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Abstract 
 
We calculate the enveloping Lie algebras of Leibniz algebras of dimensions two and three. We show how 
these Lie algebras could be used to distinguish non-isomorphic (nilpotent) Leibniz algebras of low dimen-
sion in some cases. These results could be used to associate geometric objects (loop spaces) to low dimen-
sional Leibniz algebras. 
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1. Introduction 
 
In this paper, we work with vector spaces (and algebras) 
over a field F of characteristic 0, although our results can 
be extended in obvious way to the case of vector spaces 
over a field of positive characteristic (not equal 2), or 
even over a commutative ring with unit. By an alge-
bra , we mean a vector space L over F with a (not  ,L 
necessarily associative) bilinear operation . : L L L  
For ,x L   :x L L  ;  denotes the left y x  y
multiplication map. Let denotes the Lie  Der L
sub-algebra of  gl L consisting of the derivations on 
L . Recall that a linear map  gl L   is a derivation 
of  if and only if  ,L 

   , x x       
for all x L . Here, we work with a class of algebras in 
which the left multiplication map has a stronger com-
patibility relation with derivations. These are Leibniz 
algebras, introduced by J. L. Loday [1], as non-anti- 
symmetric generalizations of Lie algebras. 

Definition 1.1. A Leibniz algebra  is a vector 
space over a field F equipped with a bilinear map 

L

: L L L    

satisfying the Leibniz identity 

    . x y z x y z y x z       , for all , ,x y z L . 

Obviously, a Lie algebra is a Leibniz algebra. A Leib-

niz algebra is a Lie algebra if and only if 

0 ( )x x x L    

Also, an algebra  ,L  is a Leibniz algebra if and only if 

   x Der L   or equivalently, 

    : , ,[ , ]L gl L      

is a homomorphism. Thus we have a homomorphism 

    : , ,[ , ]L gl L      when  ,L   is a Leibniz alge-

bra. 
Definition 1.2. If  ,L   is a Leibniz algebra. We may 

define 1 1(L L L k, k kL L  1)    . The series 

1 2 3L L L    

is called the descending central series of . If the L
series terminates for some positive integer s, then 
the Leibniz algebra  is said to be nilpotent. L
 
2. Methods 
 
The main tool to classify Low dimensional Leibniz alge-
bras is to find the corresponding enveloping Lie algebra 
and fit them in the Beck-Kolman list of low dimensional 
Lie algebras. Since these Lie algebras are realized as 
certain quotients of the given Leibniz algebras, we first 
need the following fact. 



 
1028 M. AMINI  ET  AL. 

Theorem 1.1. Let and be Leibniz alge- 1,L   2 ,L 
bras. If then1L L 2 1 1 2 2JL J L , where 

;i iJ x x x L   is the ideal generated by squares in 

iL , for i = 1, 2. 
Proof. Let 21: L L   be an isomorphism. We de-

fine 1 1: L J L2 2J  that  such   21x J x   J . 
It is easy to show that   is well defined and no to, 

and

2

 

    
   
       
   

1 1 2 2

1 2 1 1 2 2

1 2 2 1 2 2

1 1 2 2

x J x J

x x J x x J

x x J x J x J

x J x J



 

   

 

  

     

      

   

 

Also, 


    

   
 

1 2

1 2 1

; 0

;

Ker x J x J

x J x J J

x J x J

 

 

   

   

    �

 

1 1; 0

This theorem could be used to prove that some (nilpo-
tent) Leibniz algebras are non-isomorphic. This is im-
portant, as the nilpotent low dimensional Lie algebras are 
al  ready classified [2].

Example 1.1. Let , and  1 1 1 2 1 3: ,L e e e e e   2e

2 1 1 1 2 3 2 1 3: , ,e e e e e e e e e     .  3L 
Then 1 1L J  is a one-dimensional abelian Lie alge-

bra, but 2 2L J is a two-dimensional abel e algebra, ian Li
therefore 1 1L J is not isomorphic to 2L J . 2 By the 
previous theorem, 1L  is not isomorphic to 2L . 

