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Abstract 
 
A novel motor learning method is present based on the cooperation of the cerebellum and basal ganglia for 
the behavior learning of agent. The motor learning method derives from the principle of CNS and operant 
learning mechanism and it depends on the interactions between the basal ganglia and cerebellum. The whole 
learning system is composed of evaluation mechanism, action selection mechanism, tropism mechanism. The 
learning signals come from not only the Inferior Olive but also the Substantia Nigra in the beginning. The 
speed of learning is increased as well as the failure time is reduced with the cerebellum as a supervisor. 
Convergence can be guaranteed in the sense of entropy. With the proposed motor learning method, a motor 
learning system for the self-balancing two-wheeled robot has been built using the RBF neural networks as 
the actor and evaluation function approximator. The simulation experiments showed that the proposed motor 
learning system achieved a better learning effect, so the motor learning based on the coordination of cere- 
bellum and basal ganglia is effective. 
 
Keywords: Motor Learning, Cerebellum, Basal Ganglia, Operant Learning, Self-Balancing Two-Wheeled 

Robot 

1. Introduction 

Many skills and behaviors of human or animals are 
formed and developed gradually in the self-learning and 
self-organization process of nervous system. It is im- 
portant to understand and imitate the internal learning 
mechanism of human and animals’ nervous system, and 
it is an important issue to give such a mechanism to ma- 
chine for control science, artificial intelligence and ro- 
botics study. Opposite with passive machinery reception 
learning, autonomous learning is an active self-knowl- 
edge and independent learning, and it is relatively the 
basis of agent’s long-term learning and development. 
The interdisciplinary across of psychology, neurophysi- 
ology and machine learning theory promoted the produc- 
tion and development of autonomous learning theory and 
method directly. 

Related researches of neurophysiological theories indi- 
cate that, during the sensorimotor learning, the cerebral 
cortex, basal ganglia, and cerebellum work in parallel 
and unique way [1-3]. The ballpark behavior adapt to the 
environment can be learnt through the basal ganglia loop 

by reinforcement learning [4], and the ballpark behavior 
can be refined by supervised learning in the cerebellum 
[5]. Cerebral cortex, utilizing unsupervised Hebbian 
learning [6-7], driven by input from basal ganglia and 
cerebellum, learns through practice to perform these op-
erations fast and accurately. Studies show that the basal 
ganglia are the medium of behavior selection, and nu-
cleus in basal ganglia, such as striatum, globus pallidus, 
substantia nigra, et al., play the role of action se- lection 
[8-11]. Bernard W. Balleine, et al, from psychology and 
brain research institute, university of California, has 
studied the integrative function of basal ganglia in oper-
ant learning [12], which indicates that the dorsal striatum 
in basal ganglia plays an important role in the operant 
conditioning learning process. From above introductions, 
it can be seen that human brain is a complex system, and 
the basal ganglia and cerebellum in the central nervous 
system all play an important role in motor learning. For 
motor learning, two different mechanisms can operate to 
make use of sensory information to correct motor errors. 
The fist is on-line error correction, and the second is 
trial-to-trial learning, in the latter case, errors from one 
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trial influence the motor output on the next trial. The two 
learning mechanisms are related with the cerebellum and 
basal ganglia. 

However, the motor control and learning mechanism 
of cerebellum and basal ganglia seems be studied sepa-
rately. For example, the cerebellum works as an adaptive 
filter [13,14] and the feedback error learning in cerebel-
lum is proposed by Kawato [15,16]. An important class 
of BG model is known as Actor-Critic models or 
RL-based models [17,18] with system-level. In 2008, a 
contracting basal ganglia model was proposed for the 
action selection mechanism [19]. Although Doya [20] 
pointed the complementary roles of cerebellum and basal 
ganglia, how to implement such cooperation is not very 
specific. This paper is dedicated to the coordinated 
learning mechanism between cerebellum and basal gan- 
glia. 

