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Abstract 
 
The aim of this paper is to find the numerical solutions of the second order linear and nonlinear differential 
equations with Dirichlet, Neumann and Robin boundary conditions. We use the Bernoulli polynomials as 
linear combination to the approximate solutions of 2nd order boundary value problems. Here the Bernoulli 
polynomials over the interval [0, 1] are chosen as trial functions so that care has been taken to satisfy the cor-
responding homogeneous form of the Dirichlet boundary conditions in the Galerkin weighted residual 
method. In addition to that the given differential equation over arbitrary finite domain [a, b] and the bound-
ary conditions are converted into its equivalent form over the interval [0, 1]. All the formulas are verified by 
considering numerical examples. The approximate solutions are compared with the exact solutions, and also 
with the solutions of the existing methods. A reliable good accuracy is obtained in all cases. 
 
Keywords: Galerkin Method, Linear and Nonlinear BVP, Bernoulli Polynomials 

1. Introduction 
 
There are many linear and nonlinear problems in science 
and engineering, namely second order differential equa-
tions with various types of boundary conditions, are 
solved either analytically or numerically. In the literature 
of numerical analysis solving a two point second order 
boundary value problem (BVP) of differential equations, 
many authors have attempted to obtain higher accuracy 
rapidly by using a numerous methods. Among various 
numerical techniques, finite difference method has been 
widely used but it takes more computational costs to get 
high accuracy. In this method, a large number of pa-
rameters are required and it can not be used to evaluate 
the value of the desired points between two grid points. 
For this, Galerkin weighted residual method is widely 
used to find the approximate results to any point in the 
domain of the problem. 

Since piecewise polynomials can be differentiated and 
integrated easily, and can be approximated any function 
to any accuracy desired [1], spline functions have been 
studied extensively in [2-9]. Solving BVP only with 
Dirichlet boundary conditions has been attempted in [4] 
while Bernstein polynomials [10,11] have been used to 
solve the two point BVP very recently by the authors 

Bhatti and Bracken [1] rigorously by the Galerkin 
method. But it is limited only to second order BVP with 
Dirichlet boundary conditions, and to first order nonlin-
ear differential equation. On the other hand, Ramadan et 
al. [2] has studied linear BVP with Neumann boundary 
conditions using quadratic and cubic polynomial splines, 
and nonpolynomial splines. We have also found that the 
linear BVP with Robin (mixed) boundary conditions 
have been solved using finite difference method [12] and 
Sinc-Collocation method [13], respectively. Thus except 
[9], little attention has been given to solve the second 
order nonlinear BVP with Dirichlet and Neumann as 
well as Robin boundary conditions. Therefore, the pur-
pose of this paper is to present the Galerkin weighted 
residual method to solve both linear and nonlinear sec-
ond order BVP with all types of boundary conditions as 
well. 

Besides spline functions and Bernstein polynomials, 
there is another type of piecewise continuous polynomi- 
als, namely Bernoulli polynomials, has been introduced 
by Atkinson in [14]. But none has attempted, to the 
knowledge of the present authors, using these polynomi- 
als to solve the second order BVP. Thus we concentrate 
in this paper rigorously to solve some linear and nonlin- 
ear BVP with various types of boundary conditions nu- 
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merically, though it is originated in [1]. 
However, in this paper, we first give an introduction of 

Bernoulli polynomials, and then we formulate the Galer- 
kin approximation method using Bernoulli polynomials. 
We derive the individual formulas for each BVP con- 
sisting of Dirichlet, Neumann and Robin boundary con- 
ditions, respectively. Numerical examples, for both linear 
and nonlinear boundary value problems, are considered 
to verify the effectiveness of the derived formulas, and 
are also compared with the exact solutions. All the com-
putations are performed by MATHEMATICA. 
 
2. Bernoulli Polynomials 
 
The Bernoulli polynomials [14, p. 284] of degree  
can be defined over the interval [0, 1] implicitly by  
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The first 11 Bernoulli polynomials are given bellow: 
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Since Bernoulli polynomials have special properties at 
0x   and 1x  :  0 0Br ,n   , and 1n 
 Br 1 0,n  2n   respectively, so that they can be used 

as a set of basis functions to satisfy the corresponding 
homogeneous form of the Dirichlet boundary conditions 
to derive the matrix formulation of second order BVP 
over the interval [0,1]. 
 