We noted that Leibniz algebras are non-antisymmetric 
in general. Hence, it is natural to consider the skew- 
symmetrization of a Leibniz algebra  ,L  . This is done 
through the skew-symmetrized binary ation  oper

   1
[ , ]

2
x y y x       

for ,x y L . Note that, in general,   , [ , ]L    is not a 
Lie algeb e bniz ra. On the other ha L ind, by definition of 
algebra,    x Der L , [ , ]  for all  x L , and 

    : , [ , ]L Der L     is a homo  of anti- morphism
commutative algebras. Let 

;J x x x L    

be the o-sided ideal of  ,Ltw   generated by s.  all square
Then J  co ic products ntains all symmetr x y y x   ,  

for ,x y L , and since      ,x x x x        for all 

x L , we ha ve 

 kerJ   

M L be any ideal containing JLet , then since 
 x y M y x x y y x y x M             for ,x y L , 

the Leibniz product in lifts to aL  Lie bracket ],[  in 
ML . C , if onversely J M L  is an ideal, then the 

quotient MLh  is a Lie algebra. In particular, J  is 
the smallest two-sided i eal of L  d such that L J is a 
Lie algebra. 

Let ]),[,( h be a Lie, and  ,L  be a Leibniz algebra, 
we d ry operation on e semidirect product efine a bina  th
h L by   

     , , , [ , ],i j i j i je x e y e e e y e x        

for ,i je he  , and ,x y L , where i ie e M   [3]. 
Since M contains all squares, it is clear that this opera-
tion is well defined. 

Pr sition 1.1. If L s a nilpotent , opo i  Leibniz algebra 
and M   kerJ Mis an ideal  such that of L    
and h L M , then 

1) tent Lie algebra. h  is nilpo
2) N h L  is a nilpotent Lie algebra. 
Pro  is a nilpote  of. 1) nt Leibniz algebra, then thereL

exist n N  such that 2 3 0nL L L L     
Therefore  2 3 0nL M L M L M M   L   
Then 2h h h   3 0nh    Thus is a nilpo- h  
tent Lie algebra. 

2) Clearly if h  an  d L  are nilpotent, then is a N  
nilpotent Lie algebra. �  

The above proposition assoc tes two ie algebras h  ia L
and N  to a Lei iz algebra  bn L . Here h  is a quotient 
of L , whereas N  is its extension. The corresponding 
Lie groups ould be employed to associate a geometric  c
object to L  [3]. We would consider the problem of 
classification of these geometric objects (loop spaces) in 
a forthcoming paper.  
 
3. Results 
 
Next let us remind the classification results for Leibniz 
algebras of dimension tw and three [4]. We use the o 
convention to denote the algebra of dimension i by thj  

,i j . L

Theorem 1.2. In dimension two, there are  two
non-isomorphic otent Leibniz algebras

2L nilp , where 
1,  

is abelian, and 
2,2L  is given by the table 1 1 2e e e  . 

Theorem 1.3. In dimension three, there are five con-
crete and one parametric family of pairwise non iso-
morphic algebras. 

3,1

3,2 1 1 2

3,3 1 2 3 2 1 3

: ,

: ,

: ,

L Abelian

L e e e

L e e e e e e

 

,    
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3,4 1 1 3 2 2 3 1 2 3

3,5 1 1 3 1 2 3 2 1 3

3,6 1 1 2 2 1 3

: , , (

: , , ,

: , .

L e e e e e e e e e C

L e e e e e e e e e

L e e e e e e

),       

     

   

 

 
4. Discussion 
 
In this section, we classify the enveloping Lie algebras of 
Leibniz algebras of dimension two and three. This is not 
a trivial task, as in each case we have to identify the re-
sulting Lie algebra as one of the known low dimensional 
Lie algebras [2], by carefully defining the appropriate 
change of basis. 

In dimension two, we have  Then  2,2 1 1 2:L e e e  .

 2,2 2: :J e F    

and  

 
 

2,2 2,2 2,2 1 2,2 1 2,2

1 1 2,2

,

,

h L J span e J e L

span e e L

   

 
 

Therefore is 1-dimensional abelian Lie algebra. 2,2h

Now, we consider  with basis elements 2,2 2,2 2,2N h L 

     1 3 30, , 0,e E e1 1 2,0E e , E  . The multiplication 

table of is given by 2,2N

 
[ , ]   

1E  2E  3E  

1E  0  
3E  0  

2E  3E  0  0  

3E  0  0  0  

For example 

     
  

1 1 1 2,2 1 2,2

1 1 2,2 2 2,2

, ,0 , ,

,0 ,0

0

E E e J e J

e e J e J

    
    




0

 

and 

     
   

1 2 1 2,2 1

1 1 2 2

, ,0 , 0

0, 0,

E E e J e

e e e E

   
   

,
 

Thus,  is a 3-dimensional Lie algebra with  2,2N

1 2 3 . Briefly, we have Table 1 for dimension 2 [ , ]E E E
(where the last column identifies the Lie algebra in the 
Beck-Kolman list [2]). 

