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Abstract 
 
Non-standard backward heat conduction problem is ill-posed in the sense that the solution (if it exists) does 
not depend continuously on the data. In this paper, we propose a regularization strategy-quasi-reversibility 
method to analysis the stability of the problem. Meanwhile, we investigate the roles of regularization pa-
rameter in this method. Numerical result shows that our algorithm is effective and stable. 
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1. Introduction 
 
In many industrial application one wishes to determine 
the temperature on the surface of a body, where the sur-
face itself is inaccessible for measurement. The back-
ward heat conduction problem is a model of this situation. 
In general, no solution which satisfies the heat conduc-
tion equation with final data and the boundary conditions 
exists. Even if a solution exists, it will not be continu-
ously dependent on the final data. The BHCP is a typical 
example of an ill-posed problem which is unstable by 
numerical methods and requires special regularization 
methods. In the context of approximation method for this 
problem, many approaches have been investigated. Such 
authors as Lattes and Lions [1], Showalter [2], Ames et 
al. [3], Miller [4] have approximated the BHCP by quasi- 
reversibility methods. Schröter and Tautenhahn [5] es-
tablished an optimal error estimate for a special BHCP. 
Mera and Jourhmane used many numerical methods with 
regularization techniques to approximate the problem in 
[6-8], etc. A mollification method has been studied by 
Haö in [9]. Kirkup and Wadsworth used an operator- 
splitting method in [10]. So far in the literature, most of 
the authors used the eigenfunctions and eigenvalues to 
reconstruct the solution of the BHCP by many quasi- 
reversibility methods numerically. However, the eigen-
functions and eigenvalues are in general not available 
and the labor needed to compute these and the corre-
sponding fourier coefficients is very onerous. In this pa-
per, we use a quasi-reversibility regularization method to 
solve the BHCP in one-dimensional setting numerically, 

but this method can be generalized to two-dimensional 
case. 

The paper is organized as follows. In the forthcoming 
section, we will present the mathematical problem on a 
BHCP; in Section 2, we review a special quasi-reversi-
bility regularization method; some finite difference 
schemes are constructed for the inverse problem and the 
numerical stability analysis is provided; in Section 3, 
numerical example is tested to verify the effect of the 
numerical schemes. 
 
2. Mathematical Problem 
 
2.1. The Direct Problem 
 
We consider the following heat equation: 
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Solving the equation with given      , ,s t l t f x  is 
called a direct problem. From the theory of heat equation, 
we can see that for     , , s t l t f x  in some function 
space there exists a unique solution [11-20]. 
 
2.2. The Inverse Problem 
 
Consider the following problem: 

     , , = , , π < < π,  0 < < ,t x xxu x t u x t u x t x t T   
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The inverse problem is to determine the value of 
 for  from the data  ,u x t 0 <t T      , ,s t l t g x . 

If the solution exists, then the problem has a unique solu-
tion [21]. 

The data  g x  are based on physical observations 
and are not known with complete accuracy, due to the ill- 
posedness of the BHCP, a small error in the data  g x  
can cause an arbitrarily large error in the solution 

. Now we want to reconstruct the temperature 
distribution  for  by quasi-reversibil-
ity regularization method. 

 ,u x t
 ,u x t  0 <t T

 
3. Quasi-Reversibility Regularization 

Method 
 
The initial boundary value problem (2) is replaced by the 
following problem: 
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   (3) 

where   is a small positive parameter, for   suffi-
ciently small the solution of (3) approximates the solu-
tion (if it exists) of (2) in some sense. This is one of well- 
known quasi-reversibility methods. For the above men-
tioned problem, Ewing [15] has presented a choice rule 
of regularization parameter  , i.e.,    1

= ln 1 


, 
where   denotes the noise level of data  g x , and the 
error estimate between the approximate solution and the 
exact solution is given in  2L R -norm. 

Take , then problem (3) becomes =t T t
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  (4) 

The problem has a unique solution if a solution exists. 
Now we prove it for two-dimensional case. 

Theorem 1. There exists a unique solution(if it exists) 
for the problem: 
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where D is a bounded subset in ,  is Laplace op-
erator, 

2R 
> 0 . 

Proof. We only need to prove the following problem 
has the zero solution: 

       
 

   
 

, , , ,

0, ,

, = 0, 0, ,

,0 = 0, .

xtw x t w x t w x t uwt x t

D T

w x t D T

w x D

    



 

     



= 0,

 

Set 
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Due to the Green’s second formula, we have 
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Therefore, we have 
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                   (7) 

since  0 = 0 , there holds , Hence . □   0t  = 0w
Now we construct the finite difference schemes for 

solving problem (4), let  = π 1 ,ix i h    = 1, 2 1,i n   

 = 1jt j ,  = 1,j 1m  , where = π , =h n T m . 
Let  ,i jx t=j

iu u  represent the value of the numerical 
solution of (4) at the mesh point  ,i jx t , since 
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then Equation (4) is discretized as 
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Now we discuss the stability of difference sch
by verifying the Von Neumann condition. The propaga-
tion factor can be found 

emes (8) 

 
2

2

2

1 1
4 sin

2
, = .

1
4 sin

2
r

h
r

h
G

h


 



   
 


         (9) 


It is easy to verify the fact that Von Neumann condition 
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holds with = 1c  , hence,the numerical algorithm
stable. 
 
4. Numerical Examples 
 
For convenience, we take 

Example 1.We conside rect problem: 
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where 2=r h ,and it requires < 1 2r  for nume
stability reasons. 

The numerical results for  is sh- 
own in Figure 1, where 

w we solve the inverse problem by the 
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From Example, we conclude that the choice rules of 
the regularization parameter 
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numerical experiment, we can see that the accuracy of 
the numerical results increases with the decreasing T; at 

 

 

Figure 1. g(x) computed by (13). 
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