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Abstract
In this article, an attempt based on Spin Topological Space, STS, to give a

reasonable detailed account of the cause of photonic fermionization phenomena of
light photon is made.

STS is an unconventional spin space in quantum mechanics, which can be used
to account for where the unconventional half-integer spin eigenvalues phenomenon
of light photon comes from.

We suggest to dectect the possible existence of photonic one-third-spinization
phenomenon of light photon, by using three beams of light photon in interference
experiment.
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———————————————————————————————————–
1 Introduction
Kyle E. Ballantine, John F. Donegan and Paul R. Eastham [1] measured the

total angular momentum of the beam of light with their interferometer, and
observed some curious optical phenomena. They found: the eigenvalues of angular
momentum of light photon obviously shifted away from the normal physical values
that are ruled by the general axioms accepted in today’s quantum mechanics world.

Normal angular momentum quantum numbers of the photon must be integers, in
units of the Planck constant : eigenvalues of spin are −1, 0, 1 and eigenvalues
of orbital are 0, 1, 2, 3, . . .

However, as the title of their paper, " There are many ways to spin a photon:
Half-quantization of a total optical angular momentum " [1] shows: the experimental
data in [1] were half-integer, /2 and −/2, or even may be 1.5 and −1. 5...！
It is an important physicial experiment result, and indeed, light photon is boson,
however possesses fermionic, spectrum ! curious phenomena...

Journal of Modern Physics, 2016, 7, 1364-1374 
Published Online July 2016 in SciRes. http://www.scirp.org/journal/jmp 
http://dx.doi.org/10.4236/jmp.2016.711123  

How to cite this paper: Ren, S.X. (2016) There Is a Way to Comprise Half-Integer Eigenvalues for Photon Spin. Journal of 
Modern Physics, 7, 1364-1374. http://dx.doi.org/10.4236/jmp.2016.711123  



This present article, " There is a way to comprise half-integer eigenvalues for
photon spin ", is in the frame of Spin Topological Space, STS [2] to consider the
contributions of spin effects of light photon, and tries to clear up the cause of the
photonic fermionization phenomena, which emerged from the experiment [1].

The contributions of orbital effects of light photon, which show half-integer
eigenvalues, could appeal to the mechanism of Non-Hermitian orbital angular
momentum L3, L2 [3].

Normally, in quantum mechanics, different kinds of spin particles possess
different dimensional spaces, which are expressed by finite dimensional matrices,
and these finite dimensional matrices are all Hermiticity.

According to STS , spin angular momentum l of particles is expressed by
infinite dimensional matrices in three-physical space. The first component 1l and
the second component 2l are Non-Hermitian matrices; the third component 3l
is Hermitian diagonal matrix. Here, mark " l " indicates the lth generation spin
particles, l  1, 2, 3, . . .

2 Three groups of matrices 3, −3(2), 2, −1(1), 3/2, −3/2(1) of light photon
particle l, which satisfy spin angular momentum commutation relus, play the
major role in elaborating the machanism of photonic fermionization phenomena.

3, −3(2)  3, −3(2)  i3, −3(2) (1)

2, −1(1)  2, −1(1)  i2, −1(1) (2)

3/2, −3/2(1)  3/2, −3/2(1)  i3/2, −3/2(1) (3)
Where

3, −3(2)  { 1; 3,−3(2), 2; 3,−3(2), 3; 3,−3(2) } (4)

2, −1(1)  { 1; 2,−1(1) , 2; 2,−1(1) , 3; 2,−1(1) } (5)

3/2, −3/2(1)  { 1; 3/2, −3/2(1) , 2; 3/2, −3/2(1) , 3; 3/2, −3/2(1) } (6)

Or instead of (1), (2), (3), in terms of raising matrix operator j
, lowering matrix

operator k
− and 3; j, k, i. e. (7) below, to represent commutation rules (8), (9), (10)

of light photon with three different kinds of spin state (  1):
{ j

(l), k
−(l), 3; j,k(l) } (7)

3
 (2)−3− (2) – −3− (2)3

 (2)  23; 3, −3(2) (8.1)
3; 3, −3(2)3

 (2) – 3
 (2)3; 3, −3(2)  3

 (2) (8.2)
3; 3, −3(2)−3− (2) – −3− (2)3; 3, −3(2)  −−3− (2) (8.3)

