

lim /(u,)=cand lim

7'(u, )] - (1+ [, ) =

3.1
For this sequence {u,},let w, = " "
uﬂ
Clearly, w, isboundedin W andthereisa weW
such that, up to a subsequence,
w, > w weakly in W,
w, > W ae. in R, (3.2)
w, »>w strongly in L, /(R") for p<q<p".

For the above w, we have the following lemma.
Lemma 3.2. Let (¥ ),(E )—-(F,). (K;) hold,
ae(O pl, 1>y for y° givenby (1.10).If
as n—+oo, then w given by (3.2) is a
nontrivial nonnegative solution of

—Apu(x)+ V

Proof. The proof of this lemma is similar to that of ([7]
Lemma 2.4). For the sake of completeness, we give a
simple proof here.

Step 1. We claim that w is nontrivial, that is w#0.
By contradiction, if w=0, we claim that

x)|u(x)|p72u(x) = lK(x)u’H, uel.(3.3)

lim supj K(x f(;f'l’)wfdx<l. (3.4)
n—+0 un

If (3.4) is true, then it leads to a contradiction
immediately. Indeed, since , it follows from
(3.1) that

AM



(1 (u)om)/

"=o(1),

u

n

that is

_[K )dx

=1- RNK(X)M P dx,

1
uP

where, and in what follows, 0(1) denotes a quantity
which goes to zero as n — +oo. Clearly, this contradicts
with (3.4). Hence w#0 and Step 1 is proved. So we
only need to prove (3.4) holds.

In fact, by (K

1), there is a constant 7 €(0,1) such
that
Vv
sup{ifsl) 1> 0} < ninf{% : |x| > RO}. (3.5
This yields, forall neN,
f(u”)
.[{x:\x\ZRO}K(x) u,f_l
< ﬂj{x:\x\zRO} V(x)

On the other hand, since the embedding
whp (BRO )QL” (BRO) is compact, w, — w strongly in
rr (BRO ) Passing to a subsequence, there exists

gel’ (BR0 ) such that, forall neN,

w |” dx

n

(3.6)

wn|pdx§77<l.

|wn| <g(x) ae in By,

By (F).(F,), thereexists C; >0 such that

SO e forall (e 3)

i
Then, forall neN,
OﬁK(x)Ll:) wl < CoK (x)|w,|”
uy (3.8)
<CG|K|,|e|" <C ae.inB,.

Noting that w, - w=0 ae.in R", we get
u
K(x)%l) 7 >0 ae inB, (3.9)
u!

It follows from (3.8), (3.9) and the dominated con-
vergence theorem that

lim I,X_‘YKRO}K()C) =l dx =0,

u

n

Hence, (3.4) is deduced from (3.6) and (3.10).
Step 2. we show that W is nonnegative, that is,
w2>0.

(3.10)

Copyright © 2011 SciRes.
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Let w, (x)= —min{O, w, (x)} ,w, (x) is also bounded
in W.If |un||—>oo , then

<1’(u,,)»:ﬁ(x)> (1)

u

n

that is,

i = f k2]

n

w, [ dx+o(1). (.11

By (F), f(t)=0 forall 7<0.]It follows from (3.11)
=o(1). Thus w =0ae.in xeR"

and w>0.
Step 3. We prove w solves (3.3).
By Lemma 3.1, it is sufficient to prove that for any

peCy (R
.[]RN [|Vw|p_2 VwV e+ V(x)|w|p_] (o]dx

(3.12)
= jRN IK (x)w" ™ pdx.
Using (3.1) and ||un || — +o0, we have
I'(u),
%:o(l) forany peCy (RN) ,
u/‘l
that is,
J.RN [ 1" VW + V(x) wf’lgo}dx
(3.13)

= K(x)—f(:f'; ) wpdx +o(1).

u

n

Since w, >w weakly in W as n—>o, we see
that

-[RN [|Vw|p_2 VwVo+V (x) wp_lg)de
(3.14)
K g o),

1
up

n

So, Step 3 is complete provided that

Jok (2

n

'odx — [ K (x)w" " pdx. (3.15)

In fact, by (3.7) and (1.3) we have

= =
Jor[K 7 () u(pu'f)wfl & (3.16)
< CJRV V(x)w! dx < Gy lw, " <C,.

