
Journal of Modern Physics, 2011, 2, 997-1011 
doi:10.4236/jmp.2011.29120 Published Online September 2011 (http://www.SciRP.org/journal/jmp) 

Copyright © 2011 SciRes.                                                                              JMP 

997

A Hyperbolic Eulerian Model for Dilute Two-Phase  
Suspensions 

Sarah Hank, Richard Saurel, Olivier Le Metayer 
IUSTI, Aix Marseille University, Marseille Cedex, France  

Bastidon de la Caou, Roquevaire, France 
E-mail: {Sarah.Hank, Richard.Saurel, Olivier.Lemetayer}@polytech.univ-mrs.fr 

Received May 4, 2011; revised June 22, 2011; accepted July 1, 2011 

Abstract 
 
Conventional modeling of two-phase dilute suspensions is achieved with the Euler equations for the gas 
phase and gas dynamics pressureless equations for the dispersed phase, the two systems being coupled by 
various relaxation terms. The gas phase equations form a hyperbolic system but the particle phase corre-
sponds to a hyperbolic degenerated one. Numerical difficulties are thus present when dealing with the dilute 
phase system. In the present work, we consider the addition of turbulent effects in both phases in a thermo-
dynamically consistent way. It results in two strictly hyperbolic systems describing phase’s dynamics. An-
other important feature is that the new model has improved physical capabilities. It is able, for example, to 
predict particle dispersion, while the conventional approach fails. These features are highlighted on several 
test problems involving particles jets dispersion and are compared against experimental data. With the help 
of a single parameter (a turbulent viscosity), excellent agreement is obtained for various experimental con-
figurations studied by different authors 
 
Keywords: Turbulence, Riemann Solver, Pressureless Gas Dynamics 

1. Introduction 
 
Two phase diluted flows are present in many fundamen-
tal and industrial applications ranging from astrophysics, 
fluid mechanics, chemical engineering, combustion, nu-
clear engineering and so on. The Eulerian approach is 
widely used to deal with such flows, considering velocity 
non-equilibrium effects in a two-fluid description. It 
considers the gas phase governed by the Euler or Navier- 
Stokes equations where the volume occupied by the par-
ticles is neglected, and the dispersed phase (solid or liq-
uid) governed by the pressureless gas dynamics equa-
tions [1,2]. The coupling between those two sub-systems 
is achieved with relaxation terms expressing drag forces, 
heat and mass transfer effects. The dispersed phase sys-
tem (pressureless gas dynamics equations) poses how-
ever serious difficulties. It is not possible to express the 
equations in characteristic variables as there is no set of 
independent eigenvectors. Shocks are unconventional as 
they don’t respect the sub-characteristic criterion [3]. 
These theoretical difficulties induce computational ones, 
as for example the treatment of reflective boundary con-
ditions as well as any situation involving crossing parti-

cles trajectories. Indeed, multivalued solutions are possi-
ble at a given point. These issues have been addressed by 
many authors [4-6] to cite a few. These references de-
scribe different approaches, sometimes based on slight 
modifications of the flow model, other times based on 
non-Eulerian formulations. We investigate in the present 
paper another flow model modification that consists in 
inserting turbulent effects in the particles cloud. It means 
that particles are evolving with the mean particle flow 
velocity and are subjected to velocity fluctuations, due 
for example to particles collisions. It results in the pres-
ence of a pressure term in the momentum equation that 
renders the particles system strictly hyperbolic. In the 
absence of particles collisions, here modeled with the 
help of a “turbulent viscosity”, the turbulent pressure 
term vanishes and the pressureless gas dynamic equa-
tions are recovered. From a physical standpoint, turbu-
lent pressure effects result in enhanced predictions of the 
corresponding flow model, compared to pressureless gas 
dynamic equations. Consider for example a free jet of 
particles evolving in a gas at rest. Modeling this jet with 
pressureless equations results in a straight jet, without 
any enlargement during its transport in the gas. When 
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particles turbulence is present, dispersion occurs result-
ing in jet enlargement in perfect agreement with experi-
mental measurements if proper turbulent viscosity is 
used. 

