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Abstract

In testing statistical hypotheses, as in other statistical problems, we may be confronted with fuzzy concepts.
This paper deals with the problem of testing hypotheses, when the hypotheses are fuzzy and the data are
crisp. We first give new definitions for notion of mass (density) probability function with fuzzy parameter,
probability of type I and type II errors and then state and prove the sequential probability ratio test, on the
basis of these new errors, for testing fuzzy hypotheses. Numerical examples are also provided to illustrate the

approach.
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1. Introduction

Statistical analysis, in traditional form, is based on cri-
spness of data, random variable, point estimation, hypo-
theses, parameter and so on. As there are many different
situations in which the above mentioned concepts are
imprecise. On the other hand, the theory of fuzzy sets is a
well known tool for formulation and analysis of impre-
cise and subjective concepts. Therefore the sequential
probability ratio test with fuzzy hypotheses can be
important. The problem of statistical inference in fuzzy
environments are developed in different approaches.
Delgado et al. [1] consider the problem of fuzzy hypo-
theses testing with crisp data. Arnold [2,3] presents an
approach to test fuzzily formulated hypotheses, in which
he considered fuzzy constraints on the type I and II
errors. Holena [4] considers a fuzzy generalization of a
sophisticated approach to exploratory data analysis, the
general unary hypotheses automaton. Holena [5] presents
a principally different approach and motivates by the
observational logic and its success in automated know-
ledge discovery. Neyman-pearson lemma for fuzzy hy-
potheses testing and Neyman-pearson lemma for fuzzy
hypotheses testing with vague data is given by Taheri et
al. and Torabi et al. [6,7]. Filzmoser and Viertl [8]
present an approach for statistical testing at the basis of
fuzzy values by introducing the fuzzy p-value. Some
methods of statistical inference with fuzzy data, are
reviewed by Viertl [9]. Buckley [10,11] studies the
problems of statistical inference in fuzzy environment.
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Thompson and Geyer [12] proposed the Fuzzy p-values
in latent variable problems. Taheri and Arefi [13] exhibit
an approach for testing fuzzy hypotheses based on fuzzy
test statistics. Parchami et al. [14] consider the problem
of testing hypotheses, when the hypotheses are fuzzy and
the data are crisp. they first introduce the notion of fuzzy
p-value, by applying the extension principle and then
present an approach for testing fuzzy hypotheses by
comparing a fuzzy p-value and a fuzzy significance level,
based on a comparison of two fuzzy sets.

In present work, we first define a new approach for
obtaining the probability (density) function, when the
random variable is crisp and the parameter of interest is
imprecise (fuzzy). Also, the type I and type II errors are
introduced based on fuzzy hypotheses. Then, the
sequential probability ratio test (SPRT) is defined and
extended based on such hypotheses.

We organize the matter in the following way:

In section 2 we describe some basic concepts of fuzzy
hypotheses, density (Mass) probability function with
fuzzy parameter and necessary definitions. In section 3
we come up sequential probability ratio test based on
fuzzy hypotheses. In section 4 the previous definitions
and the sequential probability ratio test will be illustrated
by examples.

2. Preliminaries

In this section we describe fuzzy hypotheses, density
(Mass) probability function with fuzzy parameter and
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necessary definitions.

Let (Q,}",P) be a probability space, a random
variable (RV) X is a measurable function from
(Q,F,P) to (X,B,P,), where P, is the probability
measure induced by X and is called the distribution of
the RV X, i.e,

P (A)=P(XeA)=[ dP VAeB.