In the aspect of learning control theory, professor 
Wang proposed a kind of hybrid algorithm aiming at the 
obstacle avoidance problem of robot [21]. They proposed 
a neural fuzzy system with mixed coarse learning and 
fine learning phases. In the first phase, supervised learn- 
ing method is used to determine the membership func- 
tions for the input and output variables simultaneously. 
After sufficient training, fine learning is applied which 
employs reinforcement learning algorithm to fine tune 
the membership. Meng Joo Er et al. also applied hybrid 
learning approach for the obstacle avoidance [22]. In the 
simulation environment, preliminary supervised learning 
was executed applying dynamic fuzzy neural net- works, 
and in the real robot, neuro-fuzzy controller is capable of 
re-adapting in a new environment. After carrying out the 
learning phase on a simulated robot, the controller is 
implemented on a real robot. The hybrid learning method 
shows the coordination between supervised learning and 
reinforcement learning. 

In the aspect of learning algorithm research, Michael 
et al. combined supervised learning with actor-critic 
learning and proposed a supervised learning combined 
with an actor-critic architecture [23]. This type of learn- 
ing has been suggested by Clouse and Benbrahim [24,25]. 
In this paper, the supervised actor-critic algorithm is as-
sociated with the interactions between the cerebellum 
and basal ganglia. At the same time, operant learning 
will be considered in the design of motor learning system 
as the action selection mechanism in the basal ganglia. 
The example of motor learning in a self-balancing robot 
will be present to show the benefits of using the pro-
posed motor learning method. 

There are many kinds of two-wheeled self-balancing 
robot, such as wheeled-inverted pendulum, self-balanc- 
ing wheelchair, JOE, nBot [26-29], and so on. All of 
them have ability of keeping balanced themselves and 

running forward. For the balancing control, researchers 
have done a lot of works for such kinds a robot. An 
adaptive output recurrent cerebellar model articulation 
controller is utilized to control wheeled inverted pendu-
lums (WIPs) [30]. Grasser et al. [28] developed a dy-
namic model for designing a mobile inverted pendulum 
controller using a Newtonian approach and linearization 
method. In [26], a dynamic model of a WIP was created 
with wheel motor torques as input, accounting for non-
holonomic no-slip constraints. Vehicle pitch and position 
were stabilized using two controllers. Jung and Kim [31] 
created a mobile inverted pendulum using neural net-
work (NN) control combined with a proportional-inte- 
gral-derivative controller. But there are fewer reports for 
the autonomous learning based on the neuro-physiologi-
cal theory. Balancing skill’s acquisition is the results of 
central nervous system. How to imitate the brain function 
and construct a motor learning method for balancing 
robot is the main target in this paper. 

This paper is organized as follows. Section 2 addresses 
the motor learning in the central nervous system of hu- 
man being and shows the important role of the cerebel- 
lum and basal ganglia in CNS. Section 3 introduces op- 
erant learning method. That is an important working 
style in the motor learning and it is closely related with 
the mechanism of the basal ganglia. Section 4 is the main 
part of this paper. Motor learning method with the in- 
teraction of the cerebellum and basal ganglia is proposed. 
Evaluation mechanism, action selection mechanism and 
tropism mechanism are included. The convergence analy- 
sis is deduced in the sense of entropy. At last, in section 
5, the control structure is designed with the proposed 
method for a self-balancing two-wheeled robot and the 
comparative experiments are conducted to show the ef- 
fectiveness of proposed method. Section 6 concludes. 

2. Motor Learning in CNS 

An important feature of the central nervous system (CNS) 
in its control of movement is the capability of motor 
learning. Motor learning is the process of improving the 
motor skills, the smoothness and accuracy of movements. 
It is important for calibrating simple movements like 
reflexes, as parameters of the body and environment 
change over time. As we know, for higher mammals, 
especially humans, both of supervised learning and rein- 
forcement learning are probably the most important class 
of motor learning. In the CNS, two auxiliary monitor 
systems are the cerebellum and ganglion nuclear group 
in the forebrain area. Cerebral cortex, cerebellum and 
basal ganglia, cooperated with each other, form complex 
motor control system. Figure 1 shows their relations in 
CNS [32]. Cerebellum specialize in supervised learning  
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Figure 1. Schematic of relationship for central nervous 
system (CNS). Cerebral Cortex (CC); Basal Ganglia (BG); 
Cerebellum (CB); brainstem (BS); spinal cord (SC). In the 
CNS, BG and CB play an important role in motor control 
and learning. The thalamus relays sensation, spatial sense 
and motor signals to the cerebral cortex. 
 
and its training signals derive from the climbing fiber 
input from the inferior olive, as shown in Figure 2. Basal 
ganglia are involved in reinforcement learning with the 
operant conditioning role and the learning signals are 
dopaminergic signals from Substantia Nigra. The neural 
circuit of basal ganglia is shown in Figure 3. 