The present paper is organized as follows. The con-
ventional two-fluid model with pressureless equations 
for the particle phase is recalled in Section 2. Then tur-
bulent effects are modeled in Section 3 with the thermo-
dynamic method given in [7]. The Riemann problem 
solution for the particles system is examined in Section 4, 
and those of the gas phase is considered in Section 5. 
Dissipative effects including relaxation ones and turbu-
lent viscosity are inserted in Section 6. They result in 
turbulence production in both phases. Section 7 deals 
with some details about numerical implementation. Sev-
eral test problems and comparison between the conven-
tional pressureless model and the new turbulent model 
are considered in Section 8, first in one dimension, then 
in two dimensions, allowing comparisons with experi-
mental data of free jet particle flows in air. Conclusions 
are given in Section 9. 
 
2. Conventional Eulerian Flow Model for 

Dilute Suspensions 
 
The following flow model considers each phase as a 
continuous media. In the carrier phase, molecular colli-
sions are so intense that pressure appears as an external 
force to a given gas control volume. In the dispersed 
phase, the collisions are less intense and are here consid-
ered as negligible. This assumption is reasonable as the 
particle volume concentration is weak [8], say 

210p   

where p  represents the dispersed phase volume frac-
tion. In addition, neglecting the volume occupied by the 
particles for the gas flow results in the following system 
[1,2]. The evolution equations for carrier phase are the 
following ones,  
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and for the dispersed phase, 
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p  represents the particles apparent density, p   
*

p  , where *  represents the condensed phase real 
density (considered here as incompressible). The total 
energies are defined by: 
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In the carrier phase system, there is a coupling be-
tween the internal energy ( ), the density (e  ) and the 
pressure (P) with the help of a convex equation of state 
(EOS): 

( , )P P e . 

In the dispersed phase, such coupling is absent. The 
particles are incompressible and collisional effects are 
neglected. The only interaction force considered here is 
the drag force, modeled by the velocity relaxation pa-
rameter λ > 0. The power of the drag force is assumed to 
be transferred with the particles velocity, resulting in 
entropy production in the gas, and isentropic evolutions 
in the particles:  
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It can be shown easily that the gas dynamic system is 
strictly hyperbolic with waves speed u, u + c and u – c. 
The sound speed c is defined by, 

2 /c P   

where γ represents the specific heats ratio. 
The particles phase system is hyperbolic degenerated 

with a single characteristic speed pu . This poses both 
theoretical and numerical issues. The aim of the follow-
ing section is precisely to correct the particles system in 
order to have better mathematical properties as well as 
improved physical meaning. To do this, turbulent effects 
are considered with the simplest thermodynamically con- 
sistent approach. 
 
3. Turbulent Dilute Two-Phase Flow Model 
 
Our aim is to insert turbulent effects in System (1-2). To 
do this, we follow the method described in [9] that pro-
ceeds in several steps. Let us consider first the carrier 
phase, the extension to the dispersed phase being strai- 
ghtforward. 
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Two different average definitions are used: 
 Reynolds average: '     
 Favre average is used for any variable weighted by 

the density: 
a

a



 , "a a a  . 
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In the case of an isotropic flow, we define the quantity 
K by: 

2 2" " 2"K u v w        

After some calculations, we obtain for the carrier 
phase: 
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The gas total energy is now defined by: 
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where n represents the number of degrees of freedom in 
which velocity fluctuations develop (usually, n = 3). To 
close the system, an evolution equation for the quantity 
K is needed. Combination of the energy, momentum and 
mass equations results in: 
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The Gibbs identity reads: 
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Imposing ds = 0 (for a flow evolving without shock 
waves and dissipation) and combining the two last rela-
tions, an evolution equation for K is obtained: 
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Let us define the “turbulent” polytropic coefficient: 
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It is now clear that K represents the turbulent pressure 
denoted by t  in the rest of the paper. We then define 
the “turbulent” entropy that obeys the following conser-
vation law: 
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The flow model for the carrier phase thus reads in ab-
sence of interaction terms,  
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with the following definitions and equations of state, 
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Applying the same method to the pressureless dis-
persed phase Subsystem (2), the following “turbulent” 
particles flow model is obtained: 
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It is shown in the following sections, that both subsys-
tems are hyperbolic and well posed for the Riemann 
problem resolution. It is clear from System (4) and ther-
modynamic definitions that when pt 0, the pressure-
less gas dynamics equations are recovered. 