2
 (1)−1− (1) – −1− (1)2

 (1)  23; 2, −1(1) (9.1)
3; 2, −1(1)2

 (1) – 2
 (1)3; 2, −1(1)  2

 (1) (9.2)
3; 2, −1(1)−1− (1) – −1− (1)3; 2, −1(1)  −−1− (1) (9.3)

3/2
 (1)−3/2

− (1) – −3/2
− (1)3/2

 (1)  23; 3/2, −3/2(1) (10.1)

3; 3/2, −3/2(1)3/2
 (1) – 3/2

 (1)3; 3/2, −3/2(1)  3/2
 (1) (10.2)

3; 3/2, −3/2(1)−3/2
− (1) – −3/2

− (1)3; 3/2, −3/2(1)  −−3/2
− (1) (10.3)



Write down the explicit representations of raising matrix operators and lowering
matrix operators that appear in the above three formulas (8), (9), (10):

3
 (2)  1

2 diag{ , 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, , }2 (11)
−3− (2)  1

2 diag{ , -2, -1, 0, 1, 2, 3, 4, 5, 6, -7, -8, , }−2 (12)

2
 (1)  diag{ , 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, , }1 (13)
−1− (1)  diag{ , -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, , }−1 (14)

3/2
 (1)  1

2 diag{ , 13, 11, 9, 7, 5, 3, 1, -1, -3, -5, -7, , }1 (15)
−3/2
− (1)  1

2 diag{ , -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, -13, , }−1 (16)

Subscripts " 1 " and " -1 " represent the first minor top-right diagonal and the
first minor down-left diagonal.

Subscripts " 2 " and " -2 " represent the second minor top-right diagonal and
the second minor down-left diagonal.

Subscripts " 0 " indicates major diagonal, sometimes for convenience be omitted.

In condition for keeping photon’s Casimir operator invariant, that is, keeping

3,−3
2 (2)  2 , −1

2 1  3/2,−3/2
2 1  11  1I02  2I02 (17)

I0  diag{ , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, , }0 (18)

Further, next three groups of math series forms of the spin third component
3l of light photon are obtained as below

3; 3, −3(2)
 diag{, 3, 2.5, 2, 1.5, 1, 0.5, 0, -0.5, -1, -1.5, –2, ,}0 (19)

3; 2 , −1(1)
 diag{, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, ,}0 (20)

3; 3/2, −3/21
 diag{, 5.5, 4.5, 3.5, 2.5, 1.5, 0.5, -0.5, -1.5, -2.5, -3.5, -4.5, ,}0

(21)

(19): Alternating series form of Integer eigenvalues and Half-integer eigenvalues
(20): Integer eigenvalues series form
(21): Half-integer eigenvalues series form

(19), (20), (21) are just seperately the figures of what happening in Kyle E.
Ballantine’s and his colleagues’ experiment:

Integer eigenvalues series form (20) and half-integer eigenvalues series form (21)
give the accounts of " One family includes have the expected bosonic spectrum
with integer eigenvalues, and other family, has a fermionic spectrum, comprising
half-integer eigenvalues. " (quoted passage from the paper [1]).



By the way, (20) 3; 2 , −1(1) and (21) 3; 3/2, −3/21, both of them are together
involved in (19) 3; 3, −3(2). So it seems that there should exist the third family,
alternating series form of Integer eigenvalues and Half-integer eigenvalues (19).

3 Physical behavior mechanism of photonic fermionization of light photon
experiment

Now, matrices (8), (9), (10) can be used to describe the experiment rusults (17)
and (19), (20), (21) of photonic fermionization phenomena of light photon, but from
what kind of experimental procedure of physical behavior mechanism, these
experimental results arise ?

For this reason, deeper research is given. Be concise, the sign of "(1)", is
omitted in follows.

Because 2, −1 and m2 , m−1 are spin angular momentums in STS, it means：

2, −1  2, −1  i2, −1 (2)
m2 , m−1  m2 , m−1  im2 , m−1 (22)

Using the linear combinanation of (2) with (22), a new spin angular momentum
m/2 2 , m/2 −1 (23) is composed, and it obeys commutation rule (24)

m/2 2 , m/2 −1  1
2 {m2 , m−1  2, −1 } ... (23)

m/2 2 , m/2 −1  m/2 2 , m/2 −1  i m/2 2 , m/2 −1 (24)

2, −1, m2 , m−1 and m/2 2 , m/2 −1 all are light photon, since their Carsimir
operators equal to 22, i. e.