If Py is dominated by a o — finite measure v, i.e.
P, <v then by the Radon-Nikodym theorem
(Billingsley, [15]), we have

P (A) =] _ f(x]#)do(x) VAeB,

where f(X|6) is the Radon-Nikodym derivative of
P, with respect to v and is called the probability
density function of X with respect to v . In a
statistical context, the measure v is usually a “counting
measure” or a “Lebesgue measure”, hence P, (A) is

ZXEAP(X - X|5’) or _[Af (X|6’)dX, respectively.
2.1. Canonical Fuzzy Numbers

Let ®= {t9| f (X|9) > 0} be the “support” or “sample

space” of ©, then a fuzzy subset 6 of Sy is defined
by its membership function ; :© —[0.1]. We denote
by 6, ={9:,u§(x)2a} the o —cutsetof & and 6,
is the closure of the set {9 Ly (X) > 0} , and

1) € is called a normal fuzzy set if there exists
0€® suchthat u;(x)=1;

2) 6 is called a convex fuzzy set if
#y (Ax+(1=2)y) = min (s, (X), 1, (y)) forall
Aefo1]; ]

3) @ is called a fuzzy number if 6 is a normal
convex fuzzy set and its a— cut sets, are bounded
Va#0;

4) 6 is called a closed fuzzy number if 6 is a
fuzzy number and its membership function ; is upper
semicontinuous;

5) 0 is called a bounded fuzzy number if 6 is a
fuzzy number and the support of its membership function
U 1s compact.

If 6 is a closed and bounded fuzzy number with
0, =inf{0:0e0,} and 6, =sup{0:0<6,} and its
membership function be strictly increasing on the
interval }[ﬁ(j , HIL} and strictly decreasing on the interval

(6.0,
(Klir and Yuan, [16]).
The fuzzy canonical numbers (such as triangular or

trapezoidal fuzzy numbers) are very realistic in fuzzy set
theory, so we use this numbers for our goal.

then @ is called a canonical fuzzy number
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2.2. Fuzzy Hypotheses

We define some models, as fuzzy sets of real numbers,
for modeling the extended versions of the simple, the
one-sided, and the two-sided ordinary (crisp) hypotheses
to the fuzzy ones.

Testing statistical hypothesis is a main branch of
statistical inference. Typically, a statistical hypothesis is
an assertion about the probability distribution of one or
more random variable(s). Traditionally, all statisticians
assume the hypothesis for which we wish provide a test
are well-defined. This limitation, sometimes, force the
statistician to make decision procedure in an unrealistic
manner. This is because in realistic problems, we may
come across non-precise (fuzzy) hypothesis. For example,
suppose that & is the proportion of a population which
have a disease. We take a random sample of elements
and study the sample for having some idea about 6. In
crisp hypothesis testing, one uses the hypotheses of the
form: H;:6=0.2 versus H,:0#02 or H,;:0<0.2
versus H;:6>0.2, and so on. However, we would
sometimes like to test more realistic hypotheses. In this
example, more realistic expressions about 6 would be
considered as: “small”, “very small”, “large”, “approxi-
mately 0.2”, “essentially larger” and so on. Therefore,
more realistic formulation of the hypotheses might be
H,:0 is small, versus H,:6 is not small. We call
such expressions as fuzzy hypotheses.

We define some models, as fuzzy sets of real numbers,
for modeling the extended versions of the simple, the
one-sided, and the two-sided crisp hypotheses to the
fuzzy ones (Akbari and Rezaei, [17]).

Definition 2.1 Let 6, be a real number and known.

1) Any hypothesis of the form
(H :6.3cmis.3cmapproximately.3cmé, ) is called to be a
fuzzy simple hypothesis.

2) Any hypothesis of the form
(H :6.3cmis. 1Scmnot.3cmapproximately.3cm00) is
called to be a fuzzy two-sided hypothesis.

3) Any hypothesis of the form
(H : 6.3cmis.15cmessentially. 5cmlarger.15cmthan.15cm.
13cm6?0) is called to be a fuzzy right one-sided hypo-
thesis.

4) Any hypothesis of the form
(H:6.3cmis.15cmessentially.15cmsmaller.15cmthan.15cm.
3cm6’0) is called to be a fuzzy left one-sided hypothesis.