3. Formulation of Second Order BVP 
 
We consider the general second order linear BVP [15]: 

     d d
,

d d

u
p x q x u r x

x x
    
 

  (3a) ,a x b 

   0 1 ' ,u a u a c  1   , (3b)    0 1 'u b u b c  2

where    ,p x q x  and  r x  are specified continuous 
functions, and 0 , 1 , 0 , 1 , 1 , 2  are specified 
numbers. Since our aim is to use the Bernoulli polyno-
mials as trial functions which are derived over the inter-
val [0,1], so the BVP (3) is to be converted to an equiva-
lent problem on [0,1] by replacing 

c c

x  by 
  x ab a  , and thus we have: 
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Using Bernoulli polynomials,  in Equation (2), 
we assume an approximate solution in a form, 
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Now the weighted residual equations corresponding to 
the differential Equation (4a) given by 
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4  
Since from (5), we have 
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After minor simplification, from (6) we can obtain 
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or, equivalently in matrix form, 
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Solving the system (8a), we find the values of the pa-
rameters , and then substituting these 
parameters in (5), we get the approximate solution of the 

 0,1,2, ,ia i n 

BVP (4). If we replace x by 
x a

b a




 in  u x , then we get 

the desired approximate solution of the BVP (3).  
The absolute error,  of this formulation is defined 

by 
E

   E u x u x  . 

Now we discuss the various types of BVP using dif-

ferent boundary conditions as follows: 
Case 1: The matrix formulation with the Robin (mixed) 

boundary conditions, (i.e., 0 0  , 1 0,  0 0,   

1 0  ), are already defined in Equations (8). 
Case 2: The matrix formulation of the differential 

equation (3a) with the Dirichlet boundary conditions (i.e., 

0 0  , 1 0,   0 0,   1 0  ), is given by 
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Case 3: The approximate solution of the differential 
equation (3a) consisting of Neumann boundary condi-
tions (i.e., 0 0a  , 1 0a  , 0 0,  1 0,  ) can be ob-
tained by putting 0 0a   and 0 0,   in the Equation 
(8) as 
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Similar formulation for nonlinear BVP using the Ber-
noulli polynomials can be derived, which will be dis-
cussed through numerical examples in the next section. 
 
4. Numerical Examples 
 
In this section, we explain four linear and two nonlinear 
boundary value problems which are available in the ex-
isting literatures, considering three types of boundary 
conditions to verify the effectiveness of the present for-
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mulations described in the previous sections. The con-
vergence of each linear BVP is calculated by 

   1n nE u x u x    , 

where  denotes the approximate solution by the 
proposed method using n -th degree polynomial ap-
proximation. The convergence of nonlinear BVP is as-
sumed when the absolute error of two consecutive itera-
tions is recorded below the convergence criterion 

 nu x

  
such that  

1 N Nu u   
 

where  is the Newton’s iteration number and N   
varies from . 810

Example 1. First we consider the BVP with Robin 
boundary conditions [15]: 
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The BVP (11) over [0,1] is equivalently to the BVP 
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Using the formula derived in equations (8) and using 
different number of Bernoulli polynomials, the approxi-
mate solutions are summarized in Table 1. It is observed 
that the accuracy is found nearly the order 6 910 , 10   
and  on using 5, 7 and 9 Bernoulli polynomials, 
respectively. 

1110

Example 2. We consider the BVP with Dirichlet 
boundary conditions [1]: 
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The BVP (13) is equivalent to the BVP 
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   0 1u u  0,          (14b) 

Using the formula derived in Equations (9), the ap-
proximate solutions, shown in Table 2, are obtained using 
8, 10 and 15 Bernoulli polynomials with accuracy up to 3, 
4 and 6 significant digits, respectively. It is observed that 
using 21 Bernstein polynomials, the accuracy is found 
nearly the order of 510  in [1]. 

Example 3. In this case we consider the BVP with 
Dirichlet boundary conditions [4]: 
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The BVP (15) is equivalent to the BVP 
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Using the formula derived in Equations (9), the ap-
proximate solutions, shown in Table 3, are obtained on 
using 5, 7 and 10 Bernoulli polynomials, and the accuracy 
is observed nearly 7, 8 and 9 decimal places, respectively. 
On the contrary, the error is obtained nearly 1010  by 
Arshad [10] with 1 32h  , where  h b a N  , a and 
b are the endpoints of the domain and N is the number of 
subdivision of intervals [a,b]. 

Example 4. We consider the BVP with Neumann 
boundary conditions [2]: 

2

2

d
1, 0 1

d

u
u

x
x         (17a) 

   1 cos1 1 cos1
0 , 1

sin1 sin1
u u

        (17b) 

whose exact solution is,   1 cos1
cos sin 1

sin1
u x x x


   . 