2,−1
2  m2 , m−1

2  m/2 2 , m/2 −1
2  11  1I02  2I02 (25)

Write down the third component of (23), and its exlicit formulation (26. m) as
below:

3; m/2 2 , m/2 −1  1
2 { 3; m2 , m−1  3; 2,−1 } ; m  0, 1, 2, 3, 4, ... (26. m)

3; 4, 1  1
2 { 3; 6 , 3  3; 2,−1 }

 diag{ , 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, ,} (26.4)

3; 7/2,1/2  1
2 { 3; 5 , 2  3; 2,−1 }

 1
2 diag{ , 15, 13, 11, 9, 7, 5, 3, 1, -1, -3, -5, ,} (26.3)

3; 3, 0  1
2 { 3; 4 , 1  3; 2,−1 }

 diag{ , 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, ,} (26.2)

3; 5/2,−1/2  1
2 { 3; 3 , 0  3; 2,−1 }

 1
2 diag{ , 13, 11, 9, 7, 5, 3, 1, -1, -3, -5, -7, ,} (26.1)

 3; 2, −1  1
2 { 3; 2,−1  3; 2,−1 }

 diag{ , 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, ,} (26.0)

 3; 3/2,−3/2  1
2 { 3; 1, −2  3; 2,−1 }

 1
2 diag{ , 11, 9, 7, 5, 3, 1, -1, -3, -5, -7, -9, ,} (26.-1)



3; 1,−2  1
2 { 3; 0 , −3  3; 2,−1 }

 diag{ , 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, ,} (26.-2)

3; 1/2,−5/2  1
2 { 3; −1 , −4  3; 2,−1 }

 1
2 diag{ , 9, 7, 5, 3, 1, -1, -3, -5, -7, -9, -11, ,} (26.-3)

3; 0 ,−3  1
2 { 3; −2 , −5  3; 2,−1 }

 diag{ , 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6 ,} (26.-4)

From (26), two important conclusions are given
1) There exist two diffrent families of the third component of light photon：

family BP: Bosonization of Photon, labelled by "  ",
family FP: Fermionization of Photon, labelled by "  "

For light photon, the angular momentum addition of two angular momentums,
one angular momentum BP1 with other angular momentum FP2, may generate two
diffrent families of the third component of light photon.

BPm  1
2 { BP1m  BP20 } ; m  0, 2, 4, 6, . . . (27)

FPm  1
2 { BP1m  BP20 } ; m  1, 3, 5, 7, . . . (28)

BP and FP alternately appear with m.

2) For a fixed term of the new spin angular momentum 3; m/2 2 , m/2 −1, there
are many options to choose from the general expression (29).

BPm,m′, FPm,m′  1
2 { BP1m  BP2m′ } (29)

m, m′  0, 1, 2, 3, . . .

Family BP (27) and Family FP (28) are the simplest couple, in which one
spin angular momentum BP20, 3; 2,−1 is keeping invariant, as other spin angular
momentum BP1m, m2 , m−1 varies with m in expression 3; m/2 2 , m/2 −1 (26. m).

(20) 3; 2 , −1(1) and (21) 3; 3/2, −3/2(1), which are the part of expression
3; m/2 2 , m/2 −1 (26. m). When m equals to 0 and -1, (20) and (21) are just (26.0)
family BP0 and (26.-1) family FP-1.

The relationship between (20) and (21), or equivalent to that between matrices
(9) and (10), could refer to the math statements (26.0) and (26.-1). They are the
results of the additions of spin angular momentum photon 3; 2,−1 with photon
3; 2,−1, and photo 3; 1, −2 with photon 3; 2,−1 in Ballantine’s and his colleagues’
experiment.

By the way, the intervals between two adjoining BP and FP is 
2

Δ3; m/2 2 , m/2 −1  FPm  1 − BPm   
2 I0 (30)



4 Prediction about one-third-spinization phenomenon of light photon
Proceeding in above way, parallel to the math structure of three groups of

matrices (11), (12) and (13), (14), (15), (16) for photonic fermionization, we guess
at the existent of so-call photonic one-third-spinization phenomenon of light photon,
and four groups of matrices (31), (32) and (33), (34), (35), (36), (37), (38) are given,
below labelled by " ♣ ".