We denote the above definitions by

(a).3cm{H, : 6.3cmis.3cmapproximately

:3cmé,.65cm(6.3cmis.3cmH,, (9))}

(b).3cm{H, : 6.3cmis.3cmessentially.
3cmlarger.3cmthan.3cmé, 1.4cm}
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(c).3cm{H, : 8.3cmis.3cmessentially.3cmsmaller
3cmthan.3cmé, 1.6cm}

(d).3cm{H, : 6.3cmis.3cmapproximately.3cmg,.65cm}

2.3. Density (Mass) Probability Function

Let X is a RV and let Sy :{XeR: f(X|€)>0} be
the “support” or “sample” space of X and

ulis M
f(x)= H”

where H (@) is the membership function of canonical
fuzzy hypothesis and 6, isits « -cuts.

We call the new density f(x|@) as the fuzzy
probability density (mass) function (FPDF) of X

(x|0)doda

9)d9da

(Akbari and Rezaei [18]). We note that, f(x|é)20
and
( |9)d | j L)Ea (x|0)doda
xeSx XeSyx j Ig . 9)dc9da

_f(x[0)dxdoda

1
_ J.O J.Heg H (9).[
JoJiua,
=1
(substitute the summation by integral in discrete cases).

Let g(x):R—R be arbitrary function in X. Then
we define

E;(9(X))=],, 9(x)f (x[6)ax
.[XESXJ‘LJGH X)H (0)f ( |9)d9dadx

j I@ea H (0)d6da

a)deda

i MO, 9(x) T (x[0)ixd0da
L Moo
_M;eg H(0)E;(9(X))dode

(6)0da

Julia, M

Let X =(X,X,,--,X,) be a random sample, with
observed value X=(X1,X2, ., n), where X, has the
FPDF f (X|t9) with unknown 6 €® . For testlng

H,:0is H,(9)or dis 6,
H, :0isH,(0)or dis 6,

we state the following definitions:
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Definition 2.2 Let y(X) be a test function. The
probability of type I error of (X)) is

a,=E; [(//(X)J ,
and the probability of type Il error of y(X) is
B, =1-E; [y (X)]=§; [1-w (X)].

Definition 2.3 A teat  is said to be a test of level
a if a,<a,where a<[0,1].
wecall «, thesizeof y .

3. Sequential Probability Ratio Test

Consider testing a null fuzzy hypothesis against a
alternative fuzzy hypothesis. In other words, suppose a
sample can be drawn from one of two FPDFs and it is
desired to test that the sample came from one distribution
against the possibility that is came from the other. If
X,,X,,--- denotes the random variables, we want to test

Hy: X, ~ f (.|éo) versus H,: X, ~ f (.|él). The simple

likelihood-ratio test was of the following form:

L0

reject H, if A =—<k for some constant k > 0.

The sequential test that we propose to consider
employs the likelihood-ratios sequentially. Define

_ C L () L(%a XXy
o = on (X) = L, (x) B Ly (X %000, Xy )

(x[%)

Ly (m) TT0 f
L(m) T 1 ()6

for m=1,2,--, and compute sequentially A,,4,,--
for fixed k, and Kk, satisfying 0 <k, <k, adopt the
following procedure: take observation X, and compute
Ay if A4 <k, reject H;if 4 >k, accept H,; and if
k, <4 <k, take observation X,, and compute A,. If
A, <Kk, , reject Hy; if 4,2k, accept H,; and if
k, <A, <k, take observation X;, and etc. The idea is
to continue sampling as long as k, <4, <k, and stop as
soon as 4; <k, or A; >k, rejecting H, if A4, <k,
and accepting H, if A, >k, . The critical region of the
described sequential test can be define as C=uU;_C,,
where

