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Abstract 
 
Systems described by a wide set of variables, like rock compositions, may be often modeled by a reduced set 
of components, like minerals, that can be represented in diagrams in two or three dimensions. This paper 
deals with an original algorithm that allows the representation of compositional data in tetrahedral diagrams, 
provided that they can be recast on the basis of four end members. The algorithm is based on the orthogonal 
projection of a given point belonging to Rn to the 3D-space through four Rn points representing the composi- 
tions of suitable end members. The algorithm is applied to the assessment of mass balance problems (in 
weight% or molar basis) as well as to the identification of the geochemical imprint revealed by isotope ratios 
in igneous rock suites. The fields of possible applications are by far wider, encompassing all problems of 
comprehensive data representation from a multidimensional space to a bi-dimensional plot. 
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1. Introduction 
 
Chemical composition of geologic systems (minerals, 
rocks, fluids, Earth reservoirs) may be described in terms 
of major and trace elements, as well as isotope ratios: a 
system may be thus represented by a set of n chemical 
variables corresponding to a point in the n-dimensional 
space. As a common practice, petrologists represent rela- 
tions between geological systems (e.g. fractional crysta- 
llization or mixing processes) adopting 2D sections of 
the n-dimensional compositional space, as in Harker’s 
diagrams. 

3D diagrams are seldom used and, more commonly, 
relations among three compositional variables, recast to a 
constant sum (usually 1 or 100), are shown in triangular 
diagrams. The use of tetrahedral diagrams is limited, 
even if algorithms for a quick projection on the Cartesian 
plane have been already developed [1]. 

In systems with many components, compositions are 
often calculated in terms of end members: this is the case 
of minerals forming solid solutions, whose composition 
may be given as a mixture of the pure end members. A 
similar procedure is adopted in normative calculations 
that allow to recast the chemical analysis of a rock by 
fictive minerals. Similar approaches are adopted in ex- 

perimental petrology when the chemical complexity of 
the systems is reduced to a small number of end mem- 
bers, suitable for representation in triangular or tetra- 
hedral diagrams [2-4]. 

This paper focuses on a method to represent the com- 
position of a system depending on a small number of end 
members defined by a given set of components. The case 
here discussed refers to a system in which four end 
members may form a suitable base for the compositional 
space, as in projections of petrologic interest or in iso- 
topic systematic of OIB mantle reservoirs. It is worth to 
note that the a priori choice of four end members does 
not inhibit the possibility to represent additional phases: 
they will lay within the tetrahedron—as in the simplex 
approach [5]—if they are physical mixture of the end 
members; otherwise they will fall outside the tetrahedron 
if they are linear combinations of the end members with 
at least one negative tetrahedral coordinate. The scaling 
problems arising from the evaluation of Euclidean dis- 
tance in multidimensional analysis performed through 
eigenvectors [6] does not induce biases in this method, 
since it uses the computation of the tetrahedral coor- 
dinates of each point which implies data normalization 
with respect to the values assumed by the end members 
at tetrahedron vertices. 
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2. The Algorithms 
 
The code, the data sets, the figures and an introduction to 
Euclidean spaces are available for download at the add- 
ress: http://alan.dma.unipi.it/?page_id=1078. 
 
2.1. Generalities 
 
Assume that a system E is described in terms of n com- 
ponents (e.g. major elements): the n-tuple of values that 
define E can be thus considered as a vector of the n- 
dimensional space.  

Considering A, B, C, D as the vertices of a tetrahedron 
in Rn, we want to find a set of relations representing a 
point E ≡ (E1,E2,…, En ) of n-dimensional space in terms 
of  the four end members: 

A ≡ (A1,A2,···,An )    B ≡ (B1,B2,···,Bn ) 

C ≡ (C1,C2,···,Cn )    D ≡ (D1,D2,···,Dn ) 

To show the rationale of the procedure we start with 
the two end-member model of Figure 1. The end mem- 
bers A and D define the vector v1 = A – D and the pro- 
jection E* of E onto the straight line through A and D is 
obtained by : 

 

 

Figure 1. Exemplification in xy-plane of the projection 
method. The extremes of the segment AD represent the 
end-members and allow to define a map (orthogonal pro- 
jection) of any point E to E*, belonging to the line AD. The 
vector v1 = A – D and the projection E* of E to the straight 
line through A and D is obtained by E* = D + 1v1 = (1 – 1) 
D + 1A where 1 – 1 and 1 are the “two end-member” 
coordinates of E*. The coefficient 1 is allowed to assume 
negative values to satisfy to the lever rule. For 0 < 1 < 1 E* 
lays on the segment AD, is a convex combination of the two 
end members, and represents a physical mixture of them. If 
not, as in depicted case, E* still results from a linear com- 
bination of A and D: this guarantees the possibility of rep- 
resenting the projection of E, but claims for a different 
choice of end members to obtain E* as a physical mixture. 

