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Abstract

This paper concerns the orbital stability for exact solitary waves of the Generalized Klein-Gordon-Schro-
dinger equations. Since the abstract results of Grillakis et al. [1,2] can not be applied directly, we can extend
the abstract stability theory and use the detailed spectral analysis to obtain the stability of the solitary waves.
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1. Introduction

In this paper, we consider the the stability for the exact
solitary waves of the Generalized Klein-Gordon-Schro-
dinger equations

A N (L.1)

0~ +Mo=y| o] 0

which describe a classical model of interaction of nu-
cleon field with a meson field [3]. Here i is a complex
scalar nucleon field, ¢ is a real meson field, M is the
mass of a meson. By applying the abstract stability the-
ory and detailed spectral analysis in [4-6], we obtain the
orbital stability of the solitary waves.

This paper is organized as follows: in Section 2, we
state the results of the existence of the exact solitary
waves; in Section 3, we state the assumptions and the
stability results.

2. The Exact Solitary Waves

Consider the following system

. P p p72
{ l‘//t +al//xx - |¢| |(//| ji/ ER (21)
Dy = Px +M2¢) = |l//|p |¢|p ¢
Let
v (x,0) =€e“e“u(x—cr) 2.2)
go(x,t) = V(X_Ct)
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be the solitary waves of (2.1).
Put (2.2) into (2.1) and suppose u,u",v,v" — 0 ,as
X — o0 ,We obtain

(2a-1)cu'=0
au”+(c2 —w—acz)u +|v |u|p_2 u=0 (2.3)
(02 —1)v"+M2v—|u|p |v|p72 v=0

Let

a=%ﬂ=h7 (2.4)

satisfy (2.3) with constant £ = 0 determined later, then
we have

u"+(c2 — 2a))u +i|u|2’F2 u=0
k p
(2.5)

(c2 —l) v +M2v—|k|[7 |v|2p_2 v=0
1
Let u=csech”?c,x satisfy (2.4)-(2.5) and con-
stants ¢,,c, will be determined later, then we obtain

I <o )am

p=2 P

= ZTp(Zw—cz)(l—cz )E

K :2(1—c2),c§ =

Thus
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-sech’™ (\/260—02 (p—l)x)

(2.6)

Finally, we have
Theorem 1. For any real constants w, ¢, p, M satisfy-

ing

O<e<l, a)>%, p>1 M >0 (2.7)

there exist solitary wave of (2.1) in the form of (2.2),with
u, v satisfying (2.6).

3. Main Results

Rewrite Equation (2.1) as

1 :
S tlol "y =0

(p}:n 1

iy, +

X€R (3.2)

n =0, -Mo+ly|' oo

¢

Let u=|y |, and the function space in which we

n

shall work is X =H, , (R)xH., ..(R)xL,, .
inner product

with

(f,8)=Re[(fig+ /i 8 + 58, + [0 + 385
f.geX '
(3.2)
The dual space of Xis X" =H; xH_, . *xL.,, there
is a natural isomorphism 7: X — X defined by
(If.g)=(f.g) (3.3)

-> denotes the pairing between Xand X" .

(f.8)=Re[(fig,+ 1,8, + /g5 Jix

where < -,

(3.4)
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By (3.2)-(3.4), it is obvious
1
I = 2
-
ox?
Because the stability in view here refers to perturba-
tions of the solitary-wave profile itself, a study of the
initial-value problem for (1.1) is necessary.

Lemma 1. Let u,eH,, (R)xH,

complex

(R)x L’

real

there exists 7. = 7: (|

ueC([O,ﬂ);HllexLz),u(O):uo. In addition, ei-

)>0 and a unique solution

ther 7.=oo or |u(x,t)|, »>o(t>T).

Let 7;,7, be one-parameter groups of unitary opera-
tor on Xdeflned by

T (sy)u()=u(-s),
Tz(sz)u() (¢()e"2w() ()),u(-)eX,seR (3.6)

Obviously

u(~)eX,seR (3.5)

mo- -S|

It follows from Theorem 1 and (3.1) that there exist
solitary waves T, (ct)T, (et)(e,. (x).v,. (x).7,, (%))
with ¢, (x),v,c(x).n,,. (x) defined by

P () = ( )

Vo (x)=e“u(x)
Ry (x)==cv'(x)

3.7)

Let
@,y (%) = (@ (%) Woe (%), (x))

In this and the following sections, we shall consider
the orbital stability of solitary waves

T, (ct) T, (ot)®, (x) of (3.1). Note that Equation (3.1)
is invariant under 7;(-) and 7, (-),we define the orbital
stability as follows:

Definition 1. The solitary wave T, (ct)T, (wt)®, (x)
is orbitally stable if for all &> Othere exists & > 0with
the following property. If [u, @, | <& and u(z)
is a solution of (3.1) in some interval [0,7,) with
u(0)=u,, then u(¢)can be continued to a solution in
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0<¢t<+w,and

sup infinf

O<t<+oo S1ER 52€R

u(t)—T1 (sl)T2 (52 )q)a),c (x)"X <&

Otherwise 7, (ct)T,(wt)®, (x) is called orbitally
unstable.
So long as o, c are fixed we write ¢,y,n for

Poc (X)W e (%), (x).