Using the formula given in Equations (10), the ap-
proximate solutions, shown in Table 4, are obtained on 
using 5, 7 and 10 Bernoulli polynomials with the re-
markable accuracy nearly the order of  and 7 110 , 10  0

1410 . On the other hand, Ramadan et al. [6] has found 
nearly the accuracy of order 10 , and 6 610 and 810  
on using quadratic and cubic polynomial splines, and 
nonpolynomial spline, respectively with 1 128h  , 
where  h b a N  , a and b are the endpoints of the 
domain and N is the number of subdivision of intervals 
[a,b]. 
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Table 1. Approximate solutions and absolute differences for the example 1. 

x Approximate Absolute Error Approximate Absolute Error Approximate Absolute Error 

 Bernoulli polynomials, 5 Bernoulli polynomials, 7 Bernoulli polynomials, 9 

π/2 00.0000000000 0.0000000000 00.000000000 0.0000000000 0.0000000000 0.00000000000 

11π/20 –0.1564317160 2.749065 × 10–6 –0.1564344475 1.755782 × 10–8 –0.1564344650 4.925213 × 10–11

3π/5 –0.3090255130 8.518602 × 10–6 –0.3090169914 3.001562 × 10–9 –0.3090169944 5.283479 × 10–11

13π/20 –0.4539971315 6.631794 × 10–6 –0.4539905271 2.730026 × 10–8 –0.4539904998 3.642830 × 10–11

7π/10 –0.5877810347 4.217626 × 10–6 –0.587785252 7.19809 × 10–10 –0.5877852522 1.148404 × 10–10

3π/4 –0.7070961552 0.0000110000 –0.7071067522 2.896640 × 10–8 –0.7071067812 9.037660 × 10–12

4π/5 –0.8090116456 5.348787 × 10–6 –0.8090169912 3.186240 × 10–9 –0.8090169945 1.525206 × 10–10

17π/20 –0.8910126268 6.102617 × 10–6 –0.8910065523 2.810947 × 10–8 –0.8910065241 4.453860 × 10–11

9π/10 –0.9510659385 9.422186 × 10–6 –0.9510565150 1.320862 × 10–9 –0.9510565162 1.337538 × 10–10

19π/20 –0.9876858881 2.452495 × 10–6 –0.9876883211 1.952363 × 10–8 –0.9876883408 1.614215 × 10–10

π –1.0000000000 0.0000000000 –1.0000000000 0.0000000000 –1.0000000000 0.00000000000 

 
Table 2. Approximate solutions and absolute differences for the example 2. 

x Approximate Absolute Error Approximate Absolute Error Approximate Absolute Error 

 Bernoulli polynomials, 8 Bernoulli polynomials, 10 Bernoulli polynomials, 15 

0. 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

1. 1.1136094978 0.0051685418 1.1187686211 9.418441 × 10–6 1.1187829850 4.945487 × 10–6 

2. 1.5330008942 0.0100998520 1.5229276754 2.663320 × 10–5 1.5228972291 3.813112 × 10–6 

3. 1.0001516651 0.0026819237 1.0028553869 2.179813 × 10–5 1.0028378028 4.213962 × 10–6 

4. –0.0413011761 0.0096199100 –0.0317862308 1.049646 × 10–4 –0.0316869594 5.693175 × 10–6 

5. –0.7601267725 0.0047616938 –0.7647484696 1.399968 × 10–4 –0.7648818892 6.577111 × 10–6 

6. –0.6303887189 0.0058561235 –0.6363262078 8.136546 × 10–5 –0.6362508546 6.012205 × 10–6 

7. 0.1575008515 0.0046972725 0.1621779732 2.015082 × 10–5 0.1622028015 4.677455 × 10–6 

8. 0.8534716130 0.0008286515 0.8543763192 7.605468 × 10–5 0.8542961563 4.108267 × 10–6 

9. 0.7833934560 0.0017614110 0.7815841935 4.785153 × 10–5 0.7816365818 4.536826 × 10–6 

10. 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

 
Table 3. Approximate solutions and absolute differences for the example 3. 

x Approximate Absolute Error Approximate Absolute Error Approximate Absolute Error 

 Bernoulli polynomials = 5; Bernoulli polynomials = 7; Bernoulli polynomials = 10; 

2.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.00000000005.349

2.1 0.0186087702 2.523743 × 10–7 0.0186090317 9.107887 × 10–9 0.0186090279 871 × 10–9 