E* = D + 1 v1 = (1 – 1) D + 1 A 

where, according to the lever rule, 1 – 1 and 1 are the 
“two end-member” coordinates of E*, equivalent to the 
tetrahedral coordinates in the case of four end-members. 
For 0 < 1 < 1 E* lays on the segment AD, is a convex 
combination of the two end members, and represents a 
physical mixture of them. If not, as in Figure 1, E* still 
results from a linear combination of A and D: this gua- 
rantees the possibility of representing the projection of E, 
but claims for a different choice of the end members to 
obtain E* as a physical mixture. 
 
2.2. Anamorphosis: The Algorithm to Recast 

Analyses in Terms of End Members 
 
In the case of four end members, the algorithm computes 
the orthogonal projection of the point E* in the 3D space 
through the end members, minimizing the n-dimensional 
Euclidean distance from the given point E (see the file 
“Vectors_in_Euclidean_Spaces.doc” at the data repo- 
sitory site http://alan.dma.unipi.it/?page_id=1078 for 
generalities of the projection method in Euclidean 
space). 

The steps of the algorithm are: 
Given the tetrahedron vertices (the end members) A, B, 

C, D, Rn, we compute vectors: 

v1 = A – D, v2 = B – D, v3 = C – D 

Set 2 1
2
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-- For each point, we compute the vector E’ = E – D 
and its orthogonal projection E” onto the subspace <w1, 
w2,w3>, that is E” = 1 w1 +2 w2 + 3 w3. 

where I 2
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 iE w

, i = 1, 2, 3. 

Recall that E” is the linear combination of w1, w2, w3  
nearest to E’ in Rn. 

Since the distance is translation-invariant, it follows 
that 1 1 2 2 3 3E D E D v v v          is the point in 
3D passing through A, B, C, D nearest to D + E’ = E. 

Finally, we remark that 
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The sum of the four coefficients of the end members at 
the right hand of the above formula is 1; therefore, they 
represent the tetrahedral coordinates i of E* with respect 
to the four vertices A, B, C, D. Remark that if 1, 2, 3, 
4 ≥ 0, and 1, 2, 3, 4 ≤ 1, the corresponding point lays 
within the tetrahedron with vertices A, B, C, D, repre-
sents a physical mixture of end members and the data set 
belongs to a simplex [5]. If some coefficient i > 1, one 
or more coefficients have to attain negative values, due 
to the constant sum constraint, and the corresponding 
point has to lay outside the tetrahedron, requiring a dif-
ferent choice of the end members to express the data as 
physical mixtures. 

The tetrahedral coordinates i are given by: 

1 1 2 3 3

2 2 3

3 3

4 1 2 3 2 3 3 3

1 2 3

1

1
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The point E* coincides with E if and only if E itself is 
a linear combination in Rn of the end members with sum 
of coefficients equal to one (Figure 1 shows the case 
when E lays on the line through AD); otherwise, E* is 
distinct from E, while enjoying the property to be at the 
minimal Euclidean distance from it, among all points of 
the (affine) subspace passing through the end members. 

Let now (T1, T2, T3, T4) be the vectors in R3 to which 
the tetrahedron vertices A, B, C, D are mapped on. 

Finally, E will be mapped in R3 onto E** by the 
relation 

E** = 1 T1 + 2 T 2 + 3 T 3 + 4 T 4. 

For a regular tetrahedron a possible choice is : 
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2.3. Tetra: The Algorithm to Plot Data in 

Rotating Tetrahedral Diagrams 
 
The actual visualization requires a further mapping, 
namely a graphical projection from R3 to the xy-plane, 
i.e. the computer screen. All the well known drawing 
maps, as Monge orthogonal, axonometric and perspec- 
tive projections may work fine. We chose the vertical 
(orthogonal) projection on the YZ plane with a software 
that allows the user to choose the size, the type and the 
orientation of the tetrahedron. Moreover, animated rota- 
tion does provide a highly satisfactory perception of the 

spatial distribution of data. Rotation is easily accom- 
plished by using spherical coordinates, starting from a 
“canonical” orientation of the tetrahedron: set the centre 
in the origin of the axes and let the coordinates of vertex 
T1 be (0,0,r), while the edge T2 T3 forms an angle  with 
the Y axis (Figure 2). It follows that the coordinates of B 
are: 
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where  is the angle T1OT2; the coordinates of vertices 
T3 e T4 can be obtained from the above equations substi-
tuting  with (+ 2/3) and (+ 4/3) respectively. 
Varying  causes the tetrahedron to rotate around Z axis. 