s 

 
4. The Riemann Problem for the Dispersed 

Phase 
 
The Riemann problem is considered first for the System 
(4) with the following notations: 
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Figure 1. Wave diagram for the dispersed phase Riemann 
problem. 

tates  and  as well as the various 
waves speeds g fro  initial discontinuity sepa-
ra

mp

ystem (4) can be written in quasi-linear form as: 

The Riemann problem resolution consists in deter-
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4.2. Characteristic Relations and Riemann  
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From the Riemann problem invariants and shock rela-
tions, it is clear that the dispersed phase Riemann prob-
lem and associated solvers are straightforward extension 
of

 for System (3) yielding 

 ideal gas Riemann solvers for the Euler equations. 
Details may be found in [10]. 
 
5. The Riemann Problem for the Gas Phase 
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Here direct integration of Riemann invari
difficult and an approximate Riemann solver is preferred, 
rather than the exact one. An excellent candidate is the 
H
tions

ants is more 

LLC solver [10], initially developed for the Euler equa- 
 but having a straightforward extension to the pre-
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he entropy creation for the gas and the particles has 
e gas, 

the on results of drag effects while for the 
ispersed phase, it results of particles collisions, modeled 

t for 
th
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sent turbulent model. 
 
6. Dissipative Terms and Turbulence  
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Here, a new parameter  has been introduced for 
the turbulent temperature nition. However, it 
influence on turbulent pressure calculation. This ca
demonstrated by calculating the turbulent pressure evo-
lution equation from the turbulent entropy equation.  
 
6.2. Turbulent Viscosity  
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ternatively be written as, 

( ) 0p p
p p p

e
u e

t





 




 

  
In the present formulation, it has been assumed that all 
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entropy production is stored as tu ce [7] as its ori-
gin is mechanical only. Combinin  various equations 
of System (9), the turbulent entropy evolution equation 
reads: 

    ( )
Tp pt

p p pt t p p

s
u s Tr u u

t


 


  0  


  

 (10) 

e creation term. The turbulent 
entropy (or turbulent energy) is obtained from the parti-
cles total energy equation where the production terms 
appear in divergence form. 
 



It is worth to mention that numerical resolution of 
Equation (10) is not necessary. Indeed, difficulties are 
present to approximate th

6.3. Model Summary 
 
The new two-phase flow model is summarized hereafter: 

2

( ( ) ) ( )

( )

t p

t p p

t
t p

t

t
E

Eu P P u u u u
t
s

us u u
t T

  

 

 
      



   


    

  

  (11) 

( ) 0

( ( ) ) ( )

u
t
u

u u P P I u u

 

  


  

      



    



( ) 0

( ) ( ) ( )p p
p p p pt p t pu u P I u u u

t
         

    

( )

( ) ( )

( ) 0

p

p
p p pt p

T
p p t p p

p p
p p p

u

E
Eu P u

t

u u u u u

e
u e

t






 







   

    



  




 

    



 

with the following definitions and closure relations: 

p pu
t

   



2

( , ) ( , )
2t t

u
E e P e P   


, 

3

8

d d pC u u

R

 





 
, 

( 1)

P
e

 



, 

( 1
t

t
t

P
e

 



, 

)
t

t
vt

e
T

C
 , 

2

( ) ( , )
2

p

p p pt pt p

u
E e T e P   


, p p pe c T , 

( 1
pt

pt
p t

P
e

 



 

)

 
7. Numerical Resolution 

Operator splitting is used to solve the various hyperbolic, 

diffusion and relaxation terms. 
 
7.1. Hyperbolic Step 
 
System (11), in absence of relaxation and diffusion cor-
responds to a system of conservation laws, split in two 
subsystems. 

 

( ) 0
U

div F
t


 


, ( ) 0p

p

U
div F

t


 


. 

( , , , )T
tU u E s   


, 

( , ( ), (t t) ),
T

tF u u u P P     uE P P u s u 
   

( , , ,


 

T)p p p p p p p pU u E e   


, 

 ),
T

p t p p p pE Pu e u, ( ), (p p p p p ptF u u u P    p pu     
 

A Godunov type method is used to solve each subsys-
m with MUSCL type higher order extension (see again 

vector of computational cells faces. The 
HLLC solver [12] is used for both subsystems. 

