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Abstract 
 
We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line 
barrier. The objective is to locate a set of new facilities among a set of existing facilities and to allocate an 
optimal number of existing facilities to each new facility in order to satisfy their demands such that the 
summation of the weighted rectilinear barrier distances from new facilities to existing facilities is minimized. 
The proposed problem is designed as a mixed-integer nonlinear programming model. To show the efficiency 
of the model, a numerical example is provided. It is worth noting that the global optimal solution is obtained. 
 
Keywords: Capacitated Location-Allocation Problem, Line Barrier, Mixed Integer Nonlinear Programming 

1. Introduction 
 
Facility location problems have been extensively inves-
tigated in operations research (OR) and theoretical com-
puter science literature (Cornuejols et al. [1] and Shmoys 
[2]). For the first time, facility location problem is intro-
duced by Weber [3]. He introduced a classical Weber 
problem in which locating a warehouse is considered so 
that the distance traveled between the warehouse and its 
customers is minimized. The American Mathematical 
Society (AMS) even generated specific codes for loca-
tion problems (90B80 for discrete location and assign-
ment, and 90B85 for continuous location). Location area 
can be divided into three branches: location problems, 
allocation problems and location-allocation problems. 
We used location-allocation problems in this work. Lo-
cation-allocation (LA) problem is to locate a set of new 
facilities such that the total transportation cost from fa-
cilities to customers is minimized and an optimal number 
of customers have to be allocated in an area of interest in 
order to satisfy the customer demands. Generally, there 
are some aspects affecting formulation this problem such 
as: either each customer is serviced by only one new 
facility or more, demand of customers are deterministic 
or stochastic and facilities are capacitated or uncapaci-
tated. The models available for this problem are divided 
into two main sections: the general models (Cooper [4]) 
and developed models (Zhou and Liu [5]). 

In many of location problems, we have to consider 

some restrictions in finding locations of new facilities so 
that these restrictions refuse establishment of new facili-
ties in some specified regions. In general, the restricted 
planar location problems are categorized in three catego-
ries. The first category is called forbidden regions, 
namely, in these regions the locating of facility is not 
permitted but passing through is allowed (e.g., rods or 
forests). In Hamacher and Nickel [6] an extensive over-
view of the location problems with forbidden regions is 
provided. The second category is consist of regions 
where placement of a facility is prohibited but travelling 
through is possible with a penalty cost (e.g., lakes that 
can be crossed only using a jolly boat). These regions are 
called congested regions. The third group considers bar-
rier regions, for which both placement a facility and 
passing through are forbidden (e.g., lakes, big machines 
and conveyor belts in a plant). Note that, in some cases 
travelling on the barrier regions boundaries is allowed. 
The special case of almost linear barriers in the plane 
that have only a finite number of passages is frequently 
encountered in practice. Line barriers with passages 
may be used urban design for rivers, border lines, 
highways, mountain ranges, or, on a smaller scale, con-
veyer belts in industrial plants. In all these examples 
trespassing is allowed only through a finite number of 
passages. 

Barrier regions were first specified to location model-
ing by Katz and Cooper [7], who consider Weber prob-
lems with the Euclidean distance and a circular barrier. 
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Consideration of all barrier sets as polyhedral permits 
construction of a visibility graph that can be applied to 
efficiently compute barrier distances. They showed that 
the objective function of the problem was non-convex 
and suggested a heuristic algorithm for solving this pro- 
blem that is based on a sequential unconstrained mini-
mization technique (SUMT) for nonlinear programming 
problems. This heuristic algorithm did not guarantee 
achievement of a global optimum solution. The problem 
was further investigated in Klamroth [8] and it was de-
picted that in the case of a single circular barrier, the 
feasible set can be subdivided into a polynomial number, 
O(N2), of sub-regions, on every convex subset of which 
the Weber objective function is convex. N is the number 
of existing facilities on the plane so that, when N in-
creases, construction of these convex subsets becomes 
cumbersome and hence is not desired. To overcome this 
difficulty, Bischoff and Klamroth [9] suggested a genetic 
algorithm (GA) and Weiszfeld technique-based solution 
to the problem.  

In the case of line barriers, Klamroth [10] considered a 
limited number of passages with any distance measure, 
separated the plane into two sub-planes and showed that 
an optimal solution of the non-convex barrier problem 
can be attained by solving a polynomial number of re-
lated unconstrained sub-problems. Klamroth and Wiecek 
[11] generalized this result to multi-criteria problems. 
Huang et al. [12] find the optimal location of k connec-
tions in the plane for uncapacitated and capacitated loca-
tion problems. Huang et al. [13] considered the same 
problem and find the optimum capacity of each connec-
tion. Huang et al. [14] discussed the same problem sub-
ject to congestion.  