If tetrahedron is also allowed to rotate around the Y 
axis of an angle , the new coordinates iX  , iY  , iZ   of 
each vertex are related to the old ones by the equations: 

  
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i i i

i i

i i i

X X Z

Y Y

Z X Z
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  


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The above equations show the dependence of the ver-
tices (T1,T2,T3,T4) on  and  and the relation : 

E** = 1 T1 + 2 T2 + 3 T3 + 4 T4 

allows to visualize the data set from different points of 
view. The animation is provided through step by step 
increments of  and  revealing possible clusters or spe- 
cial arrangements on planes or lines. 
 

 

Figure 2. Canonical orientation of tetrahedral diagram used 
to plot data recast on the basis of four end members. The 
origin of the Cartesian axes is in the tetrahedron centre. 
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All the figures of this paper were produced with data 
and code that can be downloaded at the address: 
http://alan.dma.unipi.it/?page_id=1078 . 

Animations exploit the features of tetrahedral dia- 
grams at their best, showing 3D relationships among data 
arrays. You may observe that the above procedure maps 
the points of the tetrahedron ABCD, which maybe highly 
irregular, onto those of the regular one T1, T2, T3, T4 . 

This provides a normalization in the representation of 
the data, since the position of the plotted points in the 
regular tetrahedron does not depend upon the absolute 
magnitude of the scalars used in the original data set. 
This means that if we use components such as different 
trace elements, whose abundances span from a few ppm 
- like Nd - to thousands of ppm - like Sr -, there is no 
need of scaling the data to some common order of mag- 
nitude.  
 
3. Some Applications 
 
3.1. Mass Balance. Case 1 
 
Figure 3 shows two sets of points, computed by adding 
different amounts of olivine, clinopyroxene and plagio- 
clase to a lava from Mt Etna. The minerals and the lava 
were assumed to be the end members for the tetrahedral 
diagram. Minerals. The points were calculated keeping 
constant the amount of pyroxene (30% and 70%) and 
adding to the lava regularly increasing amounts of the 
other two phases to simulate cumulus processes. The 
cumulate compositions were assessed with the mass bal-
ance equation  
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where:  
Pi is the wt% of the component i in the cumulate 
Ii is its amount in wt% in the lava  
aij is its weight fraction in phase j  
xj is the weight fraction of phase j in the cumulate. 

Each cumulitic composition was then plotted in the 
tetrahedral diagram. The solids are represented in Figure 
3 by the points laying on the OL-CPX-PLG face; the 
compositions resulting by the additions of the solids to 
the lava lay on lines joining the lava vertex with the solid 
towards the base (see the regular arrays of points in Fig-
ure 3). The representation is consistent with the expected 
mass ratio assumed in the data generation. 

For comparison, Figure 3 shows the analyses of lavas 
emitted by Mt Etna from 1971 to 2002 [7]. These data 
lay outside the tetrahedron since they were originated by  

 

Figure 3. The coordinates of the point arrays were calcu- 
lated in Rn by using the equation.  A A B *  AB

i i i iP   

The tetrahedron orientation is = 51, = 12. 
 
a mechanisms different from cumulus or fractionation. 
The adoption of negative tetrahedral coordinates still 
allows to represent data outside the tetrahedron in terms 
of linear combination of the four end members and 
suggests that it is possible to choose a different set of end 
members to plot data within the tetrahedron.  
 
3.2. Mass Balance. Case 2 
 
Reporting compositional data as molar fractions provides 
diagrams that account for the molecular proportions of 
minerals chosen as end members. An example is shown 
in Figure 4(a)), reporting the expanded normative basalt 
tetrahedron (Larnite, Nepheline, Fosterite, Quartz - La, 
Ne, Fo, Q) [4,8] where normative minerals are given as 
molecular fractions and then projected within the tetra- 
hedron. Date are mineral and whole rock analyses of a 
suite of pyroxenites from North Victoria Land (Antar- 
ctica) [9]. The petrogenetic hypothesis that pyroxenites 
are a physical mixture of their minerals is easily checked, 
as well as it is plainly evident from top and middle 
projection where data are shown with different orien- 
tations inf the La, Ne, Fo, Q projection.  