Let us recall that with  formulation, th rticles 
total energy equation is used to compute the turbulent 
particles energy. Their internal energy is determined 
from the last equation of System (11). 
 
7.2. Drag Relation 
 
At the end of each hyperbolic step, relaxation terms are 
in

te
[10]). The numerical fluxes are obtained with the Rie-
mann problem solution for each subsystem, solved along 
the normal 

 this e pa

tegrated by considering the following ODE systems: 

U
S

t





, pU

S
t


 


 

A high-order Runge-Kutta method is used in this aim. 
 
7.3. Diffusive Terms 
 
The particle phase subsystem contains diffusive contri-
butions: 

( )
i

t pV
u V  d


, ( )
i

T
t p pV
u u V 
 

, d

8. Validation and Comparison with the  
Conventional Model 

 
W  

levant tests cases. In many situations, the conventional 
reless gas dynamics equations is 

nsidered quite accurate and the predictions with the 

that are approximated by an explicit finite volume scheme. 
Details are given in Appendix A. 
 

e now examine the new turbulent model behavior on
re
model (1-2) using pressu
co
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 we first consider one-dimensional situations of 
two-phase flows in shock tubes. The conventional model 
(pressureless equations) is solved with the alg thm de-

1 n with a Particle Cloud 

essureless 

 
 

e turbu

se

new model must be quite closed. To compare typical 
solutions,

ori
scribed in [4]. Obviously, the same modeling of drag 
effects is used in both models.  
 
8.1. One-Dimensional Configurations  
 

.1. Shock Wave Interactio8.
We consider the interaction of a shock wave with a par-
ticle cloud initially at rest. The particles apparent density 
is 31 kg/mp  . For numerical reasons, we set on both 
sides of the cloud a weak but non zero particles apparent 
density ( 30.001 kg/mp  ). The left part of the shock 
tube corresponds to the high pressure chamber, initially 
at P = 2 atm and with the initial gas density 310 kg/m  . 
The right part corresponds to the low pressure chamber 
with the initial pressure P = 1 atm and with the gas den-
sity 31 kg/m  . The initial situation is depicted in the 
Figure 2. 
 Reference results obtained with the pr

model (1-2) 
A shock wave propagates to the right in the gas phase

while a rarefaction wave propagates to the left. The
shock then interacts with the particle cloud and a diffrac-
tion phenomenon occurs. A shock is transmitted to the 
cloud and a weak reflected shock is emitted to the left 
from the cloud interface. The particle cloud compresses 
and moves to the right. The various flow variables pro-
files are shown in the Figure 3 at time 2.22 ms. 

We now examine the turbulent model numerical solu-
tion in the same configuration. 
 Turbulent model results 

With th lent model the initial turbulent pressures 
have to be set. We set for both phases a weak initial 
pressure of 10 Pa. The turbulent viscosity is arbitrarily 

 32.10 t to t  kg/m/s. In the one-dimensional case, 
the value of this parameter has no influence as will be 
shown later. The flow variables profiles are shown at the 
same time (t = 2.22 ms) in the Figure 4. 

The weak particles volume fraction ( 610p  ) on 
both sides of the cloud implies a fast acceleration of the 
particles outside the cloud (see the particles velocity 
graph of Figure 4), but the small particles proportion has 
no influence on the gas motion. 

The particle velocity profiles of Figures 3 and 4 have 
meso  differences, but these diff

sid
erences are located out-

comparison, we 
sh

ined hereafter the influ-
en

e the cloud, where the particles are absent. So, these 
differences have no importance. For the same reason 
turbulent pressure profiles must be observed within the 
cloud.  

Figures 3 and 4 show the same behavior for gas ve-

locity, pressure and density. The apparent particles den-
sity profiles also are closed. For a better 

ow the particles variables in the particles cloud only 
and on the same graphs in the Figure 5. 

Excellent agreement is observed between the two 
computations, showing that in one dimension, the two 
models are equivalent. We exam

ce of the turbulent viscosity parameter. 
 
8.1.2. Influence of Turbulent Viscosity  
We now consider the turbulent model only and use dif-
ferent values of the turbulent viscosity: 3

0 2.10t     
kg/m/s, 010t   and 0100t  . The apparent par-
ticles density and the particles velocity profiles are plot 
on the same graph for each value of the turbulent viscos-
ity. Corresponding results are shown in the Figure 6. 