Recently, Canbolat and Wesolowsky [15] presented a 
single facility location problem in the presence of a line 
barrier that is distributed randomly on a given horizontal 
route on the plane. The goal is to locate a new facility 
such that the sum of the expected rectilinear distances 
from the facility to the demand points is minimized. 
They proposed a solution algorithm in which the feasible 
region is divided into two half-planes and to obtain a 
global optimum solution. 

For the first time, location-allocation problem is pre-
sented by Cooper [4] who introduced a general model of 
location-allocation with two new facilities and seven 
demand points. He showed that the objective function is 
neither concave nor convex and may attain several local 
minima. Later on, Badri [16] provided network loca-
tion-allocation problem and many models for this prob-
lem. In a study Brady and Rosenthal [17] provided in-
teractive graphics to solve facility location problems with 
a center objective function involving single as well as 
multiple new facilities in the presence of forbidden re-

gion having any arbitrary configuration. Batta and Leifer 
[18] discussed multi-facility Weber problems with Man-
hattan metric and give lower and upper bounds as well as 
the relative accuracy of solutions for problems with and 
without barriers. A network location problem where de-
mand produced at a node is distance-dependent is ana-
lyzed by Berman and Drezner [19]. The objective is to 
find a given number of facilities on network so that the 
facilities can serve no more than a given number of cus-
tomers. Berman et al. [20] studied the problem of locat-
ing a set of service facilities on a network while the de-
mand for service is stochastic and congestion may occur 
at the facilities while considering two potential sources 
of lost demand like increasing long queues and travel 
distance. In this context, several integer programming 
formulations and heuristic approaches are investigated 
by them. For the same work, Berman et al. [21] proposed 
heuristic-based solution procedures to maximize the ex-
pected number of captured demand when customer de-
mands are stochastic and congestion exists at facilities. 
Also, Zhou and Liu [22] presented models for capaci-
tated location—allocation problem with fuzzy demands. 
Recently, a multi-dimensional mixed-integer optimiza-
tion problem for the location-allocation problem with the 
Euclidean distance in the presence of polyhedral barriers 
is presented by Bischoff et al. [23]. They introduced two 
different alternate location and allocation heuristics and 
used genetic algorithm in the location step of both algo-
rithms. Iyigun and Ben-Israel [24] proposed an iterative 
method for the K facilities location problem. This me-
thod relaxes the problem applying probabilistic assign-
ments, depending on the distances to the facilities, so that 
the probabilities together with the facility locations are 
updated at each iteration. 

In this paper we focus on the capacitated location-al- 
location problem in the presence of k connections in the 
rectangular space (p = 1) and present an MINLP model 
for the problem. In this problem, it is assumed that new 
facilities are capacitated, there is no relationship between 
the new facilities, the solution space is continues and 
each the existing facility can be serviced by only one 
new facility. So, in addition to finding optimum locations 
for the new facilities, the optimum assignments of exist-
ing facilities to any new facility should be searched.  

The rest of this work is organized as follows. In next 
section, the problem structure and definitions are inves-
tigated. In Section 3, we introduce a mathematical pro-
gramming model for the capacitated location-allocation 
problem in the presence of k connection with the rectan-
gular distance. Section 4 contains the computational re-
sults where we evaluate the performance of the proposed 
model. Conclusions and scope for future studies are pro-
vided in the last section. 
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2. Problem Description 

 

 
Let   be set of existing facilities in the 

feasible region. Suppose 

 1, ,i   

 ,i i iX a b

 1, 

 be the ith exist-

ing facility coordinates. Let  be set of 

new facility in the feasible region. Suppose

J,j   

 ,j j jX x y  
be the jth new facility coordinates in the plane, (see Fig-
ure 1). Let wi be the demand of the ith point and Cj be 
the maximum capacity the jth new facility. The feasible 
region  is defined as the union of the two closed  

Figure 1. Demand points with 2 connections. 
 

