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tural biology due to the large and exponentially grow-ABSTRACT
ing gap between the number of known protein 
sequences and the number of known structures. Predicted relative solvent accessibility (RSA) 
Despite several decades of extensive research in ter-provides useful information for prediction of
tiary structure prediction, this task is still a big chal-binding sites and reconstruction of the 3D-
lenge, especially for sequences that do not have a sig-structure based on a protein sequence.
nificant sequence similarity with known structuresRecent years observed development of sev-
[1]. As a result, the predictions of the solvent accessi-eral RSA prediction methods including those
bi l i ty  [2] and  the secondary  s t ruc ture [3]  a rethat generate real values and those that pre-
addressed as an intermediate step towards the predic-dict discrete states (buried vs. exposed). We 
tion of the tertiary structure. The relative solventpropose a novel method for real value predic-
accessibility (RSA) reflects the degree to which a res-tion that aims at minimizing the prediction 
idue interacts with the solvent molecules. Since pro-error when compared with six existing meth-
tein-protein and protein-ligand interactions occur atods. The proposed method is based on a two-
the protein surface, only the residues that have a stage Support Vector Regression (SVR) pre-
large surface area exposed to the solvent can possibly dictor. The improved prediction quality is a
bind to the ligands and other proteins. As a result, pre-result of the developed composite sequence
diction of solvent accessibility provides useful infor-representation, which includes a custom-
mation for prediction of binding sites [4] and isselected subset of features from the PSI-
vitally important for understanding the binding mech-BLAST profi le, secondary structure pre-
anism of proteins [5]. Chan and Dill pointed that thedicted with PSI-PRED, and binary code that 
burial of core residues is the driving force in protein indicates position of a given residue with 
folding, which suggests that knowledge of localiza-respect to sequence termini. Cross valida-
tion of individual residues (surface vs. buried) pro-tion tests on a benchmark dataset show that
vides useful information to reconstruct the 3D-our method achieves 14.3 mean absolute
structure of proteins [6-8].error and 0.68 correlation. We also propose a

The existing solvent accessibility prediction meth-
confidence value that is associated with each 

ods use the protein sequence, which is converted into
predicted RSA values. The confidence is com-

a fixed-size feature-based representation, as an input 
puted based on the difference in predictions 

to predict the RSA for each of the residues. These
from the two-stage SVR and a second two-

methods can be divided into two main groups:
stage Linear Regression (LR) predictor. The 

Real valued predictors predict RSA value (the
confidence values can be used to indicate 

definition is given in the Materials section). The rep-
the quality of the output RSA predictions.

resentative existing methods are based on linear 
regression [9], neural network based regression [11], 
neural networks [12], support vector regression [10, 
13, 15], and look up table [14]. In Ahmad's study,
binary coding of the sequence was taken as the input
features [12], while all other studies used the evolu-
tionary information in the form of the PSSM profile1. INTRODUCTION
derived with PSI-BLAST as the input features [9-11,The knowledge of three dimensional protein struc-
13-15].ture plays the key role in understanding protein's

discrete valued predictors classify each residuefunction. Computational prediction of the tertiary
into a predefined set classes. The classes are usually protein structure is one of the central topics in struc-

Keywords: Relative solvent accessibility; 
Support vector regression; PSI-BLAST; PSI-
PRED; Secondary protein structure

1 1 1
Ke Chen , Michal Kurgan  & Lukasz Kurgan*

J. Biomedical Science and Engineering, 2008, 1, 1-9
Scientific
Research
Publishing

JBiSEPublished Online May 2008 in SciRes. http://www.srpublishing.org/journal/jbise

S
c

iR
e

s
C

o
p

y
ri

g
h

t
©

2
0

0
8



defined based on a threshold and include buried, given residue that is accessible to the solvent. RSA
intermediate, and exposed classes (in most cases the valu e, whic h is norma lize d to [0, 1] int erva l, is 
predictions concern only two classes, i.e., buried vs. defined as the ratio between the solvent accessible 
exposed). The corresponding prediction methods surface area (ASA) of a residue within a three-
apply fuzzy-nearest neighbor [17], neural network dimensional structure and ASA of its extended tri-
[16, 20, 22], support vector machine [19, 21], two peptide (Ala-X-Ala) conformation
stage support vector machine [18], information the-
ory [23], and probability profile [24]. Early studies 
only use sequence to generate features [20, 23], while
recent studies use the evolutionary information in the
form of the PSSM profile to generate features [18, 19].