In the bottom diagram the same data are recalculated 
in terms of the Di, Ne, Fo, Q, The hypothesis is con- 
firmed and the clinopyroxenes, as expected, are grouped 
towards the Di vertex. 

Molecular proportions of rock analyses may be recast 
following the procedure of O’Hara [3] to obtain CMAS 
components. By adopting pure components as end mem- 
bers (figures in bold), we obtain the classical CMAS 
projection (Figure 4, bottom). Projections can be made  
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Figure 4. TOP and MIDDLE: two different orientations of 
expanded normative tetrahedron La-Ne-Q-Ol [4,10]. Nor-
mative minerals are recalculated on a molecular basis (Ta-
ble 2) and then projected within the tetrahedron through 
the algorithm anamorphosis. The diagrams show a set of 
pyroxenites and their minerals [13], with major element 
oxides recast as molar fractions. BOTTOM: The same data 
set with a different choice of end-members. Note the dis- 
placement of clinopyroxenes from the centre of the tetra- 
hedron (the position of diopside in tetrahedron La-Ne-Q- 
Ol) toward the top vertex, representing the diopside end- 
member in the new projection. The tetrahedron orientation 
is = 0, = 12. 

on a molar basis or on a weight basis if molecular pro- 
portions or molecular weights are provided. 

The same data set can be easily recast according to a 
subset of components within the CMAS, providing the 
compositions of the new end members in the CMAS 
system. For a projection in the system Q-Ol-CaTs-Di Q = 
S, Ol = M2S, CaTs = CAS, Di = CMS2 (Figure 4, 
bottom), a weight or a molecular projection are obtained 
by the following matrices. 

 
 C M A S 

Q 0 0 0 1 SiO2 

OL 0 2/3 MgO 0 1/3 SiO2

CaTs 1/3 CaO 0 1/3 Al2O3 1/3 SiO2

Di 1/4 CaO 1/4 MgO 0 2/4 SiO2
Molecular 

Proportions
    

 C M A S 

Q 0 0 0 1 

OL 0 2/3 0 2/3 

CaTs 1/3 0 1/3 1/3 

Di 1/4 1/4 0 2/4 

Molecular 
Weights 

    

 C M A S 

Q 0 0 0 60.09 

OL 0 26.69 0 20.03 

CaTs 18.69 0 33.99 20.00 

Di 14.02 10.01 0 30.45 

 
Allowing for negative values of tetrahedral coordi- 

nates, Nepheline may be computed in terms of CMAS 
components as 2/3 2/3 1/3Ne C A S . This permits projec- 
tions within the CMAS of Ne–bearing systems on both 
molecular or weight basis (Figure 4): 
 

 C M A S 

Pl 1/4 CaO 0 1/4 Al2O3 2/4 SiO2 

Ol 0 2/3 MgO 0 1/3 SiO2 

Di 1/4 CaO 1/4 MgO 0 2/4 SiO2 

Ne 2/3 CaO 0 2/3 Al2O3 –1/3 SiO2 

Molecular 
Proportions

    

 C M A S 

Pl 1/4 0 1/4 2/4 

Ol 0 2/3 0 1/3 

Di 1/4 1/4 0 2/4 

Ne 2/3 0 2/3 –1/3 
Molecular 
Weights 

    

 C M A S 
Pl 14.02 0 25.49 30.04 
Ol 0 26.69 0 20.03 
Di 14.02 10.01 0 30.45 
Ne 37.39 0 67.97 –20.03 
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Table 2 allows an easy calculations for a large set of 
normative minerals. 
 

3.3. Mantle Reservoirs 
 
In spite of the growing evidence of widespread hetero- 
geneities in the mantle [10-12], the isotopic composition 
of oceanic basalts is commonly described in terms of 
four main mantle sources, of which basalts keep the iso- 
topic composition and characteristic ratios of incompati- 
ble elements [13,14]. The main mantle reservoirs in- 
volved in the genesis of Oceanic Islands Basalts (OIB) 
are considered to be: the depleted astenospheric mantle 
(DMM), the common source usually found in oceanic 

islands (OIB-HIMU) with a relatively large U/Pb ratio, 
and the two enriched components, namely the Enriched 
Mantle I (EMI) and the Enriched Mantle II (EMII). Refe- 
rence values of isotopic ratios of Sr, Nd, Pb are shown in 
Table 3. 