r-l .
that is, {K P (X)wal} is bounded in L* (RN).
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1074 L. WANG

Let
Q, = {x eR": w(x) > O} and
Q, ={xeRN :w(x)=0}.
Noting that
u
w, = —=— wa.e. and|[u, || = +oo,

n

then ||un || —+o0 ae.in x €Q, . Hence by (Fy), we have

r-l
K7 () ) e

ae in xeQ,.

p-1
P p-1
—> K (x)lw (3.17)

Since w, >0 a.e. in xeQ, it follows from (3.7)
that

p-1 p-1
T f(un) -1 r -1
P P = r D
K 7 (x) o w5 0=K " (x)w (3.18)
a.e. in xeQ,.
Thus, (3.16)—(3.18) imply that
p1 pL
K7 ( )f(p_'l’)wfl"1 —> K 7 (x)w"!
o (3.19)

weakly in Lﬁ (RN).

From ¢eCy (RN) and KelL” (RN),we know

that K7 e L*(R"), then (3.19) leads to (3.15).

Lemma 3.3. If O<a<p, I>u4 and (V),(X,),
hold, then problem (3.3) has no any nontrivial non-
negative solutions.

Proof. Since />y, there is a constant & >0 such
that 4 <u +5<I.

By the definition of 4 in (1.10), there exists a
vs €W such that -[]RN K(x)vidx=1 and

<yl <u 46
Since Cj (RN) is dense in W , we may assume
vy €Cy (RY) Now, let R> 0 be such that
supp vs < B, and define
ta =inf { [ [[Val +7 () Jax
[ K (x)urde =Lu e Wy” (By))
Then, v; €W, (B;). and

g <|vs|” <u” +5<L. (3.20)

By the compactness of the embedding
Wy? (By) > L" (By), it is not difficult to see that there

Copyright © 2011 SciRes.

exists w, € W,"? (B )with w, >0 and
J.]RN K (x)whdx =1 such that
—A Wy + V(x)|wR|p_2 wy = 1, K (x)wp™, x e By.

Since w, 20 and K(x) is a positive continuous
function, by the definition of 1, , we have that

—A Wy -i—V(x)|wR|p_2 w, > 0.

From (7;), we get V(x)|wk|p_2 w, >0 forall
w, >0 and

J;(V(x)|wk|p72 Wp Wy )7 dw, = .

Thus by the strong maximum principle in [15], we
have

ow
we >0, VxeBy; —2<0, V|x|eR.
on

If 0#£ueW is a nonnegative solution of (3.3), then
integrating by parts.

,uRIBRK(x)wﬁ_]udx
- IBR [—prR +V (x) | wy 177 wR]udx

~ [ [V Vuds
R

ow, | ow, -2
s 6nR nR udS+J.BR V()| we | wyudx
p-2
:I IK (x) ' udx — M a&udS
Br Br| On on

> IBR IK (x) w” 'udx.

Using ueW,u>0 and u # 0, we may choose R >0
large enough such that .[3 IK (x)wp 'udx >0, thus the
'R

above calculation shows that x, >/ in contradiction
with (3.20). This complete the proof.

Proof of Theorem 1.1. Clearly, if ||u"||—>oo , as
n — +oo, from Lemmas 3.2 and 3.3 we get a contradic-
tion. Hence, {u,} is bounded in W . Then by Lemma
2.1 we see that problem (2.1) has a positive solution
u, €W with I(u;)>0. So, the proof is complete by
Theorem 2.1.

4. References

[1] C. A. Stuart and H. S. Zhou, “A Variational Problem
Related to Self-Trapping of an Electromagnetic Field,”
Mathematical Methods in the Applied Sciences, Vol. 19,
No. 17, 1996, pp. 1397-1407.
doi:10.1002/(SICT)1099-1476(19961125)19:17<1397::Al
D-MMAS833>3.0.CO;2-B

AM



L. WANG

J. Louis, “On the Existence of Bounded Palais-Smale
Sequences and Application to a Landesman-Lazer-Type
Problem Set on R" " Proceedings of the Royal Society
of Edinburgh: Section A, Vol. 129, No. 4, 1999, pp.
787-809.