The PSI-BLAST profile [25] was recently intro- 2.3. Feature representation
duced as an efficient sequence representation that PSI-BLAST profile. PSI-BLAST is used to compare 
improves classification accuracy [16]. Subsequently, different protein sequences to find similar sequences 
researchers have found that secondary structure pre- and to discover evolutionary relationships [25]. PSI-
dicted using the PSI-PRED method [3] improves the BLAST generates a profile representing a set of simi-
real value RSA predictions [2]. lar protein sequences in the form of a 20 N position-

This paper investigates whether improved sequence specific scoring matrix, where N is the length of the 
representation, which is based on the information har- sequence (window) and where each amino acid in the 
vested from the sequence, the PSI-BLAST profile sequence (window) is described by 20 features. We
and the predicted secondary structure, could lead to used PSI-BLAST with the default parameters and the
improving the RSA predictions. We also investigate BLOSUM62 substitution matrix. The profile was 
whether it would be possible to build an index that computed for a 15 residues wide window centered on 
would indicate the quality of the predicted RSA value. a target residue and thus it consists of 300 features. 
The above hypotheses translate into the two follow- The selected size is motivated by previous studies 
ing goals: (1) we aim at proposing a prediction that adopted this window size [18] and obtained good 
method that minimizes the RSA prediction error; (2) secondary structure prediction results [3]. 
the method should provide a confidence value that Secondary structure predicted with PSI-PRED.
indicates the quality of the predicted RSA values. The quality of secondary structure prediction has sig-

The first goal is achieved by designing a custom- nificantly improved in the last decade and nowadays
selected set of features, which is based on performing it is successfully used in prediction of tertiary struc-
feature selection, to represent the input sequence. As ture. Recently, secondary structure predicted with the
suggested in previous studies, the PSI-BLAST pro- PSI-PRED algorithm was shown to improve predic-
file, PSI-PRED predicted secondary structure and tion of solvent  accessibi l i ty [2] .  We used PSI-
addit ional  features that  indicate termini  of the PRED25 with default parameters to predict second-
sequence  were adopted  to represen t  the inpu t  ary structure from the protein sequences. PSI-PRED 
sequence. In contrast to prior works, we do not use all assigns three probabilities for each residue, which 
features from the PSI-BLAST profile, but instead we correspond to the probability of assuming helix, 
use two feature selection methods to select a subset strand, and coil conformation, respectively. These
of best-performing features. This results in a simpli- probabilities were taken as features for the proposed 
fied prediction model, reduced computational time, RSA prediction method.
and optimized predictive quality. Binary code. The amino acids that are located at

To address the second goal, the confidence values the two termini of the sequence have larger probabil-
are computed based on the difference in predictions ity of being exposed to the solvent. This fact is imple-
of RSA by two predictors: a support vector regression mented during RSA prediction by using a binary code
and a linear regression. These values can be used to that indicates position of a given residue that is
indicate the quality of the output RSA predictions. located close to either terminus. The following 

binary vector

2. MATERIALS
2.1. Dataset
The dataset used in this paper is referred to as the 

is used to encode the first five positions at the N ter-Manesh da tase t [23]  and cons is t s  of 215 low-
minus (denoted by a )  and the las t f ive posi t ionsimilarity, i.e., < 25%, proteins. The sequences are i