Define
1,21
E(u)=£[5|nl Sl +5M2lof v -
Ly oy g '
Lt Jo
p
1 1 _
Ql(u)=EJ(nx¢—(pA_n)dx+§lmJ‘l//x!//dx (3.9
Qz(u):—%.”l//rdx (3.10)

It is easy to verify that E(u), O, (u) and Q,(u)
are invariant under 7;,7,, and formally conserved under

the flow of (3.1). Namely
E(];(sl)Tz(sz)u)zE(u),for any s,,8, €R
O(T,(8)T, (s,)u) = O (u), for any s,,s,€R
O,(T,(s,)T,(s,)u) =0, (u), for any s,s,€R
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(3.12)

Note that Equation (3.1) can be written as the follow-
ing Hamiltonian system

du

dr

where J is a skew-symmetric linear operator, E is a func-

tional (the energy).
However, by (2.4)-(2.6), we have

E'(4,.)-c0(¢,.)-00;(¢,.)=0 (3.14)

where E’,Q'and Q, are the Frechet derivatives of E,
0O, and Q,,with

= JE'(u) (3.13)

0. +M*o-|y|"|o|"” o
1 _
Eu)=| —velol v
n
n, 0
0l(u)=| v, |, (=] v
—@, 0

Define an operator from Xto X~

H,@=E"(4,.)-c0/(s,.)- 00 (¢,.) (3.15)

(3.11)
and forany ¢eR,u(¢) isaflow of (3.1) with y=(»,5,,y;)e X, and
8 - - _
(—?JrMZ P th//l”]yl—ﬁlwlp “o(v+7)y, -,
- 10 p p— 0
How=| =plovl’ o |5 L= 2lol =224 v ie 2 o,
Yyt Ys

Observe that H, . is self-adjoint in the sense that
H, . =H,, Thismeansthat /™H, isa bounded self-

,c

adjoint operator on X. The spectrum of H, consists of
the real numbers A such that H, — Al is not invert-
|bIe We claim that 1 =0 belongs to the spectrum of
.- By (3.11-3.15), it is easy to prove that

H, T/(0)®, (x)=0

w,c”1

i, 700, (=0 o0

Let

= (kT (0)®, (x)+ kT3 ()@, (x) k., < R
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(3.17)
By (3.16), Z is contained in the kernel of H

Assumption 1. (Spectral decomposition of HM)
The space X is decomposed as a direct sum

X=N+Z+P (3.18)

where Z is defined above, N is a finite-dimensional sub-
space such that

(H, uu)<0 for OzueN (3.19)
and P is a closed subspace such that

<H u, u> > 5||u||i for uepP (3.20)

w,c
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with some constant 6 >0 independent of .
We define d(w,c):RxR— R by

d (a), C) = E(¢w,c ) —-cQ (¢w,c ) -0, (¢w,c )

and define d"(w,c) to be the Hessian of function d. It
is a symmetric bilinear form. In addition, we use p(d")
to express the numbers of positive eigenvalue of " and

n(H,,) to express the numbers of negative eigenvalue
of H,..

Theorem 2. Suppose that there exist three function
E(u),0,(u),0, (u) satisfying (3.11) and (3.12), and
solitary waves T7;(ct)7T,(wt)®,, . (x) satisfying (3.14).
Moreover, suppose that the operator HW given by

(3.21)

(3.15) satisfies Assumption 1. If d(w,c)is non-degen-
erative, 1< p<3 and p(d")=n(Hw’c), then solitary
waves T, (ct)T,(ot)®, (x) are orbitally stable.

Proof. According to (3.8)-(3.15), we only need to
prove that Assumption 1 and p(d”)=n(H,,,) hold.