For this 1D test problem, it appears clearly that the 
turbulent viscosity has no influence on the cloud dynam-
ics. In all these computations, the initial turbulent pres-
sure was set to 10 Pa. We now investigate the influence 
of this initial condition to the results. 
 

.1.3. Influence of the Initial Turbulent Pr8 essure  
urbulent pres-We now consider three different initial t

sures ( 10 PatP  , 50 PatP  , 250 PatP  ) for the 
same two-phase shock tube test. The turbul  
is set to 

ent viscosity

0 . Correspondin ults are shown in the 
Figure 7 at time t = 8.6 ms. 

Some influence appears, in particular a dissymmetry 
in the cloud, due to the fact that the turbulent pressure
pr

g res

 

ncouraging as the 
 in 

figuration

oduction is different on the left and the right sides of 
the cloud. These differences are not significant enough to 
detect unphysical behavior. 

In the one-dimensional case, whatever the turbulent 
parameters are, the two models (pressureless and turbu-

nt) yield very closed results. This is ele
pressureless model is considered as quite accurate
such flow conditions. We now examine two-dimensional 
flow con s. 
 
8.2. Two-Dimensional Configurations  
 
We now consider a more sophisticated situation where 
extra effects appear. It consists in the injection of a parti-  

 

Figure 2. Shock tube initial situation with a pressure ratio 
of 2 and a particle cloud located between abscissa x = 1 m 
and x = 1.2 m. 
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Figure 3. Gas and particles variables profiles at times t = 0 and t = 2.22 ms for the two phase shock tube test case with the 
conventional pressureless model. 

cle jet in air at rest. In order to exclude the effects of dy-
namics fragmentation with liquid jets, that contain extra 
physics, we consider solid particles jets. Careful experi-
mental studies were done independently [13,14] with 
particles made of different materials. Corresponding ex-
perimental data will be used for model's validation. Both 
experimental configurations can be summarized as 

shown in the Figure 8. A particle injector of a few mil-
limeters diameter is used to inject a free particle jet into 
an open cavity initially filled with air at atmospheric 
conditions. 

In [13,14] experiments, cross cut of apparent density 
profiles are given at various locations from the injecto
(C1, C2, C3). The configurations used by these authors    

r 
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Figure 4. Gas and particles variables profiles at times t = 0 and t = 2.22 ms for the two phase shock tube test case with the new 
turbulent model. 

are reported in the Table 1. 
To deal with numerical simulations of corresponding 

test problems, initial and boundary conditions as well as 
flow model parameters have to be specified. 

8.2.1. Boundary Conditions 
The computational domain contains 6 different bounda- 

ries shown in Figure 9. 
All the computations are done in 2D axisymmetric 

configuration. The boundary condition 1 is treated by 
symmetry condition. Boundaries 2 and 3 are treated with 
non reflective conditions. Boundary 5 is treated with wall 
condition. Boundaries 4 and 6 correspond respectively to 
gas and particles inflows. In particular, Boundary 6 cor  - 
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Figure 5. Comparison of pressureless and turbulent models 
solutions on the shock tube test problem. Apparent density
and velocity profiles are in perfect agreement. 

Table 1. Experimental data for solid particle jet injection in 
air from [13,14]. 

 [14] [13] 

 

Particle diameter ( m)　  500 64 

Material density (kg/m3) 1020 2590 

Injection speed (m/s) 24 30 

Injection apparent density (kg/m3) 0.2 1.0 

Injector diameter D (mm) 20 13 

 
responds to a supersonic particles injection with respect 
to the turbulent speed of sound. Thus all data of the Ta-
ble 1 are imposed at this boundary. Boundary 4 is treated
as a tank for both gas and particle phases. Numerica

ystem (11), 

8.2.2. Gas Phase
The ste ons redu :  

 
l 

treatment of this specific boundary needs particular care. 
Part of the solution is obtained by assuming a steady 
flow between the tank and the inlet section. S
in the stationary case is integrated in a control volume 
which is represented to the left of Figure 10. 
 

 
ady gas phase equati ce to

 

 

Figure 6. Influence of the turbulent viscosity on the shock 
tube test case results. The apparent particles density as well 
as the particles velocity in the particle cloud shows no in-
fluence. The results are compared at time t = 8.6 ms. 