available online at http://gibk21.bse.kyutech.ac.jp/ at  the C terminus (denoted by b ) .  For  instance,i
rvp-net/all-data.tar.gz. The Manesh dataset was the third residue in the sequence is encoded as
widely used by researchers to benchmark prediction (0,0,1,0,0,0,0,0,0,0) ,  while a  res idue that  is out-
methods [2, 12-15, 20, 24], and this motivated us to s ide of the f i rs t and the las t  f ive residues in the 
use it to design and validate our method. sequence is encoded as (0 ,0 ,0 ,0 ,0,0,0,0,0,0) .
2.2. Relative solvet accessibility
RSA reflects the percentage of the surface area of a 2.4. Feature selection
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PSI-BLAST profile includes 300 features, and thus user. Hence, we tested the performance of different 
feature selection methods were used to reduce the number of selected features using support vector 
dimensionality. We applied the correlation-based fea- regression model with default parameters to predict 
ture selection (CBFS), and another feature selection RSA values for the test set of the Monash dataset. The
method, namely correlation-based method for rele- mean absolu te error (MAE) stea dily decrea ses to 
vance and redundancy analysis (CBRR), which 15.6% by adding up to 70 features, and i t saturates
selects a subset of features based on filtering redun- when adding additional features, see . As a 
dancy within the feature set. The CBFS method is result, the 70 features with the highest Pearson corre-
based on Pearson correlation coefficient r computed lation were selected when using CBFS. The selected
for a pair of variables (X, Y) as features include 65 features from the PSI-BLAST pro-

file, all 3 predicted secondary structure features, and
2 binary code values that correspond to the first and
last position in the sequence, see .

The two feature sets selected by CBRR and CBFS 
and the full feature set (313 features) were compared
by predicting RSA values for the test set of the 
Manesh dataset using support vector regression with  where x  is the mean of X and y  is the mean of Y. Thei i
default parameters. The 15 features selected by 

value of r is bounded within [-1, 1] interval. Higher 
CBRR obtain 16.7% MAE, while the 70 features 

absolute value of r corresponds to stronger correla-
selected by CBFS and the full feature set both result 

tion between X and Y. This method ranks individual
in 15.6% MAE, see . The features selected 

features based on the correlation coefficient between 
by CBFS provide lower MAE than the features 

each feature and the actual RSA values. A subset of
selected by CBRR, and they cover only 23% of the

features with the highest absolute r value is selected.
full feature set. As a result, the 70 features selected

The CBRR feature selection method considers
By CBFS were used to design the proposed predic-

both the relevance of the features with respect to the
tion model. The selected features are summarized in

target (RSA values), and the redundancy between the
features. It involves two steps: (1) selecting a subset

The feature selection shows that most of the 300 
of relevant features, and (2) selecting predominant 

features generated by PSI-BLAST are either redun-
features from among the relevant features. The 

dant  and have  l i t t l e o r  no impac t  on the  RSA
details can be found in [26].

Predictions.  shows that when predicting RSA
The 300 features corresponding to the PSI-BLAST 

for the residue A  that is located in the center of theiprofile, 3 features corresponding to the predicted sec-
window:ondary structure and 10 binary code values were pro-

the features to encode the two leftmost positionscessed with both feature selection methods. The fea-
(A , A ) and the rightmost position (A ) were not ture selection was processed using the training set of i-7 i-6 i+7

Manesh dataset, which includes 30 sequences [14, 20]. selected, i.e., these amino acids have no impact on 
The CBRR method automatically filters the redun- the prediction of the central amino acid. Therefore, a 

dancy among the features and selects the final num- sliding window of size 13 would be sufficient for the
ber of selected features, which in our case was 15. RSA prediction. The two amino acids that are adja-
The selected features include 13 features from the cent to A , i.e., A and A , have the most significant i i-1 i+1
PSI-BLAST profile, and 2 predicted secondary struc- impact on the prediction since they correspond to the 
ture features, see . In case of CBFS, the num- largest number of the selected features. Interestingly,
ber of selected features should be specified by the 

Figure 1

Table 1

Figure 2

Table 2

Table 2

Table 1

.

Figure 1. The MAE values against the number of selected
features. The MAE is obtained by using support vector 
regression with default parameters to predict test set of the 
Monash dataset.

Figure 2. Bar chart of MAE values (white) and number of
features (gray) for features selected by CBRR, CBFS, and
the full feature set.
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and test a confidence value that is associated with
each predicted RSA value. 