3. Operant Learning 

3.1. The Related Works about Operant Learning 

In psychology, operant is a class of behavior that pro- 
duces consequences by operating (i.e., acting) upon the 
environment. Operant conditioning (OC) is a technique 
of behavior modification through reinforcement and 
punishment. The research about operant conditioning 
theory [34] was started in 1938 by Skinner, a psychology 
professor. Its consequence influences the occurrence and 
form of behavior. Operant conditioning and classical 
conditioning [35] are two main learning ways of associa- 
tive learning, and all animals, including human, have 
these two learning way. Operant conditioning is distin- 
guished from classical conditioning in that operant con- 
ditioning deals with the modification of operant behavior. 
Operant conditioning reflects the relation between be- 
havior and its outcome, and the learning with OC theory 
is called operant learning (i.e. instrument learning). Re- 
cently, researchers apply OC theory in the robot learning 
and control and have done plenty of experimental studies. 
For example, Björn Brembs et al. [36] from Germany 
applies himself to the research of the operant condition- 
ing in flies (Drosophila) and snails. 'Pure' operant condi- 
tioning and parallel operant conditioning at the flight 
simulator were studied. Chengwei, Yao et al. [37] ap- 
plied OC theory into emotion development and presented 
an emotion development agent model based on OCC  
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Figure 2. Working principle of cerebellar cortex. Climbing 
fibers carry the error signals to modify the PF-PC (Parallel 
fibers-Purkinje cells) synapse through LTD (long-term 
depression) [33]. 
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Figure 3. Neural circuit of the basal ganglia. Substantia 
nigra pars compacta (SNc); substantia nigra pars reticulate 
(SNr); internal segment of globus pallidus (GPi); external 
segment of globus pallidus (GPe); subthalamic nucleu 
(STN); dopamine (DA); ○, excitatory connection; , inhibi- 
tory connection. DA from substantia nigra is feedback to 
striatum as the learning signals. 
 
Model and operant conditioning. In, Kazuko Itoh et al. 
[38] in Japan built a behavior model of humanoid robots 
based on operant conditioning, where the robot could 
select and output its behavior according to its behavior 
potential and evaluation of the behavior. Robot WE-4RII 
learned the behavior of shaking hand with people using 
his right hand. Bernard et al. [12] had studied the integra  
tive function of BG with operant conditioning, which 
suggested that the dorsal striatum in BG play an impor- 
tant part in operant learning. That is why the OC theory 
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is considered in the research of BG mechanism. The 
principle of OC is present in the following section. 

3.2. The Principle of Operant Conditioning 
Theory 

Operant conditioning emphasizes that behavior's con- 
sequence influences the occurrence. The difference be- 
tween operant learning and supervised learning depends 
on the feedback signal obtained from environment, 
which is valuation signal or error signal. There are three 
main elements about the learning control based on OC 
theory, including probabilistic action selection mecha- 
nism, evaluation mechanism and tropism mechanism, 
which is the main part of learning and is used to update 
the action selection policy. Figure 4 shows the learning 
control mechanism based on OC theory. The probabilis- 
tic action selection mechanism is the main part of OC 
learning. 

4. CB-BG-Based Motor Learning Scheme 

4.1. CB-BG-Based Motor Learning Control 
Structure 

According to the working modes of the cerebellum and 
basal ganglia, a CB-BG-based motor learning scheme is 
presented, which exploits supervised ac- tor-critic learn- 
ing structure, as shown in Figure 5.  

The coordinated factor   is used to calculate the 
combined action a , which can be got through the fol- 
lowing formula. 

 1E Sa a a               (1) 

Thereinto, Ea , the exploratory action, can be got by 
an artificial neural networks addition to a probabilistic 
action selection mechanism. Sa , the supervised action, 
can be got by the traditional feedback controller, which 
provides intention and solution for the action networks. 
a , a simple weighted sum of the actions given by the 
component policies, is sent to the environment. 