X are located in the same half-plane we have  ,p i jd X X , half-planes and on both sides. Let 1 2  ,BL
p i jd X X   

without any restrictions. Else the shortest traveled dis-
tance through K connections should be considered. Al-
though, distance metric lp, p=[1, ) is applicable, the 
rectilinear distance, p = 1, is considered for this problem. 

be the p-norm barrier distance between Xi and Xj in the 
presence of a horizontal line barrier which trespassing 
through L

1, ,k  
 is allowed only at the K connections (i.e., 

Pk, ), where K  ,k k kP r s

,ks

 is the coordinates 
of the connections. Since the connections are located on 
a horizontal line, we set    If Xi and  1, , .k   

The p-norm shortest path from each new facility to the 
existing facilities through the connections is as follows. K

 
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 

            (1) 

 

It means that while both iX  and jX  are located in the 
same half-plane, the p-norm distance is computed and 
while iX  and jX  are located in the opposite half- 
plane, the shortest path should be calculated. In this 

case, the shortest permitted path should be considered 
from the new facility to the existing facilities through 
all passages. So, considering p = 1 (i.e., rectilinear dis-
tance), we have: 

   
' '
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,
,

min , , ,
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       
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 

       (2) 

3. Proposed Mathematical Model 
 
In this section, we introduce a nonlinear mathematical 
model for capacitated location-allocation problem in the 
presence of k connections on the line barrier. Generally, 
for the capacitated location-allocation problem with bar-
rier, the problem of locating a set of J new facilities, Xj, 

, with respect to a finite set of I existing facili-
ties, to minimize the total weighted barrier distances can 
be stated as follows: 

1, ,j   J

I
1

1, 1, ,
J

ij
j

z i


               (3) 

1

, 1, ,
I

i ij j
i

w z C j J


    

 0,1 , 1, , , 1, ,ijz i I j J            (4) 

,jX j   

where  1 ,B
i jd X X  is the rectilinear barrier distance 

between the i-th demand point and the j-th new facility 
and the binary variables  stand for the allocation of if 
existing facility i to new facility j, i.e., 

ijz 1
1 1

min ,
I J

LB
i ij i j

i j

w z d X X
 

   

1, if existing facility is assigned to new facility ,
1, , , 1, , .

0, otherwise,ij

i j
z i


      


I j J  
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In this model, constraints (3) assure that each demand 
point can be served only by one new facility. Constraints 
(4) guarantee that the each new facility cannot serve 
more than their correspondence capacity. 

Here, three binary variables and a binary parameter are 
introduced. Let  if the existing facility i and the 
new facility j are located in different half-planes and else 

,  if the existing facility i be served to the 
new facility j through passage k else 

1ijt 

0ijt  1ijku 
0ijku   and 

 if the y-coordinate of the j-th new facility is 
greater than 

1jg 
  ( jy  ), otherwise . Assume 

 if 

0jg
1iq  ib  , else . 0iq

Now, with respect to the parameter and variables in-
troduced, the capacitated location-allocation problem in 
the presence of k connections on the line barrier can be 
written as follows: 

 
1 1 1

min

1

I J K

i ij i k i k j
i j k

j ijk ij i j i j ij

w z a r b r x

y u t a x b y t





  





    





              


 
 (5) 

Subject to: 

1

1, 1, ,
J

ij
j

z i


    I

,  

J

 

1

, 1,
I

i ij j
i

w z C j J


   

1

1, 1, , , 1, ,
K

ijk
k

u i I j


          (6) 

2j j j jy g g y              (7) 

, 1, , ; 1, ,ij i jt q g i I j J        (8) 

 , , , 0,1 , 1, , ; 1, , , 1, ,j ij ij ijkg t z u i I j J k K          

(9) 

,j jx y  0               (10) 

The objective function (5) consists of two parts. The 
first part of the objective function considers the shortest 
path from each existing facility to each the new facility 
through the passages if they are located in the different 
halfplanes. The second part of the objective function 
considers the regular rectilinear metric while the existing 
and new facilities are located in the one halfplane. This 
expression minimizes the total weighted traveled barrier 
distance from each new facility to the allocated existing 
facilities. Constraints (6) assure that the each new facility 
can serve every existing facility through only one con-
nection. Constraints (7) determine that whether the new 
facility j is located in the upper-plane or not. Constraints 
(8) determine that whether the existing facility and the 

new facility, both are located in the same half-planes or 
not. Constraints (9) and constraints (10), respectively, 
show the binary and non-negative variables. Because of 
the complexity of the proposed mathematical program-
ming model in large size problems, a numerical example 
in small size is presented.  
 
