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Abstract 
This paper questions the generally accepted assumption that one can make a random choice that 
is independent of the rest of the universe. We give a general description of any setup that could be 
conceived to generate random numbers. Based on the fact that the initial state of such setup to-
gether with its environment cannot be known, we show that the independence of its generated 
output cannot be guaranteed. Some consequences of this theoretical limitation are discussed. 
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1. Introduction 
We are ultimately able to make choices, independently of the world that surrounds us. This is free will, a belief 
which is so deeply rooted in our culture, that we generally take it for granted without even noticing. The as-
sumption that one can make an independent decision is, however, crucial in many logical reasonings and algo-
rithms.  

Making a decision is a physical process. Being able to make a random choice implies that there is a physical 
setup that provides random outcomes, which can be represented—without loss of generality—as numbers. In-
dependent random choice implies the existence of a physical setup that provides random numbers that are inde-
pendent of the rest of the universe. 

It is already known that one can expand an initial random number thanks to quantum algorithms known as 
Private Randomness Expansion [1]-[4], whose aim is to increase (in entropy) randomness using untrusted de-
vices. Private Randomness Expansion does, however, not deal with the generation of the initial random number, 
as it is proved [1] that one cannot generate random number from scratch with untrusted devices, but can only 
expand an initial random number. 

The scope of this paper is different: we study the feasibility of actual generation of random numbers using 
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trusted devices, which does not assume the presence of initial random numbers serving as a seed. Based on the 
law of quantum mechanics, and the fact that the state of the overall system including the setup and its environ-
ment can never be known, we prove that such generation cannot be guaranteed to be truly independent of the 
rest of the universe. 

The paper is organized as follows: we start by considering a simple setup that is usually believed to generate 
independent random numbers. We show, however, that such setup can be entangled with its environment prior 
to the experiment, and as such, the random numbers returned by the setup can never be guaranteed in theory to 
be independent of the environment.  

We show that this result can be generalized to any physical setup that could be conceived to generate random 
numbers. Independence of random number generation cannot be guaranteed, and we discuss the theoretical con-
sequences of such limitation. 

2. Case Study 
Throughout this paper, our question will be the following: can we conceive a source of random binary number 
that is guaranteed to be independent of the rest of the universe? 

The usual setup that comes to mind when one wants a random source of binary number is the following. Con-
sider a qubit and let { }0 , 1  be its canonical basis. If we had a certified way of preparing the qubit in the state  

+  where ( )1 0 1
2

± = ± , then we could measure such qubit in the basis { }0 , 1 . If the state is observed  

in the state 0  then we say that the setup generated the random number 0. If the state is observed in the state 
1  then the random number is 1. The process is guaranteed to generate a random bit that is independent of the 

rest of the universe. 
But how do we prepare the state +  in practice? The setup that is usually employed works as follows: The 

measured qubit is prepared in some state, and is first observed in the { },M M+ −  basis. We know that the 
measured qubit is now in either the M+  state or M−  state, information which must be explicitly kept (oth-
erwise the effect of the measurement can be cancelled, as shown in the Quantum Eraser experiment [5]). This 
state is then measured in the { }0 , 1M M

 basis. 
The whole setup can be represented as in Figure 1: The qubit P represents the outcome of the first measure-

ment (P stands for “projection”), whereby the first qubit is measured in the M+  state or the M−  state. We 
look at the value returned from the measurement of M, given the outcome of the measurement of P. 

Note that although we find it natural to describe the measurement of P as being prior to the measurement of M, 
it actually does not matter whether M is measured before or after P. 

With such a setup, we generally assume that measurement of M leads to a random binary outcome, which is 
completely independent of the rest of the universe. This belief is natural if one accepts that the initial state of the 
setup M P⊗  is known, or at least, that the initial state of the setup is not entangled with the rest of the un-
iverse. 

However, in theory, the initial quantum state of a given experimental setup is never known. One can choose 
arbitrarily the basis for the Hilbert space describing the system under study, but one cannot guarantee that the 
system under study is not entangled with the rest of the universe. Said differently, there is no theoretical guaran-
tee that a physical system under study had not been entangled at an earlier point with another part of the un-
iverse. 

Suppose for instance that the setup above was entangled initially with a third qubit, which is part of the rest of 
the universe and is not known to us. Let’s denote this third qubit E (Figure 2). 

Suppose now that the initial state of the resulting system is: 

( )0
1 0 0 0 0 1 0 1 0 1 1 1 1
4 M P E M P E M P E M P Eα = ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ ,        (1) 

then, calculation shows that the final state of the system is, after going through the experimental setup: 

( )1 0 0 0 1 0 1 0 1 0 1 1 1
4 M P E M P E M P E M P Eα = ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ ,        (2) 

which is identical to the initial state and which can be rewritten as: 
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Figure 1. An usual setup for random bit generation. 

 

 
Figure 2. The same setup taking into account the 
environment. 

 

( ) ( )1 10 0 1 1 0 0 0 1 1 1 .
4 4M E M E P M E M E Pα = ⊗ + ⊗ ⊗ + ⊗ + ⊗ ⊗            (3) 

In other words, whichever result is observed for the projection qubit P, the measured qubit M and the envi-
ronment qubit E are perfectly entangled. Measurement outcome at M and E will be perfectly correlated if we use 
the same measurement basis for M and E. 