4.2. Algorithm Description 

1) Evaluation Networks with BG mechanism: The 
evaluation function  V s  can be updated with TD er- 
ror[39]:        1t tt r t V s V s     . tz  is the eligi- 
bil- ity trace of evaluation networks weights, which is 
com- puted by the linear differential equation, defined as, 

 
1

t
t t

t
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z z
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
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            (2) 

The updating equation of evaluation networks based  
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Figure 4. Learning control mechanism based on OC theory. 
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Figure 5. CB-BG-based motor learning control structure. 
BG: Basal Ganglia；CB: Cerebellum; IO: Inferior Olive; SN: 
Substantia Nigra; CF: Climbing Fibre; AN: Action 
Net-works, which is constituted with the interaction of BG 
and CB; Evaluation Mechanism owns to BG. The real line 
is the data flow, while the dashed line part is the learning 
updating algorithm. Dopaminergic signal (δ) coming from 
SN and feedback to striatum in BG is the learning signal for 
the action network in BG part. Another learning signal is 
the supervised error Se  coming from the Inferior Olive 

(IO) in correspondence with the learning mechanism of the 
cerebellum. The two parts of learning signals can be 
coordinated by coordinated factor   Probabilistic Action 
Selection (PAS) mechanism expresses the operant learning 
in BG. Ea , the exploratory action; Sa , the supervised 

action; r represent the reward signal after executing the 
combined action; state s represent the input of action 
networks and evaluation networks. 
 
on eligibility trace is that 

      tt t t z w w              (3) 

0   is a positive constant and express the learning 
step of evaluation networks; 0 1   is the discount 
factor of reward; 0 1   is the decay factor of eligi- 
bility trace. If   0t   (i.e., the state is better than ex- 
pect), the estimated critic value  V s  would be in- 
creased. In the contrast, if   0t   (i.e., it is worse 
than expect), the estimated value  V s  in the state 
would be decreased. 
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2) Action Networks with the interaction of CB and BG: 
In Figure 5, the actor policy  πA s  is a mapping from 
state to actor and can be given by a function approxima- 
tor with the parameter vector . 

 π ,A Aa s                  (4) 

The random action selective strategy Ea  obeys a 
probabilistic distribution of Boltzmann-Gibbs [40].  

   1
exp E

E
B

a
a

Z K T




 
  

 
           (5) 

Thereinto,    2
, 0E E Aa a a T     is the thermo- 

dynamics temperature, 231.38 10 Js KBK    is the 
Boltzmann constant,   exp E Ba K T  is Boltzmann 
factor, Z is the partition function, and that: 

 
exp d πE

E B
B

a
Z a K T

K T





 
   

 
       (6) 

After each state transition, those parameters are modi- 
fied according to the following rule. It includes two parts, 

CB  is realized through the function of cerebellum, 
and BG  is correspondence with the basal ganglia 
part. 

 BG CB1                   (7) 

In order to compute the supervised learning update: 
CB , the supervisory error can be defined for each ob- 

served state as follows. 

      21
π π

2 S AE s s s              (8) 

The weights updating of the action networks in cere- 
bellum part is that： 

     CB πS A AE s a a s              (9) 

The actor networks updating in BG part applies a kind 
of approximated policy gradient estimation algorithm: 

   BG πE A Aa a s           (10) 

0   is the learning step of action networks; 
0 1   weighs between two kinds of gradient infor- 
mation, one is related with second evaluation signal   
(also called internal return) and another gradient infor- 
mation is related with the supervised error  S Aa a . In 
order to express the importance of rewarded signal, in- 
ternal return signal is introduced into the item 

   CB πS A Aa a s     , so we get the improved 
weights updating method. 

     πE S S A Aa a a a s             (11) 

The improved supervised actor networks weight-up- 
dating algorithm shows that the TD error modulates the 
supervisory error  S Aa a . That is to say, one ‘trusts’ 

the critic more than the supervisor, in which case one 
should view the supervisor as an additional source of 
exploration. That is the coordination between the cere- 
bellum and basal ganglia. When the internal return   is 
small, the actor network loses the ability of learning 
through the supervisor. While in the unimproved algo- 
rithm, this learning ability only depends on the change of 
coordinated factor ω. 