4
 (3)  1

2 diag{ , 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, , }3 (31)
−5− (3)  1

2 diag{ , 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, , }−3 (32)

2
 (1)  diag{ , 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, , }1 (33)
−1− (1)  diag{ , -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, , }−1 (34)

5/3
 (1)  1

3 diag{ , 20, 17, 14, 11, 8, 5, 2, -1, -4, -7, -10, , }1 (35)
−4/3
− (1)  1

3 diag{ , 11, 8, 5, 2, -1, -4, -7, -10, -13, -16, -19, , }−1 (36)

4/3
 (1)  1

3 diag{ , 19, 16, 13, 10, 7, 4, 1, -2, -5, -8, -11, , }1 (37)
−5/3
− (1)  1

3 diag{ , 10, 7, 4, 1, -2, -5, -8, -11, -14, -17, -20, , }−1 (38)

As well as photon’s Casimir operator
4,−5

2 (3)  2 , −1
2 1  5/3,−4/3

2 1  4/3,−5/3
2 1  11  1I02  2I02 (39)

Accordingly, next four groups of math series forms of the spin third component
3l of light photon are obtained as below

3; 4, −53 
diag{, 2, 5/3, 4/3, 1, 2/3, 1/3, 0, -1/3, -2/3, -1, -4/3, ,}0 (40)

3; 2 , −11 
diag{, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, ,}0 (41)

diag{, 18/3, 15/3, 12/3, 9/3, 6/3, 3/3, 0 /3, -3/3, -6/3, -9/3, -12/3, ,}0

3; 5/3,−4/31 
diag{, 17/3, 14/3, 11/3, 8/3, 5/3, 2/3, -1/3, -4/3, -7/3, -10/3, -13/3, ,}0 (42)

3; 4/3,−5/31 
diag{, 16/3, 13/3, 10/3, 7/3, 4/3, 1/3, -2/3, -5/3, -8/3, -11/3, -14/3, ,}0 (43)

(41), (42), (43) combine to form (40). All of them imply that the third
component eigenvalues of light photon can be integer, one-third-integer series.

Let us have some acquaintance with the relationship among (41), (42), (43), by
the general formula of addition of spin angular momentum of light photon (44.m).

It is shown that (41), (42), (43) are (44.0), (44.-1), (44.-2), which are parts of
general formular (44) below



General formula of the addition of light photon are given by (44.m)

3; m/3 2 , m/3 −1  1
3 { 3; m2 , m−1  23; 2,−1 } ; m  0, 1, 2, 3, ... (44.m)

3; 4, 1  1
3 { 3; 8, 5  23; 2,−1 }

 diag{ , 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, , } (44.6)

♣3; 11/3, 2/3  1
3 { 3; 7, 4  23; 2,−1 }

 1
3 diag{ , 23, 20, 17, 14, 11, 8, 5, 2, -1, -4, -7, , } (44.5)

♣3; 10/3, 1/3  1
3 { 3; 6, 3  23; 2,−1 }

 1
3 diag{ , 22, 19, 16, 13, 10, 7, 4, 1, -2, -5, -8, , } (44.4)

3; 3, 0  1
3 { 3; 5, 2  23; 2,−1 }

 diag{ , 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, , } (44.3)

♣3; 8/3,−1/3  1
3 { 3; 4, 1  23; 2,−1 }

 1
3 diag{ , 20, 17, 14, 11, 8, 5, 2, -1, -4, -7, -10, , } (44.2)

♣3; 7/3,−2/3  1
3 { 3; 3, 0  23; 2,−1 }

 1
3 diag{ , 19, 16, 13, 10, 7, 4, 1, -2, -5, -8, -11, , } (44.1)

3; 2, −1  1
3 { 3; 2,−1  23; 2,−1 }

 diag{ , 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, , } (44.0)

 1
3 diag{ , 18, 15, 12, 9, 6, 3, , 0 -3, -6, -9, -12, , }

♣3; 5/3,−4/3  1
3 { 3; 1,−2  23; 2,−1 }

 1
3 diag{ , 17, 14, 11, 8, 5, 2, -1, -4, -7, -10, -13, , } (44.-1)

♣3; 4/3,−5/3  1
3 { 3; 0 ,−3  23; 2,−1 }

 1
3 diag{ , 16, 13, 10, 7, 4, 1, -2, -5, -8, -11, -14, , } (44.-2)

3; 1,−2  1
3 { 3; −1,−4  23; 2,−1 }

 diag{ , 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, , } (44.-3)
♣3; 2/3,−7/3  1

3 { 3; −2,−5  23; 2,−1 }
 1

3 diag{ , 14, 11, 8, 5, 2, -1, -4, -7, -10, -13, -16, , } (44.-4)