The proposed two-stage prediction model works as 
follows:

STAGE 1. The input sequences is inputted into
PSIPRED to compute predicted secondary structure
and into PSI-BLAST to compute the PSI-BLAST pro-
file. Next, the input sequence, the predicted second-
ary structure, and the PSI-BLAST profile are used to 
compute the selected 70 features using a 15 residues
wide window centered over the being predicted resi-
due, and for each residue in the input sequence. The

residues at i-2 and i+2 positions have relatively small 70 features are used as an input to the LR model and
influence on the prediction. SVR model that predict a real value (predicted RSA

The selected features are almost symmetrically value) for the central residue in a given window.
distributed around A , e.g., amino acids E, K, Q, R, i STAGE 2.   The aim of the stage two is to refine the 
and D have similar impact on the solvent accessibil- predictions from stage one. Similarly to other two-
ity of the central residue at the third left position (A ) stage designs [13,18], the second stage “smoothes” the i-3

predictions. It takes the three predicted secondary and the third right position  (A ).i+3
s t ruc tu re  f ea tu re s ( compu ted  in s t age  one by  Hydrophilic residues, which include E, K, Q, R, 
PSIPRED) and a 7 residues wide window from theand D, may have impact on the solvent accessibility
first stage predictions centered over the predicted res-of A  residue which is 3 or 4 positions away from thei idue as the input to provide the refined real value pre-

these residues. This pattern covers 19 of the selected 
dictions.

features and we hypothesize that this is related to the
Since the prediction quality of SVR is better than

á-helical structures due to the following two reasons.
the quality of LR (results are discussed in the follow-

Firstly, these 5 hydrophilic residues have larger prob-
ing), the predictions from SVR are taken as the final 

ability (above 0.5) to form helical structure than 
prediction outcome. The LR results serve as a refer-

strand and coil structures [27]. Secondly, á-helix con-
ence to evaluate quality of SVR predictions. This

sists of 3.6 residues per turn, and hence if two resi-
means that if predictions from SVR and LR are simi-

dues in a helix are separated by 2 or 3 residues in the 
lar then SVR predictions are assumed to be of high

sequence then they are spatially close to each other,
quality. On the other hand, if the two predictions are 

which in turn may induce some interactions between 
different then the SVR prediction is assumed to be of

them. For instance, the hydrogen bond that maintains
lower quality. The corresponding confidence value is 

the helical structure occurs between two residues that 
defined as

are separated in a sequence by three other residues,
i.e., A  and A .i i+4

where R  is the predicted RSA from SVR, and T  is the3. METHODS i i

predicted RSA from LR. A detailed overview of the3.1. Prediction method
prediction procedure is shown in .L i n e a r  R e g r e s s i o n ( L R )  a n d S u p p o r t  Ve c t o r

The optimization of the prediction, through adjust-Regression (SVR) were already applied in the RSA
ment of internal parameters of the predictors andprediction [10,13,15]. In this paper, we propose an
selection of the window size for the second stage,improved two-stage model, which not only aims at 
was performed by dividing the Manesh dataset into reducing the prediction error, but we also propose

Figure 3

Table 1. Summary of the feature selection results.

Features set

PSI-BLAST profile

Binary code

Predicted second. structure

Total

Total # 
features

300

10

3

313

# selected 
features by 

CBFS

65

2

3

70

# selected
features by
CBRR

13

0

2

15

Table 2. Summary of feature selection results for the PSI-BLAST profile by correlation-based feature selection method.

15-wide window

Total # of features

# of selected features

The selected features

Ai-7

20

0

Ai-6

20

0

Ai-5

20

2

I

L

Ai-4

20

4

E

K

Q

R

Ai-3

20

5

E

K

Q

R

D

Ai-2

20

0

Ai-1

20

8

E

K

Q

R

D

N

P

S

Ai

20

19

C D

E F

G H

I K

L M

N P

Q R

S T

V W

Y

Ai+1

20

7

E

K

Q

H

D

N

G

Ai+2

20

1

P

Ai+3

20

6

E

K

Q

R

D

P

Ai+4

20

6

E

K

Q

R

D

P

Ai+5

20

4

I

L

V

F

Ai+6

20

3

I

L

V

Ai+7

20

0

(3)

Table 1. Summary of the feature selection results.
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two subsets, one used to compute the prediction
model and the other to perform test. Similarly to [14],
30 sequences were used for training and the remain-
ing 185 as the test set. The linear regression is 
parameterless and thus it does not require optimiza-
tion. For SVR, RBF kernel was used for both stages. 
The parameters for the first stage SVR are ã=0.01 and
C=1, and for the second stage ã=0.15 and C=1. These
parameters, which were based on experiments sum-
marized in , provide the lowest MAE. We note 
that the adjustment of C has little impact in the qual-
ity of predictions. The MAE of the final prediction 
for the second stage windows sizes of 5, 7, 9, 11, 15, 
and 21 equal 0.149, 0.148, 0.148, 0.148, 0.148, and 
0.148, respectively. This shows that the window size 
of 7 is the best choice to provide accurate predictions.