We see that the proposed setup M P⊗ , which is usually used as a random and independent source of ran-
dom number, cannot actually be guaranteed to be independent of the rest of the universe. 

3. General Case 
We saw in the section above that a setup that was believed to generate independent random choices could ac-
tually not be guaranteed to be independent. 

Our next question is: can any setup in general produce random numbers that are guaranteed to be independent 
of the rest of the universe? 

However complex such a setup can be, it can be described as follows: the setup is a physical system, made of 
two subcomponents M and P, that interact and evolve possibly in a most general and complex manner. The 
subcomponents M and P are then observed. We denote by U the unitary map describing the evolution of M and 
P. The outcomes of these observations are denoted m and p respectively. The generation of the random number 
is deemed successful if p is part of a pre-agreed set S corresponding to “successful” outcomes. In such a case, 
the random number is given by a pre-agreed deterministic function of m and p, f(m, p). The setup is represented 
in Figure 3. 

Now, whatever the size of the setup, we assume that it is sufficiently small compared to the entire universe. 
Consequently we can define a quantum system E that is part of the rest of the universe, described by a Hilbert 
space of the same dimensionality as M. We denote by EV U I= ⊗  the unitary operator that applies U on the 
system M P⊗  and leaves E unchanged (Figure 4). 

Consider the following state for the combined physical system made of M, P and E: 

0k M EPN k kψ ϕ= ⊗ ⊗∑ ,                            (4) 

where 0 Pϕ  is a state for P that leads to a successful fixed outcome p S∈ , and { }Mk  and { }Ek  are 
bases for M and E, respectively. The number N is a normalization factor. 

By construction, if the initial state of the entire system M P E⊗ ⊗  is in the state 1
0 Vψ ψ−=  then the 

experiment returns the state ψ  in which M and E are perfectly entangled, and with which the measurement at 
P leads to a successful result p S∈ . Measurement of E leads to the same outcome as the measurement of M, 
and the outcome f(m, p) can be completely deduced from the measurement outcome of E. Therefore, there exists 
at least one initial state 0ψ  with which the proposed setup does not return independent random numbers. 



H. Inamori 
 

 
42 

 
Figure 3. General setup for random number generation. 

 

 
Figure 4. General setup taking into account environment. 

 
As such no physical setup can guarantee generation of independent random numbers. We have demonstrated 

the following: 
Property 1 No generation of random choices can be guaranteed to be independent of the remaining part of 

the universe. 

4. Consequences 
We have proven that—at least in theory—no random choice can be guaranteed to be independent of the rest of 
the universe. This is mainly due to the fact that, if we consider the state of any physical setup together with its 
environment, then such state is unknown. One could argue that, statistically, no relevant impact can be expected 
from these entanglements that are only theoretical possibilities. One could also argue that the likelihood that the 
overall state of the universe is such that it precisely introduces dependence between the generated random num-
ber and its environment is dim. However, we cannot rely on statistical argument when independence of random 
choices is itself under question. 

The fact that we cannot guarantee independence of random choices has many consequences, few of them are 
discussed below. 

4.1. On the Positive-Operator Valued Measure 
Positive-Operator Valued Measure [6] is considered to be the most general formulation of a measurement in 
quantum mechanics. It allows the introduction of probability weights between different projective measurements, 
as if it was possible to choose randomly between these projective measurements. However, we have just seen 
that the random choice between these different projective measurements cannot be guaranteed to be independent 
of the rest of the universe. Therefore, the mathematical description using POVM is misleading, in the sense that 
it introduces the false belief that independent random choice is possible. Our view in this paper is that the most 
fundamental description of measurement remains the law based on projection of quantum states onto the mea-
surement basis. 

4.2. On Bell’s Theorem and Its Interpretation 
The experimental violation of Bell’s inequality [7] is generally considered as a confirmation that laws of nature 
cannot be described by local hidden variables. However, existence of local hidden variable is not the only as-
sumption which is necessary in the derivation of Bells inequality [8] [9]. In particular, Bell assumes that random 
and independent decisions can be taken at the two distant locations. We suggest in this paper that, what could be 
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forbidden by the violation of the Bell’s inequality is actually not the existence of local hidden variable, but ra-
ther the true independence between the observed system and the way that system is observed. In other words, 
violation of Bell’s inequality could be interpreted as the demonstration that one cannot make decisions that are 
fully independent of the environment. 

4.3. On Algorithms Relying on the Independence of Random Choices 
Many algorithms, such as the Monte Carlo integration, error-correction and cryptography to name a few, rely on 
the ability to generate random numbers that are independent. The theoretical possibility that some remaining 
part of the universe may be correlated to these random numbers may, or may not be relevant. In any case, for 
theoretical completeness, one should not take for granted that sources of random choices are truly independent 
of the rest of the universe. Impact of potential dependence of such sources with the rest of the universe should be 
analyzed. 

5. Discussion 
We generally assume that one can take a random decision (using if necessary a device as described in the case 
study above), and that such decision can be taken independently of all the rest of the universe. This is free will, 
the common belief that one is always able to make a decision independently of one’s environment. 

We have shown in this paper that no random choice can be guaranteed to be independent of the rest of the 
universe. For practical purposes, the theoretical possibility that one part of the universe may be correlated with 
our experimental setup may have little importance. This being said, if we believe that our current universe ex-
pands from a single common state, then we cannot dismiss the possibility that any experimental setup under 
study is entangled with another observable part of the universe. 
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