4. Numerical Example 
 
In this section we assess the performance of the proposed 
model by providing a numerical example. In this exam-
ple, we will find the optimum locations for establishment 
of two new facilities and the optimum assignments of 
existing facilities to these new facilities in the presence 
of a line barrier with two connections. This example 
consists of 8 existing facilities on the plane. The x and y 
coordinates of existing facilities are provided according 
to the sample data by Canbolat and Wesolowsky [15]. 
However, they considered the problem in the presence of 
a probabilistic line barrier. The coordinates of the exist-
ing facilities and values of demands of the existing fa-
cilities, , 1, ,8iw i    are showed in Table 1. These 
values are chosen in the range [1-10]. The coordinates of 
the connections are provided in Table 2. The proposed 
model has been implemented in the LINGO 9.0 software 
package using global solver. 

To achieve a better understanding of the proposed 
model, the optimum locations found for two new facili-
ties in two cases of without and with barrier are reported 
in Table 3. The capacities of new facilities 1 and 2 are 
considered 16 and 30 respectively. The obtained results 
state that the presence of line barrier with connections 
was effective on the optimum locations of both new fa-
cilities 1 and 2. Also the value of objective function in 
case of with barrier is more than the case of without bar-
rier, as we expected. This addition cost is due to the fact 
that the presence of line barrier can be effective on 
weighted rectilinear distances of mutual points on the  

 
Table 1. Existing facility locations and their demands. 

Existing 
facilitie 

Coordinates wi 

1 (4,2) 10 
2 (12,2) 3 
3 (5,4) 7 
4 (10,4.5) 2 
5 (7,8) 5 
6 (4,9) 2 
7 (12,9.5) 8 
8 (7,11) 7 

 
Table 2. Coordinates of the connections 

Connections Coordinates 
1 (6,6) 
2 (10,6) 
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Table 3. New facility locations. 

Facility 1 Facility 2 
 

*
1x  *

1y  *
2x  *

2y  
Objective 
value 

without 
barrier 

12 9.5 5 4 155.5 

with 
barrier 

4 2 7 9.5 158.5 

 
plane and so on the optimum locations of the new facili-
ties and optimum allocations of existing facilities to new 
facilities. It is worth noting that LINGO software re-
ceived to the global optimum solutions. It is obvious that 
by increasing number of new facilities, the objective 
values of problem will be decreased. For the case of 8 
new facilities (I = J = 8) the objective function value will 
be zero because in this case every existing facility will be 
allocated to unique new facility. So, summation of the 
weighted rectilinear barrier distances of between the new 
facilities and existing facilities will be zero. 

In Figure 2 the example problem together with the 
optimum locations and corresponding allocation clusters 
in the case of two new facilities for two situations of 
without and with barrier (cases (a) and (b)) are depicted. 
It can be observed that in case (a), the new facility 1 ser-
vices the existing facilities 7 and 8 whereas in case b this 
facility services the existing facilities 1, 2 and 4. Also, 
new facility 2 in case a, services the existing facilities 1 
to 6 whereas in case b services the existing facilities 3, 5, 
6, 7 and 8. So, in the mentioned location-allocation prob-
lem, the presence of the barrier not only can be effect on 
the total cost but can be effect on the optimum locations 
of some new facilities and the relevant optimum alloca-
tions.  

In this example, when n = 1 and 8, two special cases 
occur. In the first case (n = 1), every existing facility will 
be allocated to the same new facility and in the second 
case (n = 8), every existing facility will be allocated to a 
different one and so the objective value will be zero.  
 
5. Conclusions 
 
We proposed a mixed-integer nonlinear programming 
model for the location-allocation problem in the pres-
ence of a line barrier with K connections. Our aim was to 
find the optimal locations of a given set of new facilities 
and the optimal allocations of existing facilities to these 
new facilities for minimizing the total weighted traveled 
rectilinear barrier distances from the new facilities to the 
existing. To show validation of the proposed model, a 
numerical example was provided. We solved the exam-
ple problem using LINGO 9.0 software that led to the 
global optimum solutions. The results illustrated that the 
presence of a line barrier with two connections on the 
line barrier not only affected on the objective value of 
the problem, but also affected on the optimum locations 
and allocations of the new facilities in compared with 
case of without barrier. 

For future research, the other distance functions such 
as the Euclidean distance function can be considered. 
Megiddo and Supowit [25] demonstrated the multi We-
ber problems are NP-hard and also Bischoff et al. [23] 
stated that the multi-Weber problems with barrier which 
reduces to the multi-Weber problems if no barriers are 
present is also NP-hard. So, designing some heuristic or 
meta-heuristic methods to solve the proposed model in 
the large scales are another extension for this problem. 

 

   
(a)                                                            (b) 

Figure 2. The optimum locations and the corresponding allocation clusters for two new facilities. (a): Without barrier; (b): 
With barrier. 
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