3.2. Linear regreesion
A linear regression with p coefficients and n data 
points (number of samples), assuming that n>p, cor-
responds to the construction of the following expres-
sion:

3.3. Support vector regression
Given a training set of n data point pairs (x , y ), i = 1, i i

2,…, n, where x  denotes the vector of p features rep-i
th

resenting i  protein sequence, y  denotes the pre-i

dicted RSA value,  f inding the opt imal  SVR is
achieved by solving:

where y  is the predicted RSA value, x  = (x , x ,…,i i i1 i2
th

x ) is the vector of p features representing i  protein ip

sequence, â (constant) is parameter to be estimated,i

and å  is the standard error. The above formula can be such thati

written in vector-matrix form as:

The solution to minimize the mean square error ||å ||i

is

where w is a vector perpendicular to wx-b=0 hyperplane,
*

C is a user defined complexity constant, î  and î arei i

Table 3

First stage Second stage

MAE

0.150

0.149

0.148

0.148

0.148

0.149

0.148

0.148

0.148

0.148

0.148

0.148

Parameter

C

1

1

1

1

1

1

0.5

0.8

1

2

3

5

Parameter

 C

1

1

1

1

1

1

0.5

0.8

1

2

3

5

MAE

0.157

0.153

0.151

0.151

0.152

0.155

0.152

0.151

0.151

0.151

0.151

0.152

Parameter

ã

0.001

0.005

0.01

0.02

0.03

0.05

0.01

0.01

0.01

0.01

0.01

0.01

Parameter

ã

0.01

0.08

0.15

0.2

0.3

0.4

0.15

0.15

0.15

0.15

0.15

0.15

Table 3. Optimization of parameters for two-stage SVR.

Figure 3

Table 1

. RSA prediction with the proposed system; the RSA 
th

value for the i residue is predicted based on the 70 feature 
values (see ) that are computed over a 15 residues 

th
wide window centered on i  residue; the feature values are 
inputted into the first-stage predictor (LR and SVR); next, the 
first-stage predictions are aggregated into 7 residue wide 
windows and inputted, together with the predicted secondary 
structure of the central residue, into the second-stage 
predictor that provides the RSA values. Finally, compare the
predictions from SVR and LR, and calculate the confidence
value C.

(5)

(6)

(7)

(8)
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A A … A A A …A A1 2 i-1 i i+1 n-1 n

PSI-PRED Select 15-wide window

A A …A …A Ai-7 i-6 i i+6 i+7
Predicted
secondary
structure

ss ss …ss …ss ss1 2 i n-1 n

Compute 70 features

Features values for the 15-wide window

Input feature vectors for 
all residues, i=1,2,…,n

First-stage SVR First-stage LR

r r … r r r …r r1 2 i-1 i i+1 n-1 n t t … t t t …t t1 2 i-1 i i+1 n-1 n

Select 7-wide window

r r … r …r ri-3 i-2 i i+2 i+3 t t … t …t ti-3 i-2 i i+2 i+3

Input feature vectors for 

all residues, i=1,2,…,N

Second-stage SVR Second-stage LR

T T …T …T T1 2 i n-1 n

Compute
confidence value

R R …R …R R1 2 i n-1 n

C C …C …C C1 2 i n-1 n



slack variables that measure the degree of prediction posed method equals 14.6 and the corres pondin g
error of x  for a given hyperplane, and z= (x) where Pearson's correlation coefficient (r) equals 0.67. i

After the second stage, the MAE value is reduced to k(x,x')= (x) (x') is a user defined kernel function.
14.3 and r is improved to 0.68.  compares theThe SVR was trained using sequential minimal 
proposed two-stage SVR with recent methods for optimization algorithm [28] that was further opti-
RSA prediction, which include neural network andmized by Shevade and colleagues [29]. The proposed
support vector regression models [2, 12, 13, 15]. The SVR uses RBF kernel 
proposed method obtains 0.6 to 3.7 lower MAE when
compared with the abovementioned methods. This
translates into 4% to 20% error reduction, respec-

for both stages. tively. Since some methods predict discrete valued
classes (exposed vs. buried), we also examined the
performance of our method by converting the real 4. RESULTS AND DISCUSSION
value prediction into the two states prediction. We fol-

