
Applied Mathematics, 2011, 2, 953-958 
doi:10.4236/am.2011.28131 Published Online August 2011 (http://www.SciRP.org/journal/am) 

Copyright © 2011 SciRes.                                                                                  AM 

Application of He’s Variational Iteration Method and 
Adomian Decomposition Method to Solution for the Fifth 

Order Caudrey-Dodd-Gibbon (CDG) Equation 

Mehdi Safari 
Department of Mechanical Engineering, Aligoodarz Branch, Islamic Azad University, Aligoodarz, Iran 

E-mail: ms_safari2005@yahoo.com 
Received June 14, 2010; revised June 26, 2011; accepted July 4, 2011 

Abstract 
 
In this work we use the He’s variational iteration method and Adomian decomposition method to solution 
N-soliton solutions for the fifth order Caudrey-Dodd-Gibbon (CDG) Equation. 
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1. Introduction 
 
The theory of solitary waves has attracted much interest 
in recent years for treatment of PDEs describing nonlin-
ear and evolution concepts. Nonlinear phenomena appear 
in many areas of scientific fields such as solid state 
physics, plasma physics, fluid dynamics, mathematical 
biology and chemical kinetics. The nonlinear problems 
are characterized by dispersive effects, dissipative effects, 
convection-advection, and diffusion process. A broad 
class of analytical solutions methods, such as inverse 
scattering method, Ba¨cklund transformation method, 
Hirota’s bilinear scheme [1-6], Hereman’s method [7,8], 
pseudo spectral method, Jacobi elliptic method, 
Painleve´ analysis [9], and other methods, were used to 
handle these problems. However, some of these analyti-
cal solutions methods are not easy to use because of the 
tedious work that it requires. This paper is concerned 
with the multiple-soliton solutions of the fifth order non- 
linear Caudrey-Dodd-Gibbon (CDG) equation [10,11] 
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with  is a sufficiently often differentiable func-
tion. It is well-known that this equation is completely 
integrable. This means that it has multiple-soliton solu-
tions. The CDG equation possesses the Painleve´ prop-
erty as proved by Weiss in [9]. A useful study is intro-
duced in [9] using the Painleve´ property and the 
Ba¨cklund transformation in handling the CDG equation 
and other equations as well. It was found in [9] that the 

CDG Equation (1) has the Backlund transformation 
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The last two equations can be expressed as the Lax pair 
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The objective of this work is to further complement 
other studies related to the CDG equation. The tanh 
method [12-17], and the tanh-coth method [18,19] will 
be used to stress its power in the determination of single- 
soliton solution and other travelling wave solutions. We 
aim to use Adomian decomposition method and variation 
iteratin method to solve this equation. 
 
2. Basic Idea of He’s Variational Iteration 

Method 
 
To clarify the basic ideas of VIM, we consider the fol-
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lowing differential equation: 

 Lu Nu g t               (7) 

where  is a linear operator,  a nonlinear operator 
and 

L
 

N
g t  an inhomogeneous term. 

According to VIM, we can write down a correction 
functional as follows: 
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where   is a general Lagrangian multiplier which can 
be identified optimally via the variational theory. The 
subscript  indicates the n th approximation and  
is considered as a restricted variation 

n nu
0nu  . 

 
a. VIM Implement for this Equation: 
We first consider the application of VIM Caudrey- 
Dodd-Gibbon(CDG) equation:  
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with the initial conditions of: 

   2 2
0 , secu x t h x         (10) 

To earn general Lagrangian multiplier ( )  we put 
coeficient of t or u xu  equal zero.where prime indicates 
a differential with respect to x and dot denotes a differen-
tial with respect to t. We earn   respect to . After 
some calculations, we obtain the following stationary 
conditions in Equations(10a) and (10b): 

t

 1 t   0           (10a) 

  1                (10b) 

Its correction variational functional in x and t can be 
expressed, respectively, as follows: 
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We start with the initial approximation of  ,0u x  
given by Equation (4). Using the above iteration formu-
las (9), we can directly obtain the other components as 
follows: 
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and continue then we show the last result in Figure 1(a). 
 
3. Basic Idea of Adomian Decomposition 

Method 
 
We begin with the equation 

    Lu R u F u g t            (14) 

where L is the operator of the highest-ordered derivatives 
with respect to t and R is the remainder of the linear op-
erator. The nonlinear term is represented by  F u . Thus 
we get 

    Lu g t R u F u            (15) 

The inverse 1L  is assumed an integral operator given 
by 
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0
d
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The operating with the operator on both sides of 
Equation (15) we have 

1L
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where 0f  is the solution of homogeneous equation 

0Lu                   (18) 

involving the constants of integration. The integration 
constants involved in the solution of homogeneous Equa-
tion (18) are to be determined by the initial or boundary 
condition according as the problem is initial-value prob-
lem or boundary-value problem. 

The ADM assumes that the unknown function  ,u x t  
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can be expressed by an infinite series of the form 
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and the nonlinear operator  F u  can be decomposed by 

an infinite series of polynomials given by 
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It is now well known in the literature that these poly-
nomials can be constructed for all classes of nonlinearity 
according to algorithms set by Adomian [10,15] and re-
cently developed by an alternative approach in [8,9, 
16,17]. 
 
b. ADM Implement for This Equation 
We solve this equation  
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We solve with this way CDG equation and continue 
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(25) 
We sum in Equation (25) and earn the results ac-

cording to 
iu

i 1,1.5,2,3   in Figures 1-4. 
We compared 2-D figures of VIM and ADM for dif-

ferent values of   in Figure 5. 
 
4. Conclusions 
 
In this paper, He’s variational iteration method has been 
successfully applied to find the solution CDG equations.  

 

 
(a) 

 
(b) 

Figure 1. For the solitary wave solution with the first initial 
conditions (4) of Equation (1), VIM result for  u x t,  is, 

respectively (b) and ADM(b),with μ = 1. 
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(a)                                                  (b) 

Figure 2. For VIM result for  u x t,  is, respectively (1b) and ADM(1b), with μ = 1.5. 

 

     
(a)                                                (b) 

Figure 3. VIM result for  u x t,  is, respectively (1b) and ADM(1b), with μ = 2. 

 

    
(a)                                                   (b) 

Figrue 4. VIM result for  u x t,  is, respectively (1) and ADM(1),with μ = 3. 

 
Both of methods show that the results are in excellent 
agreement with toghether and the obtained solutions are 
shown graphically. In our work, we use the Maple Pack-
age to calculate the functions obtained from the varia- 

tional iteration method and adomian decomposition me- 
thod. An interesting point about ADM is that with the 
fewest number of iterations or even in some cases, once, 
it can converge to correct results. 
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Figure 5. Comparison 2-D figures of VIM and ADM for different values of μ. 
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