First of all, we prove that Assumption 1 hold and
n(HM):l
Forany ye X, let
y :<zl,eic’“22,z3), Z, = 2Zy +izy, Zy =Rez,

(3.22)
then

P )
) | i 1
_§|€0W|p72 ¢’(sz "“/722)21 —CZ3,n
L, [ 10 )
- plov|” oy =z, +[——7—§|¢|" vl

-

-2 0 _
_pT|¢|” |1// v’ +ica+w} Z,2,
+cz, Z5 + z§ } dx
= I[(l—cz )zlz)C +(czlx + 23)2
?
M2 =(p-2)lg |y ) 2
_217|(P'//|pi1 21221:|dx+<L1221,221>+<L2222,222>

= (e 2+ plowl” (vl -l )
R

+L212 J dx + <Z1221 , 221> + <L2222 y Zos )
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where

10 - 2
L, =—§§—|¢’|p|'/’|p i +w—%

(3.23)
Since 2w-c¢? >0, note that

(3.24)

with
M, (x) =0, as |x| >0 M,(x) >0, as|x—>w
(3.25)

Thus, by Weyl’s theorem on the essential spectrum (see
[5]), we have

2 2

o, (L) Z[O)—%,+OO), w->0

p . (3.26)
o, (L) = [a)—?,+oo), a)—? >0
Following from (2.3)-(2.5)
Lu'=0, Lu=0 (3.27)

By (2.6) and (3.27), we see that «" has a simple zero at
x =0, then Sturm-Liouvill theorem implies that 0 is the
second eigenvalue of L ,and L, has exactly one strictly
negative eigenvalue —A%, with an eigenfunction .
In virtue of (3.24)-(3.27), as in [3], we have the fol-
lowing lemma.
Lemma 2. For any real functions z, € H*(R), sa-

tisfying

(20, 1) =(22,u) =0 (3.28)
there exists a positive number &, > 0such that
<lez1l 221> 20 "221":1 (3.29)

Lemma 3. For any real functions z,, € H*(R), sa-
tisfying (z,,,u)=0, there exists a positive number
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5, >0 such that d(w.c)=E(¢,.)-cO(¢,.) -0 (4,.)
(3.30) we have

2
We can d, =—Q2( M) ;£ de—z}[sech”_lxdx

<L2222 ) Zzz> 25, "222 "Zl

For any y= (zl, e"c"zz,z3),z2 =1z, +iz,,

simply denote by y =(z,,2,,2,,2,)

d, =-0, (Q)W ) = —%.[(uz +2v7 )dx

Choose
, p(uv)p_1 + \/p2 (uv)zﬂ_2 —(p(uv)p_z u® + L) ., ) e
- -2 1 =— sech”txdx+— 1%
plw)"ut el { Jreeh” e
i i+2
: J'sech”’lxdx—J'sech”’1 xdx
;{1,0,—6‘21 R R
Let
then 2
Isechp’lxdx =A>0

(H,.y.y)==2"{z,1)<0 (3.31)
is spanned by the

2

then jsechp L xdx_ilA>0

Also note that the kernel of H .
P+

following two vectors:

Yoa :(_Vx'”xvcu’_” ) Yoz = (O 0,u, 0) Thus
Let dmzAi(iJ, dmzAa(clj
N={ky [k eR} oc\ 2c, 0w\ 2c,
Z= {1y01+k2y02/k1,k ER} 2 1)(2
632) . z[c_lj (o)1 D))
P= {PEX/P pl’p21p3’p4)' dc\ 2c, (1_C2)(P+1)
(P2s 1) = (P2t} = (o) = O} (A o j[ , (p(20=c)
+ —_— _l-—— —
Lemma 4. For any pe P, defined by (3.32), there 2c, (1_‘72)(1”1)
exists a constant ¢ >0 such that
2¢* (p-1)(2w-1)
, _
<H(u,cp’p>25||p")( (333) (p+1)(1—C2 )2
with 6 independentof p. )
Forany we X,u= (52,72 ) 0 < 24| o1 A=)
, “ | ow| 2, (1—02)(p+1)
a =22, ), b T .
aZa B <u’,u'>, 2 <u,u> : _{AC_l\J 20([7—1)
2(22 ( )(p +l)
then u=ay_ +by,, +by,,+p.
Thus under the condition of (2.7), Assumption 1 hold Therefore, we obtain
and n(H,, )=1. d,, d,
In the following, we shall verify that d :(d, d,}
p(d")=n(H,,)=1 under the condition of theorem 1.
For 1< p<3,

From

Copyright © 2011 SciRes.
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det(d")=d,,d

— Yoo cc

(2] ()
(P=D(20-¢") 2¢*(p-1)(20-1)
=) p+)  (p-)(-*)

lagllses

Z_;J(l—cz)(p+l)
n(HW) = p(d") =1

Thus, theorem 2 is proved completely.

-d,d

wc™” co
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