The SVR and LR predictors were implemented in 
lowed the standard approach, in which the state is

Weka [30], which is a comprehensive open-source
defined based on the predicted RSA value and a pre-

library of machine learning methods. The Manesh 
defined threshold. For instance, a 5% threshold 

dataset consists of 50682 instances (individual resi-
means that the residues having an RSA value (%)

dues). The evaluation was performed using two test
greater or equal 5 are defined as exposed, and other-

types to allow for a comprehensive comparison with 
wise they are classified as buried. The threshold's

previous studies. To compare with [2] and [12], 5-
value is usually adjusted between 5% and 50%. We

folds cross validation was executed. On the other 
note that for all thresholds, our method provides the 

hand, following several other prior studies [14, 20,
highest accuracy, see . The proposed two-

24], Manesh dataset was divided into two subsets, 30
stage model provides 0.3%-0.6% higher accuracies

sequences were used for training and the remaining
than the prediction coming from the first stage for var-

185 as independent test set. The results of both tests, 
ious thresholds. When compared to the best perform-

i.e., 5 folds cross-validation and independent test, 
ing, existing two-stage SVR method [13], our predic-

were reported in . In total, the pro-
tions are characterized by lower MAE and more accu-

posed method was compared with six real value RSA
rate two states predictions.

prediction methods [2, 12-15, 24] and one method
For the independent test, the MAE value for the 

that aims at prediction of discrete states [20].
first stage of the proposed method equals 15.0 and the

We note that in statistical prediction, the following 
corresponding Pearson's correlation coefficient r

three cross-validation methods are often used to 
equals 0.66. After the second stage, the MAE value is 

examine a predictor for its effectiveness in practical
reduced to 14.8 and r is improved to 0.67. Table 5

application: independent dataset test, sub-sampling 
compares the proposed two-stage SVR with recent

(such as 5-fold and 7-fold) test, and jackknife test [31].
methods for RSA prediction, which include neural 

However, as elucidated by [32] and demonstrated in
network and look-up table based methods [14, 20, 24]. 

[33], among the three cross-validation methods, the 
The proposed method obtains 1.5 to 4.0 lower MAE

jackknife test is deemed the most objective that can
when compared with the above three methods. This

always yield a unique result for a given benchmark 
translates into 9% to 21% error reduction, respec-

dataset, and hence has been increasingly used by
tively. Similarly to the 5-folds cross validation test, 

investigators to examine the accuracy of various pre-
we also examined the performance of our method by 

dictors [34-42].
converting the real value prediction into the two 
states prediction. The threshold's value was adjusted 

4.1. Comparison with competing prediction between 5 and 50%.
methods For all thresholds our method consistently pro-
For the 5 folds cross-validation test, the mean abso- vides the highest accuracy, see . The two-
lute error (MAE) value of the first stage of the pro-

Table 4

Table 4

Tables 4 and 5

Table 5

Table 4. Experimental comparison between the proposed two-stage SVR and other reported methods; the results were 
reported based on 3 or 5-folds cross validation test; the real valued predictions were converted to two state prediction (buried 
vs. exposed) with different threshold (5%~50%); unreported results are denoted by “-“; best results are shown in bold.

Reference

[2]

[11]

[12]

[14]

This paper

This paper

Prediction

method

Neural Network

Neural Network

Two-stage SVR

SVR

One-stage SVR

Two-stage SVR

MAE (%)