An overview of OIB compositions in the 3D space, 
defined by the isotopic ratios 87Sr/86Sr, 206Pb/204Pb, 143Nd/ 
144Nd, led Hart [8] to the conclusion that most of oceanic 
island basalts lay within a tetrahedron defined by the four 
vertices EMI, EMII, DMM and HIMU. We tested our 
model assuming that the same holds in n-dimensional 
space. In Figure 5 a plot of basalts from Hawaii, Gala- 
pagos and Cook islands is shown. Data have been ob- 
tained from the GEOROC database. 

 
Table 1. Compositions of end members adopted to represent data in Figure 3. 

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 

Lava 47.1 1.85 17.85 10.4 0.2 5.54 11.32 3.47 1.86 0.4 

Ol 40.28 0 0 10.561 0.16 49.03 0.2775 0 0 0 

CPX 51.78 0.504 2.91 4.86 0.22 16.36 22.432 0.249 0.243 0 

PLG 48.96 0 32.5 0.5 0 0 15.04 2.64 0 0 

 
Table 2. Molecular composition of minerals in the Expanded Basalt Tetrahedron of Figure 4. End members in bold. 

   SiO2 Al2O3 TiO2 FeO MnO MgO CaO Na2O K2O P2O5 

La Ca2SiO4 Larnite 0.33 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 

Ra Ca3 Si2O7 Rankinite 0.40 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00 

Mer Ca3MgSi2 O8 Merwinite 0.33 0.00 0.00 0.00 0.00 0.17 0.50 0.00 0.00 0.00 

Wo CaSiO3 Wollastonite 0.50 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 

Fo Mg2SiO4 Forsterite 0.33 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 

Ne NaAlSiO4 Nefelina 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 

Qtz SiO2 Quarzo 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

En MgSiO3 Enstatite 0.50 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 

Ab NaAlSi3O8 Albite 0.60 0.20 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 

Di CaMgSi2O6 Diopside 0.50 0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.00 0.00 

Ak Ca2MgSi2O7 Akermanite 0.40 0.00 0.00 0.00 0.00 0.20 0.40 0.00 0.00 0.00 

 
Table 3. Values of mantle components adopted for projection of data in Figure 5. 

Figure 5(a)-(b). 

 87Sr/86Sr 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 143Nd/144Nd Ref. 

DMM 0.70300 18.500 15.450 38.040 0.51320 [15] 

EM I 0.70530 17.600 15.470 37.961 0.51120 [15] 

EM II 0.72200 18.590 15.620 39.000 0.51265 [15] 

HIMU 0.70228 21.690 15.710 40.734 0.51285 [16] 

 
Figure 5(c)-(d). 

 87Sr/86Sr 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 143Nd/144Nd Ref. 

DMM 0.70241 18.106 15.441 38.040 0.51320 this work 

EM I 0.70507 17.535 15.461 37.960 0.51232 this work 

EM II 0.72200 18.590 15.620 39.000 0.51265 [15] 

HIMU 0.70283 21.612 15.828 40.734 0.51280 [10] 
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= 120, = 8, 87Sr/ 86Sr; 206Pb/204Pb; 143Nd/144Nd                     = 120, = 8, 87Sr/ 86Sr;; 206Pb/204Pb; 208Pb/204Pb;143Nd/144Nd 

(a)                                                              (b) 

 

  
= 148, = 8, 87Sr/ 86Sr;; 206Pb/204Pb;                      = 322, = 8, 87Sr/ 86Sr;; 206Pb/204Pb;  

208Pb/204Pb; 207Pb/204Pb;143Nd/144Nd                         208Pb/204Pb; 207Pb/204Pb;143Nd/144Nd 

(c)                                                      (d) 