♣3; 1/3,−8/3(1)  1
3 { 3; −3,−6  23; 2,−1 }

 1
3 diag{ , 13, 10, 7, 4, 1, -2, -5, -8, -11, -14, -17, , } (44.-5)

3; 0 ,−3  1
3 { 3; −4,−7  23; 2,−1 }

 diag{ , 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, , } (44.-6)

BPm  1
3 { BP1m  2BP20 } ; m  0, 3, 6. , . . (45)

DP♣m  1
3 { BP1m  2BP20 } ; m  1, 2, 4, 5, . . . (46)

Δ3; m/3 2 , m/3 −1  DP♣m  1 − BPm   
3 I0 (47)

And 2,−1
2  m2 , m−1

2  m/3 2 , m/3 −1
2  11  1I02  2I02 (48)



Combine (44), (26), obtian:

3; m/6 2 , m/6 −1  1
3 { 3; m2 , m−1  23; 2,−1 } ; m  0, 1, 2, 3, ... (49.m)

3; 4, 1  1
3 { 3; 8, 5  23; 2,−1 }

 diag{ , 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, ,} (49.12)
3; 23/6,5/6  1

3 { 3; 15/2, 9/2  23; 2,−1 }
 1

6 diag{ , 47, 41, 35, 29, 23, 17, 11, 5, -1, -7, -13, } (49.11)

♣3; 11/3, 2/3  1
3 { 3; 7, 4  23; 2,−1 }

 1
3 diag{ , 23, 20, 17, 14, 11, 8, 5, 2, -1, -4, -7, } (49.10)

3; 7/2,1/2  1
3 { 3; 13/2, 7/2  23; 2,−1 }

 1
2 diag{ , 15, 13, 11, 9, 7, 5, 3, 1, -1, -3, -5, ,} (49.9)

♣3; 10/3, 1/3(1)  1
3 { 3; 6, 3  23; 2,−1 }

 1
3 diag{ , 22, 19, 16, 13, 10, 7, 4, 1, -2, -5, -8, } (49.8)

3; 19/6,1/6  1
3 { 3; 11/2, 5/2  23; 2,−1 }

 1
6 diag{ , 43, 37, 31, 25, 19, 13, 7, 1, -5, -11, -17, } (49.7)

3; 3, 0  1
3 { 3; 5, 2  23; 2,−1 }

 diag{ , 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, ,} (49.6)
3; 17/6,−1/6  1

3 { 3; 9/2, 3/2  23; 2,−1 }
 1

6 diag{ , 41, 35, 29, 23, 17, 11, 5, -1, -7, -13, -19, } (49.5)

♣3; 8/3,−1/3  1
3 { 3; 4, 1  23; 2,−1 }

 1
3 diag{ , 20, 17, 14, 11, 8, 5, 2, -1, -4, -7, -10, } (49.4)

3; 5/2,−1/2  1
3 { 3; 7/2, 1/2  23; 2,−1 }

 1
2 diag{ , 13, 11, 9, 7, 5, 3, 1, -1, -3, -5, -7, ,} (49.3)

♣3; 7/3,−2/3  1
3 { 3; 3, 0  23; 2,−1 }

 1
3 diag{ , 19, 16, 13, 10, 7, 4, 1, -2, -5, -8, -11, ,} (49.2)

3; 13/6,−5/6  1
3 { 3; 5/2,−1/2  23; 2,−1 }

 1
6 diag{ , 37, 31, 25, 19, 13, 7, 1, -5, -11, -17, -23, ,} (49.1)

3; 2, −1  1
3 { 3; 2,−1  23; 2,−1 }

 diag{ , 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, ,} (49.0)
3; 11/6,−7/6  1

3 { 3; 3/2,−3/2  23; 2,−1 }
 1

6 diag{ , 35, 29, 23, 17, 11, 5, -1, -7, -13, -19, -25, ,} (49.-1)

♣3; 5/3,−4/3  1
3 { 3; 1,−2  23; 2,−1 }

 1
3 diag{ , 17, 14, 11, 8, 5, 2, -1, -4, -7, -10, -13, ,} (49.-2)

3; 3/2,−3/2  1
3 { 3; 1/2, −5/2  23; 2,−1 }

 1
2 diag{ , 11, 9, 7, 5, 3, 1, -1, -3, -5, -7, -9, ,} (49.-3)