3) Tropism Mechanism: In [41], the temperature 
parameter defined by the state values and the frequency 
of visiting states are added to representative state-action. 
By this thought, the probabilistic tropism can be changed 
through the temperature T, which depends on the critic 
value  V s . The bigger is the estimated value  V s , 
the better the action tropism is, and the temperature is 
more smaller, and vice versa. The smaller  V s , the 
worse tropism, the higher temperature, and system is in 
much more stochastic situation. The tropism rule is: 

  
1

21 exp t

k
T

k V s



          (12) 

Thereinto, 1 20, 0k k  , are constant and 1k  is de- 
fined as Simulated Annealing factor(SAF), which can 
be changed with learning;  tV s  is the critic value of 
current state. 

4) Interaction Mechanism of the cerebellum and basal 
ganglia: The coordinated factor   expresses the wei- 
ght of cerebellum supervisory learning in the whole 
learning process. It can be changeable and reflect the role 
of cerebellum and basal ganglia in different motor learn- 
ing stages. The following exponential increase method 
can be used as in literature [42] shown in Figure 6. 

 2
2 3

3

max 0,1 exp , 0
t n

n n C
n


         
   

  (13) 

5) CB-BG-based Motor Learning Algorithm with the 
RBF Networks: A radial basis function (RBF) network, 
which is an artificial neural network that uses radial basis 
functions as activation functions, is proposed by J. 
Moody and C. Darken in the late 1980s. It is a linear 
combination of radial basis functions. RBF networks 
imitate the neural networks structure of local adjustment 
and mutual covered receptive fields in human brain. The 
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Figure 6. CB coordination factor. 
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radial basis function can be used for the coding of 
CMAC. The conventional CMAC uses constant binary 
or triangular receptive-field basis function. However, the 
derivative information is not preserved. To acquire de- 
rivative information of input and output variable, Chiang 
and Lin developed a CMAC with a differentiable Gaus- 
sian receptive-field basis function and provided conver- 
gence analysis results for this network [43]. As men- 
tioned above, we will approximate action and evaluation 
functions by RBF neural networks in our proposed algo- 
rithm. 

The three layers topological structure of RBF net- 
works is shown in Figure 7, which is introduced in detail 
as follows. 
 The first is the input layer, which is for input space. 

Each neuron is corresponding to an input variable, 
and given that  T

1 2, , , n
nx x x x . 

 The second is the hidden layer, in which every node 
is a Gaussian function. The vector formed by output 
of hidden layer,  B

T

1 2, , , n    , Bn  is called 
the resolution. The bigger Bn  has a higher resolu- 
tion. 

 2

2
1

exp
2

n
k ki

i
k ki

x c

b




 
  

  
         (14) 

where,  T1 2, , , n
i i i nic c c c  is the center vector; 

   T

1 2 B, , , , 1, 2, ,n
i i i nib b b i n   b is the base 

width vector. 
 The third is the output layer, which have one node, 

used for approximating the unknown nonlinear func- 
tion. The weights vector is: 

B

T

1 2, , , nv v v   v , and 
the output is got. 

B

out
1

n
T

i i
i

y v


 v               (15) 

For the action and evaluation networks, the same 
structure of RBF neural networks is used. The output 
weights vector of actor and evaluation networks are rep-  
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Figure 7. Architecture of a RBFN. 

resented with   and w  respectively. So the process 
of CB-BG-based motor learning algorithm with the RBF 
networks can be concluded as follows: 

CB-BG-based Motor Learning Algorithm: 
Step 1: Initialization: Initiate the learning step α, β; 

discount factor  0,1  ; eligibility trace delay factor 
 0,1 ; Initiate arbitrarily all weights parameters   

and w ; Let 0trytime  . 
Step 2: Repeat (for each episode): 
1) t←0；z0←0 (reinitialize eligibility trace), Choose 

an initial state 0s . 
2) Repeat (for each step in the episode): 

a) For current state ts , calculate  πA A ta s ; 
 πS S ta s ; Select exploration action Ea  ac- 

cording to Boltzmann distribution; set the coor- 
dinated factor  ; compute the combined action 
a and the eligibility trace  1t t tz z s   . 

b) Execute action a, receive immediate reward  r t , 
then observe the new state 1ts  ; calculate TD er- 
ror        1t tt r t V s s     ; update the 
weights through      1 tt t t z  w w ; until 
satisfied the condition     1 ,t t   w w ; 

         1 E S S A tt t a a a a s            
c) 1t t  ; 

Until the desired number of episodes has been investi- 
gated. 