2.2 0.0325370415 1.156379 × 10–6 0.0325358850 1.414425 × 10–10 0.0325358805 4.662072 × 10–9 

2.3 0.0420487288 6.738722 × 10–7 0.0420480426 1.229932 × 10–8 0.0420480538 1.138989 × 10–9 

2.4 0.0473677309 6.901458 × 10–7 0.0473684233 2.207156 × 10–9 0.0473684265 5.421880 × 10–9 

2.5 0.0486829640 1.246501 × 10–6 0.0486842230 1.246639 × 10–8 0.0486842096 9.479982 × 10–10 

2.6 0.0461533943 4.518647 × 10–7 0.0461538458 3.633628 × 10–10 0.0461538418 4.318545 × 10–9 

2.7 0.0399130707 7.900046 × 10–7 0.0399122691 1.157579 × 10–8 0.0399122828 2.126246 × 10–9 

2.8 0.0300761580 9.700405 × 10–7 0.0300751896 1.649355 × 10–9 0.0300751900 2.000938 × 10–9 

2.9 0.0167419695 3.172309 × 10–7 0.0167422939 7.169105 × 10–9 0.0167422842 2.571030 × 10–9 

3.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 
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Table 4. Approximate solutions and absolute differences for the example 4. 

x Approximate Absolute Error Approximate Absolute Error Approximate Absolute Error 

 Bernoulli polynomials = 5 Bernoulli polynomial = 7 Bernoulli polynomials = 10 

0.0 0.0000000000 1.153937 × 10–10 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

0.1 0.0495431439 2.654280 × 10–7 0.0495434086 8.177960 × 10–10 0.0495434094 1.932482 × 10–14 

0.2 0.0886011150 9.870426 × 10–7 0.0886001278 8.626597 × 10–11 0.0886001279 2.672862 × 10–14 

0.3 0.1167806021 6.883117 × 10–7 0.1167799150 1.222063 × 10–9 0.1167799138 1.992850 × 10–14 

0.4 0.1338006690 5.349698 × 10–7 0.1338012039 9.031828 × 10–11 0.1338012040 1.013079 × 10–14 

0.5 0.1394927538 1.173569 × 10–6 0.1394939260 1.280755 × 10–9 0.1394939273 2.942091 × 10–14 

0.6 0.1338006690 5.349698 × 10–7 0.1338012039 9.031831 × 10–11 0.1338012040 1.010303 × 10–14 

0.7 0.1167806021 6.883117 × 10–7 0.1167799150 1.222063 × 10–9 0.1167799138 1.981748 × 10–14 

0.8 0.0886011150 9.870426 × 10–7 0.0886001278 8.626594 × 10–11 0.0886001279 2.670086 × 10–14 

0.9 0.0495431439 2.654280 × 10–7 0.0495434085 8.177957 × 10–10 0.0495434094 1.942890 × 10–14 

1.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

 
We now also implement the procedure described in 

section 3 to find the numerical solutions of two nonlinear 
second order boundary value problems. 

Example 5. We consider a nonlinear BVP with 
Dirichlet boundary conditions [16] 

2
3

2

d 1 d 1
4

8 d 4d

u u
u x

xx
    
 

,   (18a) 1 x  3

 1 17u   and  3 43 3u     (18b) 

The exact solution of the problem is given by 

  2 16
u x x

x
   

To use Bernoulli polynomials, first we convert the 
BVP (18) to an equivalent BVP on  0,1  by replacing 
x  by 2 1x   such that  

 
2

3

2

d 1 d
16 2 1

4 dd

u u
u x

xx
    ,   (19a) 0 x 1,

 0 17u   and  1 43u  3 .      (19b) 

Assume that the approximate solution of (19) using 
Bernoulli polynomials is given by 

     0
2

,
n

i i
i

u x x a Br x


      (20) 2,n 

where  0 17 8 3x x    is specified by the Dirichlet 
boundary conditions at  and , and 

 for each  
0x  1x 

3, ,i n   0 1i iBr Br  0 2, .
The weighted residual equations of (19a) correspond-

ing to the approximation (20), given by 

 
1 2

3

2
0

d 1 d
16 2 1 ( )d 0

4 dd

2,3, , .