Figure 5. (a) Three isotope ratios (87Sr/86Sr,206Pb/204Pb, 143Nd/144Nd) were used to define mantle components and plot Hawaii, 
Galapagos and Coock Islands basalts and Hawaii mantle xenoliths. (b) The same data set were plotted using the same 
tetrahedron orientation but using five isotope compositions (87Sr/86Sr,206Pb/204Pb,207Pb/204Pb, 208Pb/204Pb, 143Nd/144Nd) to 
define the HIMU, DMM, EMI and EM II mantle. Data still group in well distinct arrays that can be put in evidence by a 
suitable choice of  and . Values of isotope ratios of mantle components are reported in Table 3, upper part. (c), (d) A 
different choice for isotope compositions of mantle components and tetrahedron orientation allows to get a better 
representation of regular arrays defined by the data sets. Values adopted for the end members are given in the second part of 
table 3. Basalt data from the GEOROC data base. 
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Diagram of Figure 5(a) reveals that points form diffe- 
rent clusters in the tetrahedron for the two archipelagos. 
Some of the Cook Islands data fall just on the HIMU  

component and all data sets appear to point towards 
the HIMU component (Figure 5(a)). In particular, it is 
possible to observe a branch of the Hawaii data set di- 
rected towards an enriched component Figure 5(d)), 
while harzburgite mantle xenoliths show an evident im- 
print of an EM I end member.  

Both Hawaii and Galapagos are widely recognized as 
plume-related island chains; thus a plume HIMU com- 
ponent should appear to mix with astenospheric mantle 
in both island chains, as it results from Figure 5(a), 
obtained using tree isotopic ratios. 
However, this plotting method may be used to repre- sent 
the same data set adopting a larger number of inde- 
pendent components, as in Figure 5(b)-(d). The end 
members are still defined as HIMU; DMM, EMI and 
EMII but using five components (87Sr/86Sr, 206Pb/204Pb, 
207Pb/204Pb, 208Pb/204Pb, 143Nd/144Nd ) to plot the same 
data set. This allows to observe a different point arrange- 
ments: each data set keeps a well distinct trend in every 
diagram, but tends to form more dispersed clusters, due 
to a larger number of components used to define end 
members. A different choice for isotopic compositions of 
mantle components and tetrahedron orientation may allow 
to get a better representation of regular arrays in the data 
sets (Figure 5(c) and (d)). Hawaii data suggest the 
mixing between two mantle components, while a plane 
arrange- ment suggests that the mixing of three mantle 
com- ponents is needed to produce Galapagos basalts. 
Values adopted for the new end members are given in 
the second part of Table 3. 

A suitable choice of end members,  and allows to 
recognize a typical compositional imprint for each mantle 
region, in spite of the starting hypothesis of a common 
HIMU source depicted in Figure 5(a). 

A detailed interpretation of petrogenetic hypotheses is 
beyond the purposes of this paper. However, it is evident 
how our approach allows an insight, into data sets, 
deeper than the simple diagrams in which two isotopic 
ratios only are adopted. 
 
4. Conclusions 
 
Our method provides a useful and general way to visua- 
lize, in three-dimensional diagrams, data sets charac- 
terized by a high number of components. Data are ortho- 
gonally projected from the Euclidean space Rn to the 
three-dimensional subspace of Rn passing through four 
suitable end members, previously chosen. The method 
evaluates the tetrahedral coordinates, allowing to map 
any point in Rn to the R3 point with the same tetra- 

hedral coordinates, obtaining a distorted map (anamor- 
phosis) of a perhaps highly irregular tetrahedron in Rn 
into a regular tetrahedron in R3. This procedure ensures 
normalization of data and allows to use components 
whose numerical values may differ in the order of mag- 
nitude. 

End member physical mixtures (convex combinations) 
are represented by points within the tetrahedron and the 
methods developed for the study of “constant sum” sets 
[5,8] may be applied for the interpretation of data. How- 
ever, our projection method also allows the represen- 
tation of natural compositions laying outside the Rn tetra- 
hedron as linear (non convex) combinations of the end 
members, plotting them outside the 3D tetrahedron. If 
these points fall far from the tetrahedron, a different 
choice of end members may be accomplished to find a 
tetrahedron containing them.  

A final projection from R3 to the graphic plane plots 
the diagram; suitable orientation of the tetrahedron in the 
plot reveals 1D and 2D arrays, corresponding to binary 
or ternary mixtures. Animated rotation of the diagram 
may be easily obtained and allows a fast and effective 
overview of data sets. The use of mineral and rock ana- 
lyses to define end members ensures the possibility of 
the geometrical solution of mass balance problems. The 
obvious application of this kind of plots may be found in 
experimental petrology for the representation of com- 
positions of complex systems like the normative Basalt 
tetrahedron or the CMAS system, computed on a 
weight% or molecular basis. This kind of projections 
also allows to explore multidimensional data sets, like 
those characterizing the isotope systematic of magmas 
and their incompatible element ratios. 
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