4.2. Algorithm Convergence Analyses 

Theorem 1: Action Ea  obeys probability distribution 

of Boltzmann-Gibbs:    1
exp E

E
B

a
a

Z K T




 
  

 
, where, 

   2

E E Aa a a   ,  

 
exp d πE

E B
B

a
Z a K T

K T





 
   

 
 ， The sum of the 

probability in real sets is one. 
Proof: The sum of the probability in real sets can be 

compute in the following integral equation. 

   

 

1
d exp d

π1
exp d 1

π π

E
p E E E

B

E B
E

BB B

a
a a a

Z K T

a K T
a

K TK T K T






 

 





 
    

 

 
    

 

 


 

Theorem 2: Along with learning, the entropy of sys-  

tem:     2log dE E EE a a a 



   decreases grad-  

ually, and system changes from uncertainty to certainty 
as time. 

Proof: The sum of the probability in real sets can be 
compute in the following integral equation. 
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Literature [44] listed several entropy of continuous 
probability distribution, and the entropy of continuous 
system with obeys normal distribution is:  

 2
2

1
log 2π

2
E e . It can be got that the probability 

distribution of Boltzmann-Gibbs in the paper is consis- 

tent with normal distribution: ,
2
B

S

K T
N a
 
  
 

, that is to 

say, the mean is Sa   and the variance  

22
BK TZ


  .  

So that, the entropy of the continuous system is: 

 2

1
log π

2 BE eK T           (16) 

Along with the learning progress,  V s  approxi- 
mates the largest sum of discounted reward. According 
to the tropism mechanism as formula (12), and by setting 
suitable parameters, the explore and exploit can keep 
coordinated, and the action policy which has been learnt 
at last can satisfy  π ππ arg max

E EE V s  . The learning 
algorithm makes the function  V s  developing toward 
the maximum direction. From the tropism mechanism, 
we can find that T would decrease with the increase of V. 
The system transforms from uncertainty to certainty 
along with learning. 

Entropy of discrete system has better characters, such 
as, non-negative characteristic and coordinates transfor- 
mation invariability, etc. Different with discrete system, 
entropy of continuous system, also called cross-entropy 
or differential entropy, does not have characteristics 
above. When    211 π 8.4855 10 K ,BT eK    0E  , 
the entropy could be negative as shown in Figure 8. 
Therefore, the proposed method is convergence in the 
sense of entropy, and the system changes from uncer- 
tainty to certainty. 

5. Simulation Experiment and Analyses 

5.1. Self-Balancing Two-Wheeled Robot 

Self-balancing two-wheeled robot is a complex nonlinear 
under-actuated system and has self-balancing skill like 
human. There is important theory signification to re- 
search about the cognition mode of robot. The schematic 
structure is shown in Figure 9. 

Parameters are defined in Table 1 which is shown in 
Appendix. 

The dynamic mathematic model is 

   ,M q q N q q ET               (17) 

where,  T
, ,b l rq    ,  T 2 1

l rT     , the ma-  
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Figure 8. Entropy changing with temperature T. 
 

l

r

b

 

Figure 9. System structure of robot. 
 

Table 1. Definition of Parameters. 