0

( ) 0

( ( ) )

( ( ) ) 0

( ) 0

t

t

t

u

u u P P I

Eu P P u

us






 
    
   
 


 
 


 

u n
 

 Using the slip condition on the lateral surfaces (
= 0), the integration of the mass equation gives (variables 
with subscript i, corresponds to variables at the inlet sur-
face, those with subscript 0 corresponds to tank vari-
ables): 

00( ) ( )iuS uS               (12) 

This relation is undetermined, indeed  and 
. Nevertheless it can be used 
 turbulent entropy equations. Fo  en

0S 
to integrate the en-

r the total
0 0u 

ergy and - 
ergy, the integration gives, with the help of (12), 

   0t ti
H h H h   ,          (13) 

2
u P

where, 
2

H e t
t t

P
h e


   and 


  . 

Copyright © 2011 SciRes.                                                                              JMP 



S. HANK  ET  AL. 
 

1007

 

 

Figure 7. Influence of the turbulent initial pressure in the 
dispersed phase. The particles apparent density and veloc-
ity profiles in the particles cloud are shown at time t = 8.6 
ms for three initial pressures. 

 

Figure 8. Schematic representation of the experimental fa- 
cility of [13,14] for solid particles jets injection in air. 

A first relation is thus available to solve the boundary 
Riemann problem. The momentum conservation equa- 
tion cannot be integrated as the pressure integral is un-
known on the lateral surface. Integration of turbulent 
entropy equation using (12) results in: 

0ti ts s                  (14) 

It is the second available

 

Figure 9. Boundary conditions. 

 

Figure 10. Schematic representation of the tank boundary 
condition. 

equation is required to close the full system. This one 
corresponds to thermodynamic
tween the tank and the inlet section, e

 entropy conservation be- 
xpressed as: 

0i

P P   
  

   
   

           (15) 

Then a Riemann solver is built where the left facing 
wave jump conditions (Riemann invariants or shock re-
lations) are replaced by System (13-15). The right facing 
wave obeys t l as the con-
tact discontinui
 
8.2.3. Particle Phase 
In the same way, the system associated to the particle 
phase is integrated in the control volume. The stationary 
system reads: 

0

o conventional relations, as wel
ty.  

( ) 0

( )

( )

p p p pt

u

u u P I

E u P u





 

0

p p



( ) 0

p p p pt p

p p ptu s

   
  
 


 
   



Following the same methodology, the following rela-
tions are obtained: 

00( ) ( )p p i p pu S u S  
 

           (16) 

0( ) ( )p i pe e                 (17) 

0( ) ( )pt i ptH H               (18) 

0
t t

pt pt

p pi

P P   
   

    
   

            (19) 

with 
2

2
pt

pt pt
p

Pu
H e


   . 

A Riemann solver is built where the left facing wave  relation, but an additional  
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jump conditions are replaced by System (17-19). 
 
8.2.4. Initial Conditions 
The gas is initially at rest under atmospheric conditions 
with a low turbulent pressure = 10 Pa). The particles 
have an initial non-zero vol  fraction in the entire 
do

( tP  
ume

main, corresponding to the apparent density of 310  
3kg/m , associated to a volu  fraction of the 

. Initial turbulent pressure  the 
e value as in gas phase (

me
of

order of 
610

the sam
particles is set to 

ptP  = 10 Pa). 

8.2.5. Model Parameters 
The same drag force correlation (
viscosity is used as in the preceding 1D example 

kg/m/s). In all compu
viscosity is constant and equal to 

 

7) with the same gas 

( 619.10g
  

lent 
tations, the turbu-

32.510t
  

kg/m/s. 
 
8.2.6. Qu salitative Compari ons  
Th

 
ectories cor-

to straight lines. With the turbulent model, jet 
preading occurs. 

own in the Fig-
ur

 with the Experimental Data of [14]  
he same computations are done for the configuration 

 

lent one are shown in the Figure 11.  
Large differences between the two computed jets are 

clearly visible. With the pressureless conventional model,
no jet enlargement occurs. The particles traj
respond 
s
 
8.2.7. Comparison with the Experimental Data of [13]  
A computational domain involving 280 × 100 cells is 
used on the geometrical configuration sh

e 8 with parameters given in the Table 1. The normal-
ized apparent density profiles are shown in the Figure 12 
and compared with experimental data at steady state.  
 