15.2

18.0

14.9

16.3

14.6

14.3

Correlation
coefficient r

0.67

0.50

0.68

0.58

0.67

0.68

5%

74.9%

-

81.1%

-

80.5%

81.1%

20%

77.7%

-

77.6%

-

78.3%

78.8%

10%

77.2%

-

78.5%

-

79.1%

79.7%

30%

77.8%

-

-

-

78.3%

78.6%

40%

78.1%

-

-

-

78.3%

78.8%

50%

80.5%

-

79.5%

-

80.5%

80.8%

Accuracy for two-states (buried vs. exposed) prediction
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stage model provides 0.3%-0.5% higher accuracies between 0 and 0.294. As a result, the confide nce
than the one-stage model for various thresholds. value C distributed in the interval [0.706, 1] for the
When compared with the best-performing, compet- Manesh dataset. Higher C values indicate that the pre-
ing method based on neural network [24], our predic- dictions from SVR and LR are more consistent, and 
tions result in higher accuracies over all thresholds, there fore the corre spond ing predi ction s f rom the
i.e., the differences range between 4% and 5.8%, and two-stage SVR are assumed to be more accurate.
better MAE and correlation coefficient value. Th e C value of 7101 samples , which covers

The three main observations based on the per- 7101/50682= 14% of the dataset, are greater than 
formed empirical evaluation include: (1) the pro- 0.99, and the corresponding MAE of these samples
posed two-state predictor obtains favorable (lower) equals 0.122, see . The C value of 12846 sam-
error rates when compared with six competing meth- ple s, whi ch cov ers 128 46/ 506 82= 25. 3% of the
ods; (2) the improvements are obtained for both real dataset, are greater than 0.98, and the corresponding
value and two-state predictions; and (3) the introduc- MAE of these samples equals 0.131. The C value of
tion of the second stage in our design allows for 18174 samples, which covers 18174/50682= 35.9%
obtaining improved predictions when compared with of the dataset, are greater than 0.97, and the MAE of 
a one stage design. these samples is 0.136. When the threshold for C

value is set equal or lower than 0.96, the MAE satu-
4.2. Confidence value for RSA prediction rates at 0.143, see , which is equal to the
As one of the goals of this work, we defined confi- MAE for the entire dataset (without using the confi-
dence values to measure the quality of the predicted dence values). This shows that the confidence values
RSA. The confidence values are based on the differ- can be used to identify a subset of the predictions
ence of predictions made by the two-stage SVR and which on average have better quality than the remain-
the two-stage LR. The following discussion is based ing predictions. This way, the user could select a
on results of five folds cross-validation tests. desired fraction of best performing predictions.

The MAE for two-stage SVR is 0.143 and for two- Additionally, the user could inspect quality of predic-
stage LR is 0.155. The difference between the predic- tion for specific amino acids or groupings of amino 
tions from SVR and LR for the same residues ranges acids that share certain properties such as hydrop hob ici ty,

charge, size, etc.

5. CONCLUSIONS
This paper proposes a novel method for the real value
RSA prediction. The proposed method addresses two 
goals, which include improving the quality of RSA
prediction, and development of a confidence value 
that allows for selection of better performing RSA
predictions.

Empirical tests with the Manesh dataset show that 
the proposed method is characterized by lower pre-
diction error when compared with six competing real 
value RSA prediction methods. We also show that the
PSI-BLAST profile that is commonly used to repre-
sent sequences can by largely reduced by using fea-
ture selection, which results a simpler, interpretable 
model and in reduction of the computational time 
required to develop the prediction model. Our model 
indicates that window size of 13 is sufficient and only 
about 22% of the PSI-BLAST features are useful for 

Figure 4

Figure 4

Table 5. Experimental comparison between the proposed two-stage SVR and other reported methods; the results were 
reported based on a test on the independent dataset (30 sequences for training and 185 sequences for test); the real valued
predictions were converted to two state prediction (buried vs. exposed) with different threshold (5%~50%); unreported 
results are denoted by “-“; best results are shown in bold.

Reference
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[19]

[23]

This paper

This paper

Prediction

method

Look-up table

Neural Network

Neural Network

One-stage SVR

Two-stage SVR
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-
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coefficient r
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-
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Accuracy for two-states (buried vs. exposed) prediction
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-

-

-
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78.1%
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-

-

-
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78.0%

40%

-

-

-

77.5%

78.0%

50%

-

75.9%

76.2%

79.8%

80.2%

Figure 4. Bar chart of MAE values for the corresponding 
thresholds of confidence value C. The numbers above the
bar show the corresponding coverage, i.e., number of 
residues for which the predictions had confidence value 
above the threshold. For example, for residues predicted 
with which C > 0.99 the MAE equals 12.2, and these 
residues cover 14% of the dataset.
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