Parameter Description Value 

,l rm m kg   mass of the left and the right 
wheel 

1 

M/kg 
the mass of the intermediate 
body 

10 

R/m  radius of wheel 0.15 
d/m distance between the 01 and 0r 0.44 
L/m  distance between the 0 and G 0.4 

Jl = Jr = Jw/kg·m2 
the moment of inertia of (left 
and right wheel) about its axis 

0.01125

Jy/kg·m2 
the moment of inertia of the 
robot about the y –axis 

1.5417 

Jz/kg·m2  
the moment of inertia about the 
z –axis 

0.5893 

g/m/s2 acceleration of gravity 9.8 

,l r  /(N·m/(rad/s)) frictional coefficient of two 
wheels with ground 

0.1,0.1 

w /(N·m/(rad/s))  frictional coefficient of the 
wheels axis 

0.1 

x/m forward displacement of robot variable
v/(m/s) forward velocity of robot  variable

b /rad inclination angle of the inter-
mediate body 

variable

b / rad/s 
inclination angle velocity of the 
intermediate body 

variable

,rad rad s   
yaw angle and angle velocity of 
robot 

variable

,r l  /rad rotary angle of the right and left 
wheel 

variable

,l r  / rad/s rotary angle velocity of the 
right and left wheel 

variable

l /N.m torque provided by left motor [–5, 5] 

r /N.m  torque provided by right motor [–5, 5] 
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trix is illustrated in appendix. 
According to the definition of under-actuated system, 

the affined nonlinear system can be formulated with  

   1 2, , , ,q f q q t f q q t u        , and if the following condi-  

tion is satisfied:    2 , , dimrank f q q t q   
    (i.e. the  

number of actuators is less than DOF, degree of free- 
dom)，the system is an under-actuated system. As for the 
two-wheeled self-balancing robot,  

 1 2 3rank M q E     , so that it is an under-actuated 
system. Equation (16) is left multiplied transformation 
matrix A,    ,AM q q AN q q AET      , where,  

1 1 1

0 1 0

0 0 1

A

 
   
  

. Then we can get: 

   ,q q q q E T               (18) 

where, 
T

0 1 0

0 0 1
E AE

     
 

 

Equation (18) can be divided into: 

 
 

11 1 12 2 1

21 1 22 2 2

, 0

,

q q q q

q q q q 

   

   

     

     
     (19) 

where, 1 2, , ,n l mq q q l n m       , 1q  denote  

all the passive joints, and 2q  denote the actuated joints; 
  denotes the Coriolis force and gravity terms.  

  11 12

21 22

q
  

     
 , where   is positive definite,  

11  and 22  are also positive definite. Through the 
controllability analysis, we can conclude that the system 
is controllable. So it is important that under-actuated 
system is not necessarily an uncontrollable system. 

5.2. Simulation Experiment 

Applying the motor learning method proposed in Section 
IV, we did a simulation research on a self-balancing 
two-wheeled robot for the balance skill learning, and the 
bionic learning control structure is illustrated in Figure 
10. There are mainly five parts in the control system: 
receptor, afferent nerve, nerve centre, efferent nerve and 
effector. The proposed CB-BG-based motor learning 
method in Section 4 is included in the nerve centre. DAS 
denotes data acquisition system. 

According to the sliding mode control thought, we 
define the rewarded function and the sliding surface H as 
follows: 

  : 0H x s x              (20) 

     1 2b bs t a t a t            (21) 

We can obtain the reward information according to 
the changing of the sliding surface. After executing an 
action, if  s t  changes near to zero, give it reward. 
Conversely, give it penalty. 0 denotes reward, and -1 
denotes penalty. It can be formulated as: 

   2 20 (reward) if 1

1 (penalty) else
t

s t s t
r

   


   (22) 

Detect the robot states signals, and normalize the input 
signals which are sent to the CNS including the cerebel- 
lum and basal ganglia. The coordinated factor   is 
used in the form of exponential decay as formula (13). 
The parameters are chosen as follows. sT is the sampling 
time. ,

b b
n n   are the normalizing factor for angle and 

angle velocity separately. 

 
 

1 2

2 3 1

2

T

1 2

T

1 2

49 1 49 1

10 ;  2;  49;  10;  0.1;  0.1;

0.1;  0.8;  0.8;  500;  200; 10;

1;  π 54;  π 54;

3, 2, 1,0,1, 2,3 ;

0.5,0.5,0.5,0.5,0.5,0.5,0.5

; ; ;

5

b b

s B

a c l l

S

T ms n n k k

n n a

a n n

c c

b b

w R w R a
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
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   0 10 2 2b b l l l l         

 

The initial inclination angle    0 0.1744b rad  . 
1) The first experiment: two experiments are done for 

contrast. One with cerebellum coordinated, and another 
without cerebellum coordinated. Observe the result of 
inclination angle b . 
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nator