C, :{x:ko </1(xl,x2,---,xj)<k,,
SHA

Similarly, the acceptance region can be defined as
A=U_ A,., where

j :152:‘”’n_17&()(1’)(29”'9)(
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A ={x:k0 </1(x1,x2,-~~,xj)< K,
J=12,n=1LA(X. %, %, ) 2 K |

When we considered the simple likelihood-ratio test
for fixed sample size n, we determined K so that the
test would have preassigned size « . We know want to
determine k, and Kk, so that the sequential probability
ratio test will have preassigned a and [ for its
respective sizes of type I and type II errors. Note that

a =P (reject Hy|H, istrue) = i_[c L, (n)
n=1 "N
and
8= P(accept H, |H, is false)= iIAhLl (n),
n=1

where, as before, IC L,(n) is a shortened notation for
n

I"'Icn [HL f (xi |50)dxi].

For fixed o« and f, the above equations are two
equations in the two unknown Kk, and k. A solution
of these two equations would give the sequential
probability ratio test having the desired preassigned error
sizes ¢ and f. As might be anticipated, the actual
determination of Kk, and k; from above equations can
be a major computational project.

We note that the sample size of a sequential
probability ratio test is a random variable. The procedure
says to continue sampling until A, first falls outside the
interval (k,,k, ). The actual sample size then depend on
which X;s observed; it is a function of the random
variables X,,X,,--- and consequently is itself a RV.
Denote it by N . Ideally, we would like to know the
distribution of N or at least the expectation of N .
One way of assessing the performance of the sequential
probability ratio test would be to evaluate the expected
sample size that is required under each hypothesis. The
following lemma, given without proof (Lehmann, [20]),
state that the sequential probability ratio test with crisp
hypotheses is an optimal test if performance is measured
using expected sample size. We can similarly prove this
lemma with fuzzy hypotheses based on introduced
FDPF.

Lemma 3.1 The sequential probability ratio test with
error sizes a and S minimizes both
E(N|H,istrue) and E(N|H, istrue) among all tests
which satisfy the following:

P(H, is rejected [H, istrue) < a,

P(H, isrejected |H, istrue)< 8 , and the expected
sample size is finite.
We noted above that the determination of Kk, and k,
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that defines that particular sequential probability ratio
test which has error sizes @ and [ is in general
computationally quite difficult. The following lemma
(with simple proof) gives an approximation to k, and
k, .

Lemma 3.2 Let k, and k, be defined so that the
sequential probability ratio test corresponding to Kk,
and k, has error sizes « and g; then k, and k,
can be approximated by, say k, and k/, where

Lemma 3.3 Let «' and ' be the error sizes of the
sequential probability ratio test defined by k, and k/
given in before lemma. Then a'+ g8 '<a+f.

Naturally, one would prefer to use that sequential
probability ratio test having the desired preassigned error
sizes a and [ ; however, since it is difficult to to find
the k, and k; corresponding to such a sequential
probability ratio test, instead one can use that sequential
probability ratio test defined by ' and S’ of before
equation and be assured that the the sum of the error
sizes a' and f' is less than or equal to the sum of the
desired error sizes a and f.

The procedure used in performing a sequential
probability ratio test is to continue sampling as long as
k, <4, <k, and stop sampling as soon as 4, <k, or

f(xi |éo)
(o)
given by the following: continue sampling as long as

Ink, <Zin:12i <Ink, , and stop sampling as soon as

>z <Ink, or "7 >Ink . Asbefore,let N bea
RV denoting the sample size of the sequential probability

(/)

If the sequential probability ratio test leads to rejection
of Hy,thenthe RV Y " 7, >Ink,,but > 7, is

closeto Ink, since ZiNZIZi first became less than or

<A, 2k .If z,=In , an equivalent test is

ratio test, and let z; =In

equal to Ink, atthe N th observation; hence
E[Zi’iaziJ ~Ink,. Similarly E [ZLZJ ~Ink; ; hence

E[ X2 |~ &ink, +(1-&)Ink,, where

£=P(H, isrejected). Using Wald" s equation (Casella
and Berger, [19])