 



k

u u
u x Br x

xx

k n

       




Exploiting integration by parts with minor simplifica-
tions, we obtain 

  

1
0

0
2 0

2

1
3 0 0

0
0

d d d d1

d d 4 d d

d1
d

4 d

d d d1
16 2 1 d

d d 4 d

2,3, ,

n
i k i

k i k
i

n
j

j i k i
j

k
k k

Br Br Br
Br Br Br

x x x x

Br
a Br Br x a

x

Br
x Br Br x

x x x

k n




 






        
 

 
  

   

       


 





 

(22) 
The above Equations (22) are equivalent to the matrix 

form 

 D C A G             (23) 

where the elements of the matrix , ,A C D  and G  are 
 and , ,, ,i i k i ka c d kg , respectively, given by  

1
0

, 0
0

d d d d1
d d

d d 4 d d
i k i

i k k i k

Br Br Br
Br Br Br x

x x x x




       
  

  

(24a) 

1

,
2 0

d1
d

4 d

n
j

i k j i k
j

Br
c a Br Br

x

 
 

 
  x      (24b) 

  
1

3 0 0
0

0

d d d1
16 2 1 d

d d 4 d
k

k k

Br
kg x Br Br

x x x

 
 x

       
  

(24c) 

x



  (21) 

The initial values of these coefficients i  are ob-
tained by applying the Galerkin method to the BVP ne-
glecting the nonlinear term in (19a). That is, to find ini-
tial coefficients, we will solve the system 

a

DA G               (25a) 
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where the matrices are constructed from 

  

1

,
0

1
3 0

0

d d
d d and

d d

d d
16 2 1 d

d d

i k
i k

k
k k

Br Br
x

x x

Br
g x Br

x x



 

    



 x



,  (25b) 

Once the initial values of the parameters i  are ob-
tained from Equation (25a), they are substituted into 
Equation (23) to obtain new estimates for the values of 

i . This iteration process continues until the converged 
values of the unknowns are obtained. Substituting the 
final values of the coefficients in Equation (20), we ob-
tain an approximate solution of the BVP (19), and if we 
replace 

a

a

x  by  1 2x   in this solution we will obtain 
the approximate solution of the given BVP (18). 

Using first 10 and 15 Bernoulli polynomials with 8 it-
erations, the absolute differences between exact and the 
approximate solutions are sown in Table 5. It is ob-
served that the accuracy is found of the order nearly 

 and  on using 10 and 15 Bernoulli polynomi-
als, respectively. 

610 810

Example 6. Consider a nonlinear differential equation 
[9] with the Robin boundary conditions [17]: 

 
2

3

2

d 1
1 ,

2d

u
x u

x
       (26a) 0 x 1.

   0 0 1u u   

The exact solution of the problem is given by 

  2
1

2
u x x

x
  


. 

In this case, solving the nonlinear BVP (26) by Modi-
fied Galerkin method, the approximate solution is as-
sumed by 

   
0

,
n

i i
i

u x a Br x


        (27) 1,n 

Now following the procedures described as in exam-
ple-5 and with minor simplifications, the Equation (22) 
leads us  

 

  

 

        

     

1
2

0 0

0

0 2

1
3

0

d d 3
1

d d 2

3
1

2

1
d

2

1 1 0 0

1 1
1 0

2 2

0,1, 2, , .





 

    

 

   
 


  



   



 



 




n
i k

i k
i

n

j i j k
j

n n

j l i j l k
j l

i k i k

k k k

Br Br
x Br Br

x x

a x Br Br Br

a a Br Br Br Br x

Br Br Br Br a

x Br dx Br Br

k n

1

i

   (28) 

2 1 and .   (26b)    1 1u u  
 

Table 5. Approximate solutions of example 5 using 8 iterations. 