P. L. Lions, “On the Existence of Positive Solutions of
Semilinear Elliptic Equations,” SIAM Review, Vol. 24,
No. 4, 1982, pp. 441-467. doi:10.1137/1024101

C. A. Stuart and H. S. Zhou, “Applying the Mountain
Pass Theorem to an Asymptotically Linear Elliptic Equa-

tion on R"Y,” Communications in Partial Differential
Equations, Vol. 24, No. 9-10, 1999, pp. 1731-1758.
doi:10.1080/03605309908821481

J. Louis and T. Kazunaga, “A Positive Solution for an
Asymptotically Linear Elliptic Problem on R" Auto-
nomous at Infinity,” ESAIM: Control, Optimisation and
Calculus of Variations, Vol. 7, 2002, pp. 597-614.

A. Antonio, F. Veronica and M. Andrea, “Ground States
of Nonlinear Schrédinger Equations with Potentials Van-
ishing at Infinity,” Journal of the European Mathematical
Society, Vol. 7, No. 1, 2005, pp. 117-144.

C. Y. Liu, Z. P. Wang and H. S. Zhou, “Asymptotically
Linear Schrodinger Equation with Potential Vanishing
Atinfinity,” Journal of Differential Equations, Vol. 245,
No. 1, 2008, pp. 201-222. d0i:10.1016/j.jde.2008.01.006

X. P. Zhu and H. S. Zhou, “Existence of Multiple Posi-
tive Solutions of Inhomogeneous Semilinear Elliptic
Problems in Unbounded Domains,” Proceedings of the
Royal Society of Edinburgh: Section A, Vol. 115, No. 3-4,

Copyright © 2011 SciRes.

(9]

(1]

[12]

1075

1990, pp. 301-318.

Z. P. Wang and H. S. Zhou, “Positive Solutions for a
Nonhomogeneous Elliptic Equation on R" without
(A-R) Condition,” Journal of Mathematical Analysis and
Applications, Vol. 353, No. 1, 2009, pp. 470-479.
doi:10.1016/j.jmaa.2008.11.080

D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, “A
Priori Estimates and Existence of Positive Solutions of
Semilinear Elliptic Equations,” Journal de Mathé-
matiques Pures et Appliquées, Vol. 9, No. 61, 1982, pp.
41-63.

Z. L. Liu, “Positive Solutions of Superlinear Elliptic
Equations,” Journal of Functional Analysis, Vol. 167, No.
2, 1999, pp. 370-398. doi:10.1006/jfan.1999.3446

Z. L. Liu, S. J. Li and Z. Q. Wang, “Positive Solutions of
Elliptic Boundary Value Problems without the (P.S.)
Type Assumption,” Indiana University Mathematics
Journal, Vol. 50, No. 3, 2001, pp. 1347-1369.
doi:10.1512/ium;j.2001.50.1941

E. Ivar, “Convexity Methods in Hamiltonian Mechanics,”
Springer-Verlag, Berlin, 1990.

G. B. Liand H. S. Zhou, “The Existence of a Weak Solu-
tion of Inhomogeneous Quasilinear Elliptic Equation with
Critical Growth Conditions,” Acta Mathematica Sinica,
Vol. 11, No. 2, 1995, pp. 146-155.

J. L. Vzquez, “A Strong Maximum Principle for Some
Quasilinear Elliptic Equations,” Applied Mathematics &
Optimization, Vol. 12, No. 3, 1984, pp. 191-202.
doi:10.1007/BF01449041

AM


http://dx.doi.org/10.1137/1024101
http://dx.doi.org/10.1137/1024101
http://dx.doi.org/10.1016/j.jmaa.2008.11.080
http://dx.doi.org/10.1016/j.jmaa.2008.11.080
http://dx.doi.org/10.1016/j.jmaa.2008.11.080
http://dx.doi.org/10.1016/j.jmaa.2008.11.080
http://dx.doi.org/10.1512/iumj.2001.50.1941
http://dx.doi.org/10.1512/iumj.2001.50.1941
http://dx.doi.org/10.1512/iumj.2001.50.1941
http://dx.doi.org/10.1007/BF01449041