8.2.8. Comparison
T
reported in [14]. The normalized apparent density pro-
files at steady sate are shown in the Figure 13 and com- 
pared to experimental. 

In this case too, the results obtained with the turbulent 
model and the experimental data are in a very good 

e particle jet dynamics computed alternatively with 
the conventional pressureless model and the new turbu-

  

Figure 11. Apparent density contours for the test problem of [13] (see Table 1 for corresponding data). The pressureless model 
results are shown on top while the turbulent one are shown on bottom of the figure. Particles jet behavior is shown at times t1 = 2.8 
ms, t2 = 9.6 ms, t3 = 18.2 ms and t4 = 30 ms. This last time corresponds to steady state. 
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Figure 12. Computed results in lines versus experimental data 
of [13]. Normalized apparent density 0/ p p  

30 D. 
to collisi
y the mod

noted by 

 

 

 

Figure 13. Computed results in lines versus experimental 
data of [14]. Normalized apparent density 

cross cut at 
abscissa C1 = 10 D, C2 = 20 D and C3 = The jet width 
increases during its propagation, due onal turbulent 
effects that are perfectly reproduced b el. The ap-
parent density along the centerline is de 0p .

0/ p p

 10 D and C3 = 15 D. The jet
o co

uced b
rline is de

 cross 
cut at abscissa C1 = 4 D, C2 =  
width increases during its propagation, due t llisional 
turbulent effects that are perfectly reprod y the 
model. The apparent density along the cente noted 
by 0p . 

 

agreement. For the last graph of Figure 13 the agreement 
is not as good as for the other graphs. But it can be no- 
ticed on the experimental curve that some noise is pre- 
sent. The experimental cross cut of the apparent particle 
density contains oscillations. It means that an error bar is  

present in the experiments. Also, the variable plot on this 
graph corresponds to the normalized density 0/p p  . 
At the normalized distance of 15D, both p  and 0p   
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Figure 14. Results comparison with the different models on 
the configuration studied in [14]. 

become small. Thus, the ratio 0/p p   becomes inac-
curate. 

The results of Figures 13 and 14 are obtained with the 
same turbulent viscosity of  kg/m/s. This agree-
ment is particularly interesting as t e experiments of [13] 
and [14] deal with very different materials density, dif-
ferent particles diameter and injector diameters. 

When the same computations are done with the pres-

sureless model (1-2), no jet enlargement appears, as 
shown in the Figure 14. The same remark holds when 
the turbulent viscosity is set to zero in the new model. 
Consequently the new model admits the same solution 

as the pressureless equations in the limit of vanishing 
turbulent viscosity and is able to improve considerably 
the predictions and capabilities with non-zero turbulent 
viscosity. 
 
9. Conclusions 
 
A new two-phase flow model for dilute particles suspen-
sions has been developed. Compared to conventional 
pressureless particle dynamic models the new one is 

n s cessfully reproduced by the model with the 
same turbulent viscosity coefficient, of the order of 

 32.10

h

strictly hyperbolic. It also has enhanced physical capa-
bilities, thanks to a simple modeling of particles colli-
sions. Indeed, turbulence production in the new model is 
linked to a turbulent viscosity, aimed to mimic particles 
collisions. Particles jets dispersion experiments from 
different authors and under different configurations have 
bee uc

32.10  kg/m/s, while the experimental conditions (parti-
cles diameter, particles density and injector diam e 
varying considerably. 

eter) ar
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A. Numerical method for diffusive term the left and the right sides immediately closed to the 

boundary. Thus, 
Time explicit integration of corresponding terms is con-
sidered: 
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Space integration is detailed in 1D, multi-D extension 
being simi



lar. The space integration is transformed suc-
cessively as, 
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Two neighboring computational cells i and i + 1, sepa-
rated by cell boundary i + 1/2 are schematized in the 
Figure 15. The velocity derivative *

1/2iq   has precisely 
to be expressed at these cell boundaries. 

 following intercell conditions are used: 
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The cell boundary velocity derivative reads conse-
quently, 
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In the one-dimensional case, viscous derivative terms 
are thus approximated by: 
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Figure 15. Schematic representation of cell boundary i + 1/2
separating left and right computational cells i and i +

 
 1. 
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