x Approximate Absolute Error Approximate Absolute Error 

 Bernoulli polynomials = 10 Bernoulli polynomials = 15 

1.0 17.0000000000 0.0000000000 17.0000000000 0.0000000000 

1.1 15.7554441298 1.041563 × 10–5 15.7554545265 1.894190 × 10–8 

1.2 14.7733332492 8.415722 × 10–8 14.7733333734 4.008605 × 10–8 

1.3 13.9977064922 1.418450 × 10–5 13.9976922315 7.623683 × 10–8 

1.4 13.3885732769 1.848369 × 10–6 13.3885714535 2.496207 × 10–8 

1.5 12.9166531985 1.346816 × 10–5 12.9166667280 6.132234 × 10–8 

1.6 12.5599891326 1.086740 × 10–5 12.5599999558 4.420697 × 10–8 

1.7 12.3017691184 4.412558 × 10–6 12.3017646447 6.122859 × 10–8 

1.8 12.1289033378 1.444889 × 10–5 12.1288889220 3.310400 × 10–8 

1.9 12.0310620046 9.373023 × 10–6 12.0310526888 5.724404 × 10–8 

2.0 11.9999952268 4.773188 × 10–6 11.9999999739 2.605950 × 10–8 

2.1 12.0290338956 1.372349 × 10–5 12.0290475563 6.270952 × 10–8 

2.2 12.1127183984 8.874283 × 10–6 12.1127272862 1.346861 × 10–8 

2.3 12.2465264382 4.699113 × 10–6 12.2465218029 6.380614 × 10–8 

2.4 12.4266794677 1.280107 × 10–5 12.4266666577 9.009668 × 10–9 

2.5 12.6500062226 6.222611 × 10–6 12.6499999354 6.458229 × 10–8 

2.6 12.9138385465 7.607374 × 10–6 12.9138461739 2.007236 × 10–8 

2.7 13.2159161538 9.772167 × 10–6 13.2159259793 5.335987 × 10–8 

2.8 13.5542901664 4.452108 × 10–6 13.5542856601 5.415501 × 10–8 

2.9 13.9272471869 5.807598 × 10–6 13.9272414119 3.262486 × 10–8 

3.0 14.3333333333 0.0000000000 14.3333333333 0.0000000000 
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Table 6. Approximate solutions of examples using 8 iterations. 

x Approximate Absolute Error Approximate Absolute Error 

 Bernoulli polynomials, 8 Bernoulli polynomials, 10 

0.0 00.0000000000 0.0000000000 00.0000000000 0.0000000000 

0.1 –0.0473680463 3.747086 × 10–7 –0.0473684172 3.803934 × 10–9 

0.2 –0.0888891811 2.922364 × 10–7 –0.0888888959 6.992957 × 10–9 

0.3 –0.1235296394 2.276838 × 10–7 –0.1235293980 1.372571 × 10–8 

0.4 –0.1499995043 4.957444 × 10–7 –0.1500000116 1.157174 × 10–8 

0.5 –0.1666665743 9.237249 × 10–8 –0.1666666693 2.681433 × 10–9 

0.6 –0.1714291237 5.522990 × 10–7 –0.1714285563 1.508438 × 10–8 

0.7 –0.1615383671 9.448797 × 10–8 –0.1615384751 1.360781 × 10–8 

0.8 –0.1333328804 4.528913 × 10–7 –0.1333333287 4.621790 × 10–9 

0.9 –0.0818186682 4.863450 × 10–7 –0.0818181840 2.134837 × 10–9 

1.0 00.0000000000 0.0000000000 00.0000000000 0.0000000000 

 
which can be written in a matrix form, similar to the sys-
tem (23), 

 D C B A G           (29a) 

where the elements of , , ,A B C D

k

 and G  are  
 and , , ,, , ,i i k i k i ka b c d g , respectively, given by 
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       
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i k i k
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x Br Br x

x x

Br Br Br Br

    
 

 

   (29b) 

  
1

,
0 0

3
1 d

2

n

i k j i j k
j

c a x Br Br Br


   x    (29c) 


1

,
0 0 0

1
d

2

n n

i k j l i j l k
j l

b a a Br Br Br Br
 


 


    x





   (29d) 

     
1

3

0

1 1
1 d 0

2 2k k kg x Br x Br B     1kr   (29e) 

To find the initial coefficients, on neglecting the 
nonlinear terms as we have done in example 5, we solve 
the reduced system 

,DA G             (30a) 

where the elements of  and , respectively, are 
now 

,D A G

 

       

1
2

,
0

d d 3
d 1

d d 2

1 1 0 0

i k
i k i K

i k i k

Br Br
dx Br Br x

x x

Br Br Br Br

  


 




   (30b) 

     
1

3

0

1 1
1 0

2 2k k kg x Br dx Br Br     1k   (30c) 

The results are summarized in the Table 6 that ob-
tained on using 8 and 10 Bernoulli polynomials with 8 

iterations at various points of the domain of the problems. 
It is observed that the approximate results converge 
monotonically to the exact solutions. 
 
5. Conclusions 
 
We have discussed, in details, the formulation of one 
dimensional linear and nonlinear second order boundary 
value problems by Galerkin weighted residual method, 
using Bernoulli polynomials which have been used as the 
trial functions in the approximation. Some numerical 
examples are tested. All the mathematical formulations 
and numerical computations have been evaluated by 
MATHEMATICA code. The computed solutions are com- 
pared with the exact solutions, and we have found a good 
agreement with the exact solution. 
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