In dimension three, for each 3,  we , 2,3,4,5,6kL k 
want to obtain corresponding Lie algebra 3,  For .kN

3,2 one can show that 2,3 is 2-dimensional abelian Lie 

Table 1. The enveloping Lie algebras of Leibniz algebras of 
dimension two. 

Li,j hi,j Ni,j = hi,j¡ÁLi,j Ni,j 

L2, 2 
1-dimensional abelian 
Lie algebra 

[E1, E2] = E3 g3 

 

   1 2 3 2 1 3, , ,e e e e e e ,    

and by 3,3N

     1 2 3 1 5 6 2 4 6, , , , ,E E E E E E E E E     

Finally, for , one can show that is a 3,4L 3,4L

2-dimensional abelian Lie algebra and is given by 3,4N

1 3 5 5 2 4[ , ] , ] ,[ , ]E E E E E E1 4[ ,E E 5 (E ).C     Theref
ore for 3-dimensional Leibniz algebras, we get the Table 
2. 

Note that in rows three and four, the enveloping Lie 
algebras are isomorphic, while the original Leibniz alge-
bras are not isomorphic. The isomorphism  

2
32,3 CgN 

1 1 2 3 3 4 4 2 5 5, , , , ,e E e E e E e E e E    
 

is given by 

 

3,3 6,21N g  by 

1 2 2 1 3 4 4 5 5 3 6, , , , ,e E e E e E e E e E e E6 .       

3,4 5,2N g  by 

1 1 2 3 4 3 3 4 2 5 5, , , ,e E e E E e E e E e .E          

N g3,5 5,2  by 

1 1 4 2 1 3 2 4 4 5 5, , ,e E E e E e E e E,E e .      
Also, for the 2-dimensional abelian Lie algebra 

 2,1 2,1, 0J  , and 2,1h is an abelian Lie algebra. There- L
fore 2,1 2,N h 1 2,1L  4-dimensional Lie algebra. Fi- is 
nally sional abelian Lie algebra , for the 3-dimen

 
Table 2. The enveloping Lie algebras of Leibniz algebras of 
dimension three. 

Li,j hi,j Ni,j = hi,j¡ÁLi,j Ni,j 

3, 2 
mensional 2-di

abelian Lie  
algebra 

 1 3 4,E E E  2
3g CL

1 2[ , ]e e  3

2 1 3

,

[ , ] ,

e

e e e 
 1 2 3 1 5 6

2 4 6

[ , ] ,[ , ] ,

[ , ]

E E E E E E

E E E

 

  6,21g  L3, 3 

L3, 4 
2-dimensional 
abelian Lie 
algebra  

1 3 5 1 4 5

2 4 5

[ , ] ,[ , ] ,

[ , ] ( ).

E E E E E E

E E E C 
 

  5,2g  

L3, 5 
al 2-dimension

abelian Lie 
algebra  

1 3 5 1 4 5

2 3 5

[ , ] ,[ , ] ,

[ , ]

E E E E E E

E E E

 

  5,2g  

,L h
algebra and 3,2 is given by 1 3 . For 3,3  N 4[ , ]E E E L L3, 6 

nal 
  

algebra 

1-dimensio
abelian Lie 1 2 3[ , ]E E E  2

3g C,
one can prove that therefore is given by  3, 0J 3  , 3,3h
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 0  and 3,1 3,1,L J  is an abelian Lie algebra. 3,1h
Therefore  

3,1N 3,1 3,1h L 
 

is a 6-dimensional Lie algebra. 
 
5. Conclusions 
 
We have classified the enveloping Lie algebras of Leib-
niz algebras of dimension two and three. In each case, 
we have identified the corresponding Lie algebra as one 
of the known low dimensional Lie algebras, by defining 
the appropriate change of basis which implements the 
canonical isomorphism. 

There is one two dimensional Leibnitz algebra (up to 
isomorphism) whose corresponding Lie quotient is a 
1-dimensional abelian Lie algebra. On the other hand,
th
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