♣3; 4/3,−5/3  1
3 { 3; 0 ,−3  23; 2,−1 }

 1
3 diag{ , 16, 13, 10, 7, 4, 1, -2, -5, -8, -11, -14, ,} (49.-4)

3; 7/6,−11/6  1
3 { 3; −1/2, −7/2  23; 2,−1 }

 1
6 diag{ , 31, 25, 19, 13, 7, 1, -5, -11, -17, -23, -29, } (49.-5)

3; 1,−2  1
3 { 3; −1,−4  23; 2,−1 }

 diag{ , 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, ,} (49.-6)
3; 5/6,−1/2  1

3 { 3; −3/2, −9/2  23; 2,−1 }
 1

6 diag{ , 29, 23, 17, 11, 5, -1, -7, -13, -19, -25, -31, ,} (49.-7)

♣3; 2/3,−7/3  1
3 { 3; −2,−5  23; 2,−1 }

 1
3 diag{ , 14, 11, 8, 5, 2, -1, -4, -7, -10, -13, -16, ,} (49.-8)

3; 1/2,−5/2  1
3 { 3; −5/2, −11/2  23; 2,−1 }

 1
2 diag{ , 9, 7, 5, 3, 1, -1, -3, -5, -7, -9, -11, ,} (49.-9)

♣3; 1/3,−8/3(1)  1
3 { 3; −3,−6  23; 2,−1 }

1
3 diag{ , 13, 10, 7, 4, 1, -2, -5, -8, -11, -14, -17, ,} (49.-10)

3; 1/6,−17/6  1
3 { 3; −7/2, −13/2  23; 2,−1 }

 1
6 diag{ , 25, 19, 13, 7, 1, -5, -11, -17, -23, -29, -35, ,} (49.-11)

3; 0 ,−3  1
3 { 3; −4,−7  23; 2,−1 }

 diag{ , 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, ,} (49.-12)

By the way, the intervals between above two adjoining 3 is 
6

Δ3; m/6 2 , m/6 −1  3; m1/6 2 , m1/6 −1 − 3; m/6 2 , m/6 −1  
6 I0 (50)

Reducing (30), (47), (50) to following limitation

n  
Lim Δ3; m/2n 2 , m/2n −1  3; m1/2n 2 , m1/2n −1 − 3; m/2n 2 , m/2n −1  

2n I0 (51)

And 4,−5
2 3  m2 , m−1

2 1  m/6 2 , m/6 −1
2 1  11  1I02  2I02 (52)

5 Conclusions
This paper bases on the principle of the addition of spin angular momentums in

STS frame, trying to explain the Non-boson-spinization phenomenon of light photon
that occurred in [1]. Particle’s spin angular momentums itself, which are influencing
on the light photon interference, maybe, rather than the physical quantity phase of
propagating light wave causing alone, from previous experiences.

By Table A. Explanation for what happening in photonic fermionization of
light photon experiment [1].

By Table B. Suggestion for dectecting the possible existence of photonic
one-third-spinization phenomenon of light photon, by using three beams of light
photon in interference experiment.

By (51) When the numbers of beams of light photon increase, the
intervals between two adjoining 3 become narrower, and the interference patterns
approach to continuous spectrum.



Table A. Interference by two beams of light photon [1]

fermionization phenomenon of light photon


boson-spinization  fermionization



2,−1 , 2,−1   1,−2 , 2,−1


1
2 {3; 2,−1  3; 2,−1}   1

2 {3; 1,−2  3; 2,−1}
(26.0)  (26.-1)


3; 2 , −11   3; 3/2 , −3/21

(20)  (21)

..., 2, 1, 0, -1, -2, ,...   ..., 1.5, 0.5, -0.5, -1.5, ,...



Table B. Interference by three beams of light photon

one-third-spinization phenomenon of light photon

 
boson-spinization  one-third-spinization  one-third-spinization

 

2,−1, 2,−1, 2,−1   1,−2, 2,−1, 2,−1   0,−3, 2,−1, 2,−1

 
1
3 {3; 2,−1  23; 2,−1}   1

3 {3; 1,−2  23; 2,−1}   1
3 {3; 0 ,−3  23; 2,−1}

(44.0)  (44.-1)  (44.-2)
 

3; 2 , −11   3; 5/3,−4/31   3; 4/3,−5/31
(41)  (42)  (43)

..., 3/3, 0 /3, , ...   ..., 2/3, -1/3, , ...  ..., 1/3, -2/3, , ...

 
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