E(N) — E[ézi}~§1nko+(l—§)lnkl
W@ T E@)
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we obtain
alnk, +(1-a)lnk
E(Z,N|H, istrue)

fﬁ}(l_“)l“(l;zj

E(Z|H, istrue)

E(N|[H, istrue) ~

aln(
N 1

and
1-f)Ink, + Blnk,
E(Z|H, is flase)

ool

E(Z|H, istrue)

E(N|H,is flase)z(

4. Numerical Examples

In this section, we illustrate the proposed approach for
some distributions and use the ability of package “Maple
6” [21] for this examples.

Example 4.1 (Taheri and Behboodian, [6]) Let X
be a continues r.v. with PDF

f(x|0)=20x+2(1-0)(1-x) 0<x<l 0<@O<I.

we want to test

H,:0is approximatly%
H, :0is approximatly%

where the membership functions H, and H, are de-
fined in the following way:

30 0St9<l
3

H, (0)=12-36 §s9<§

0 otherwise

260 036’<l
2

H,(0)=1{2-20 ~<0<1

0 otherwise

We can interpret #, and @, as the value of
1 1
“nearto—" and “nearto—".
3 2

Let «=0.05 and £ =0.01. We obtain
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In(k;)=-2.986, In(k/)=4.554 . Hence,
E(N|[H, istrue) =38.556, and we must take n=39,
whereas  E(N|H, istrue)=25432 , thus we take
n=25.

Example 4.2 Let X =(X,,X,,--,X,) be a random
sample where X; ~(6,1) population, i.e.,

1 1 2
expy—(x—6 }
\2m { 2 ( )
and H, (@) s are our fuzzy hypotheses with membership
functions given by:

f(x|6)= x,0 R

O-11 11<6<12
H,(0)=113-6 12<0<13
0 otherwise
6-9 9<6<10
H (0)=411-0 10<0<11
0 otherwise

We can interpret H, and H, as the value of
“neartol12” and “nearto10”.

Let @=/4=0.05. Hence, E(N|H, istrue)=85.155,
and we must take n =85, whereas
E(N|H, istrue)=87.63, thus we take n=88.

Example 4.3 Let X be a random sample where
X; ~E(6,1) population, i.e.,

f(x}6) = exp(~(x-0))

and H,(@)s are our triangular fuzzy parameters with
membership functions

X>60,0>0,

for a,b>0.

We can interpret the canonical parameters as having
values that are “near to a; ”.

Let a,=8, a, =4, =0.05 and S =0.1.Hence,

E(N |H0 is true) =21.325, and we must take n=21,

whereas E ( N |H, is true) =28.22, thus we take
n=28.
Example 4.4 Let X be a RV from the U ~(0,0)
population, i.e.,
f(x|0)= 0<x<6, 6>0,
and H, (@) s are our trapezoidal fuzzy parameters with
membership functions given by:
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2(60—-x
(—X'_'_a) Xi_agﬁgxi_g
a 2
H, (6)=11 xi—%gegxi+%
M X-+E<0<X-+b
b Ty YT

for a,b>0.

Let a=b=1, x,=5 and x, =3.1If a=£=0.05,
then E(N|H,istrue)=8.75, and we must take n=9,
whereas E(N|H,istrue)=9.11,thuswetake n=9.

5. Conclusions

In this paper, an new approach for sequential test of
fuzzy hypotheses based on fuzzy hypotheses for one-
sample and two-sample when the available data are crisp,
is presented. As for this paper, it sound the introduced
method is very simple and applicable in the statistics and
other sciences.

Extension of the proposed method to test the variance,
correlation and parameters of linear models (regression
models), design of experiment is a potential area for the
future work. Furthermore, we can construct sequential
test of fuzzy hypotheses based on intuitionistic fuzzy
hypotheses or fuzzy data for the parameters of interest.
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