
Applied Mathematics, 2011, 2, 1005-1010 
doi:10.4236/am.2011.28139 Published Online August 2011 (http://www.SciRP.org/journal/am) 

Copyright © 2011 SciRes.                                                                                  AM 

Orbital Stability of Solitary Waves for Generalized 
Klein-Gordon-Schrödinger Equations 

Wenhui Qi, Guoguang Lin 
School of Mathematics and Statistic, Yunnan University, Kunming, China 

E-mail: gglin@ynu.edu.cn 
Received May 30, 2011; revised June 13, 2011; accepted June 20, 2011 

Abstract 
 

This paper concerns the orbital stability for exact solitary waves of the Generalized Klein-Gordon-Schrö- 
dinger equations. Since the abstract results of Grillakis et al. [1,2] can not be applied directly, we can extend 
the abstract stability theory and use the detailed spectral analysis to obtain the stability of the solitary waves. 
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1. Introduction 
 
In this paper, we consider the the stability for the exact 
solitary waves of the Generalized Klein-Gordon-Schrö- 
dinger equations 
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which describe a classical model of interaction of nu-
cleon field with a meson field [3]. Here   is a complex 
scalar nucleon field,   is a real meson field, M is the 
mass of a meson. By applying the abstract stability the-
ory and detailed spectral analysis in [4-6], we obtain the 
orbital stability of the solitary waves. 

This paper is organized as follows: in Section 2, we 
state the results of the existence of the exact solitary 
waves; in Section 3, we state the assumptions and the 
stability results. 
 
2. The Exact Solitary Waves 
 
Consider the following system 
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be the solitary waves of (2.1). 
Put (2.2) into (2.1) and suppose ,as , , , 0u u v v  

x  ,we obtain  
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Let 

1
,

2
u kv                 (2.4) 

satisfy (2.3) with constant  determined later, then 
we have  

0k

 

 

2 22

2 22 2

2
2 0

1 0

p

p

p p

u c u u u
k

c v M v k v v

 



     

    

       (2.5)  

Let 
1

1
1 sec h pu c c x 2  satisfy (2.4)-(2.5) and con-

stants  will be determined later, then we obtain  1 2,c c
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(2.6) 

Finally, we have 
Theorem 1. For any real constants ω, c, p, M satisfy-

ing 

1
0 1, , 1,

2
c p     0M         (2.7) 

there exist solitary wave of (2.1) in the form of (2.2),with 
satisfying (2.6). ,u v

 
3. Main Results  
 
Rewrite Equation (2.1) as 
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u , and the function space in which we 

shall work is    1 1
real complex real

2X H R H R L   , with 
inner product 

   1 1 1 1 2 2 2 2 3 3, Re dx x x x
R

f g f g f g f g f g x    f g , 

, Xf g  

(3.2) 

The dual space of X is * 1 1 2
real complex realX H H L   

*

, there 

is a natural isomorphism :I X X defined by 

 , ,I g f f g               (3.3) 

where denotes the pairing between X and ,    *X . 

 1 1 2 2 3 3, Re d
R

By (3.2)-(3.4), it is obvious 
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Because the stability in view here refers to perturba-
tions of the solitary-wave profile itself, a study of the 
initial-value problem for (1.1) is necessary.  

Lemma 1. Let    1 1
0 real complex real

2H R H R L  u , 

there exists  * * 0 0T T u 


 and a unique solution 

   1 1 2
* 0[0, ); , 0C T H H L   u

*T

u u . In addition, ei-

ther    or    *,
X

x t t u T . 

Let 1 2  be one-parameter groups of unitary opera-
tor on X defined by 

,T T

       1 1 1 , ,T s s X s R     u u u         (3.5) 

            2
2 2 , e , , ,isT s n X s R       u u    (3.6) 
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It follows from Theorem 1 and (3.1) that there exist 

solitary waves           1 2 , , ,, ,c c cT ct T t x x n x       

with     , , ,, ,c C c x x n x    defined by 
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Let  

        , , , ,, ,c c c cx x x n      x  

In this and the following sections, we shall consider 
the orbital stability of solitary waves 

     1 2 ,cT ct T t x  of (3.1). Note that Equation (3.1)  

is invariant under  1T   and  2T  ,we define the orbital 
stability as follows: 

Definition 1. The solitary wave      1 2 ,cT ct T t x  
is orbitally stable if for all 0 there exists 0 with  

f g f g f g x  f g     (3.4) 

the following property. If 0 ,c X
 u    and  tu

)

  

is a solution of (3.1) in some interval 0 with [0, t
  00 u u , then  tu can be continued to a solution in 
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(3.12) 
Otherwise      1 2 ,cT ct T t x  is called orbitally 
unstable. Note that Equation (3.1) can be written as the follow-

ing Hamiltonian system So long as ,c are fixed we write , ,n   for 
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where J is a skew-symmetric linear operator, E is a func-
tional (the energy). 
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However, by (2.4)-(2.6), we have    (3.8) 
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where ,E Q  and 2Q  are the Frechet derivatives of E, 
 and , with  1Q 2Q 1 u
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d Im d

2 2x x x
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22

21

2

p p

xx

p p

xx

M

E

n





   
 
 

    
 
 
 

u

    

       2

2

1
d

2 R

Q   u  x             (3.10) 

It is easy to verify that  E u ,  and  1Q u  2Q u  
are invariant under 1 2 , and formally conserved under 
the flow of (3.1). Namely 
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 Define an operator from X to X  

    , , 1 , 2c c cH E cQ Q         ,c      (3.15) 
(3.11) 

with  1 2 3, ,y y y X y , and and for any  ,t R t u  is a flow of (3.1) 
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Observe that ,cH is self-adjoint in the sense that (3.17) 
*

,c ,cH H   This means that 1
,cI H

 is a bounded self- 
adjoint operator on X. The spectrum of ,cH consists of 
the real numbers   such that ,cH I   is not invert-
ible. We claim that 0  belongs to the spectrum of 

By (3.16), Z is contained in the kernel of ,cH . 

Assumption 1. (Spectral decomposition of ,cH ) 
The space X is decomposed as a direct sum 

X N Z P               (3.18) 
,cH . By (3.11-3.15), it is easy to prove that  

where Z is defined above, N is a finite-dimensional sub-
space such that     
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Since 22 0c  , note that 
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Following from (2.3)-(2.5)  
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Thus, theorem 2 is proved completely. 
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