Body 
posture

Enco-
der

Right 
wheel

b b l l r r       

Robot

Motor servo module

D/A
Converter

Cerebellum

Basal Ganglia

CB-BG-based Motor 
learning method

RECEPTOR AFFERENT NERVE NERVE CENTRE

EFFERENT

NERVE

EFFECTOR

Robot States

,l r 

 

Figure 10. The bionic motor learning structure for self- 
balancing two-wheeled robot. 
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From the results, we can conclude that robot can learn 
to choose suitable action intelligently and keep balance 
with the two methods. The different is that, with the co- 
ordination of cerebellum, the robot can achieve the ex- 
pected result with 0 failure times, shown in Figure 11(a). 
However, the learning method with only basal ganglia 
mechanism, the robot has failed for 8 times and got the 
correct action in the ninth try time, and the Figure and 
data analysis chart are shown in Figures 11(b) and (c). 

2) The Second Experiment: After learning with 
cerebellum coordinated for one try time, robot can keep 
balance through operant learning only. Adjust the Simu- 
lated Annealing factor (SAF) 1k , and observe the 
inclination angle changing.  

The process of annealing is as follows: In the begin- 
ning, the SAF: 1 10k  ; on the 11th turn learning:  

1 110 5k k   ; on the 16th turn learning:  

1 15 1k k   ; on the 21st turn learning:  

1 11 0.5k k   ; on the 23rd turn learning: 

1 10.5 0.1k k   . 
The average temperature and entropy for every turn 

have been calculated as shown in Figure 12. It can be 
found that the entropy is decreasing with learning. Ob- 
serve the balancing learning results and the inclination 
angle curves are illustrated in Figure 13, and the con- 
vergence results have been contrasted in the beginning 
and the end in Figure 14. From the experiments results, 
the convergence can be seen with the decreasing of tem- 
perature. 

From above two experiments, it can be shown that, 
using the proposed CB-BG-based motor learning method, 
the self-balancing robot can learn the balancing skill high 
efficiently. Through the decreasing the temperature, 
learning results have become better and better. And the 
decreasing of entropy also indicates that the system is 
developing from uncertainty to certainty. 

6. Conclusions 

For the behavior learning of agent, a novel motor learn- 
ing method has been present. That is based on the coop- 
eration of the cerebellum and basal ganglia. The evalua- 
tion mechanism, tropism mechanism, action selection 
mechanism and the learning algorithm with the cerebel- 
lum coordination mechanism have been proposed. In the 
beginning, the learning signals come from two parts (In- 
ferior Olive and Substantia Nigra). At last, the learning 
signals only come from Substantia Nigra. Through 
analysis, the algorithm is convergent in the sense of en- 
tropy. With a self-balancing two-wheeled robot as the 
experiment plant, a motor learning control system has 
been constructed for the robot with the proposed method, 
in which RBF neural network is used to approximate the 
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Figure 11. Results of comparative experiments. (a) Simu- 
lation result with the proposed motor learning method; (b) 
Simulation result with the traditional actor-critic method; 
(c) Data analysis with unimproved method. 
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Figure 12. Temperature and entropy changing with learning. 
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Figure 13. Changing of inclination angle with the decreas- 
ing of temperature. 
 

 

Figure 14. Convergence process of learning. 
 
action and evaluation networks, use the sliding mode 
method to design the reward function, use the exponent- 
tial decay factor to design the cerebellar effect in the 
whole motor learning process. The contrast of simulation 
experiments shows that the proposed method has im- 
proved the learning algorithm with only basal ganglia 
mechanism in the aspect of learning speed and failure 
time. After many rounds of learning and the temperature 
decreasing, the certainty of system has been reinforced 
eventually along with the decreasing of entropy. The 
vibration is disappearing eventually, and the learning 
speed and accuracy have further improved. The principal 
contributions of this paper are that a motor learning 
method on the neurophysiology with the coordination of 
cerebellum and basal ganglia, on which a central nervous 
system for a self-balancing two-wheeled robot can be 
constructed. 
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Appendix 

The detail dynamic model of self-balancing two-wheeled 
robot is as follows. 

   ,M q q N q q ET                 (17) 
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