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ABSTRACT 

A correlation between maxima in virial coeffi-
cients (Bn), and “kissing” numbers for hard hy-
per-spheres up to dimension D = 5, indicates a 
virial equation and close-packing relationship. 
Known virial coefficients up to B7, both for hard 
parallel cubes and squares, indicate that the 
limiting differences Bn – B(n-1) behave similar to 
spheres and disks, in the respective expansions 
relative to maximum close packing. In all cases, 
the difference Bn – B(n-1) is approaching a nega-
tive constant with similar functional form in 
each dimension. This observation enables 
closed-virial equations-of-state for cubes and 
squares to be obtained. In both the 3D and 2D 
cases, the virial pressures begin to deviate from 
MD thermodynamic pressures at densities well 
below crystallization. These results consolidate 
the general conclusion, from previous papers 
on spheres and disks, that the Mayer cluster 
expansion cannot represent the thermodynamic 
fluid phases up to freezing as commonly as-
sumed in statistical theories. 
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1. INTRODUCTION 

An equation-of-state for the hard-sphere fluid pressure 
(p) was obtained by analytical closure of the virial ex-
pansion in powers of density relative to close-packing 
[1]. The virial series is simply a Maclaurin expansion of 
the pressure as a state function about zero density, and 
can be written in dimensionless form  
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where Z = pV/NkBT, T is absolute temperature, kB  is 
Boltzmann’s constant, Bn are the dimensionless coeffi-
cients   is the number density  N V , and 0  is 
the crystal close packing density. The theory of the coef-

ficients Bn is well-established; exact statistical expres-
sions for Bn are available as the cluster integrals that are 
calculated analytically up to B4 and presently available 
numerically up to B10. 

A closed form of Eq.1 based only upon known coeffi-
cients, B1 to B10, has been shown to be everywhere con-
vergent up to its first pole at 0 . The equation-of-state 
is accurate for the equilibrium hard-sphere fluid, yield-
ing the same thermodynamic pressures as may now be 
obtained with 6-figure precision from MD simulations of 
up-to a million spheres [2]. A more refined scrutiny of 
the margins of difference, with due consideration of the 
uncertainties, however, shows that the virial equation 
begins to deviate from the thermodynamic pressure 
equation, albeit very slightly, at a density in the mid- 
fluid range close to the available volume percolation 
transition [3]. 

It has also been shown that the known virial series of 
the two-dimensional (D = 2) hard-disk fluid is also 
amenable to closure [4]; an equation-of-state is obtained 
with 6-figure accuracy at low density. As in the D = 3 
case, but more pronounced however, there is a clearer 
deviation well-below the freezing transition. A subse-
quent more accurate analytical closed form for the pres-
sure equation-of-state for hard disks was derived [5]. 
The precision of this revised version of the closed virial 
equation was such that we were able to conclude that the 
deviation from the thermodynamic pressure occurs at or 
near the 2D-percolation density of available, or excluded 
volume, 2

pa 0 4.   , determined previously by Hoover 
et al. [6]. Thus, for both disks (D = 2) and spheres (D = 
3) the virial equations-of-state do not represent the 
thermodynamic state functions for densities above the 
respective free volume percolation transitions.  

It is also worth noting that the known virial coeffi-
cients for D = 4 hyper-spheres [7], in powers of density 
relative to close packing, also increase from B1 – B6, 
then decrease with Bn – B(n-1)  linearly with n, going 
negative at n = 10. This indicates that the higher virial 
coefficients should eventually go negative, yielding a 
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closed virial equation with a negative pressure pole at 
maximum packing in this case also. 
These empirical observations regarding the destiny of 

the virial equations-of-state at higher densities would 
appear to confirm that the percolation transitions in these 
hard-core model fluids may indeed be higher-order 
thermodynamic phase transitions that signify the onset 
of the divergence of the virial pressure equation from the 
thermodynamic pressure. There are those who seem to 
“religiously” believe the Mayer virial series is equivalent 
to the thermodynamic fluid equation-of-state; this is a 
common misapprehension amongst physicists. 

The suggestion that the virial expansion may not rep-
resent the physical thermodynamic state for densities 
above the percolation transition is not new. For both hard 
parallel cubes and hard parallel squares, the virial coeffi-
cients are known up to B7 [8-10] In fact, it has been 
known for 50 years that the virial coefficients for parallel 
cubes go negative [10]. MD calculations 25 years ago 
[11], of the thermodynamic and transport properties of 
hard parallel cubes, indicated that the hard-parallel-cube 
fluid virial equation deviates above the percolation tran-
sition, at a density well-below the freezing transition. 
Kratky [12] further elucidated upon the suggestion the 
percolation transitions in spheres and disks may be 
higher order thermodynamic phase transitions. Refer-
ence [12] also gives valuable definitions and discussion 
of the various percolation transitions in hard-core fluids 
generally. 

On revisiting the known virial coefficients for both 
fluid systems of parallel cubes and squares (Table 1), it 
can be seen that in both cases, now in the expansion of 
the packing fraction (y =  / 0 ) even from just the 
known coefficients up to B7, the differences Bn – B(n-1) 
are approaching negative constants with functional 
forms analogous to the D = 3 spheres [1-3] and D = 2 
disks [4,5] cases respectively. Here we obtain and test 
the closed virial equations-of-state for the systems of 
parallel cubes and squares, which by analogy with the 
closed equations of spheres [1-3] and disks [4,5], and 
then compare with available MD data from the literature. 

2. “KISSING” NUMBERS AND VIRIAL 
COEFFICIENTS 

The first simple observation we make, about the Bn 
values in Table 1, is that for both D = 3 and D = 2, Bn 
first increases with n, peaks at n = 4 (3D) or 5 (2D) and 
then begin to decrease, and in the case of the cubes go 
negative. This is just the same behavior that is seen gen-
erally in hyper-spheres of D > 1, i.e. D = 2, 3, 4 and 5. 

The highest virial coefficient in all these cases is of 
the same order as a maximum co-ordination or contact 
numbers, known as “kissing numbers” to mathemati 

Table 1. Known virial coefficients of the parallel hard-cube 
fluid (D = 3) and parallel hard square fluid (D = 2): also given 
in columns 3 and 5, for D = 3 and 2 respectively, are the pre-
dicted values up to B12 from the closed virial equations ob-
tained here. 

n Bn [D = 3] Eq.3 Bn [D = 2] Eq.6 

1 1  1  

2 4  2  

3 9  3  

4 11.33333  3.666666  

5 3.16  3.7222  

6 –18.88 –18.88 3.025 3.0407 

7 –43.5 –43.50 1.65 1.6714 

8  –69.00  –0.3857 

9  –94.50  –3.1306 

10  –120.00  –6.5633 

11  –145.50  –10.6838 

12  –171.00  –15.4921 

 
cians [12], of contiguous spheres to a central sphere. 
This correlation provides salient evidence that the virial 
expansions about zero density, in powers of density rela-
tive to close packing, Eq.1, reflects information about 
the close packed state, and is per se suggestive of the 
closed forms with the first poles at that maximum den-
sity. 

The kissing number is simply defined as the maxi-
mum number of hyper-spheres in a configuration of like 
spheres that may be contiguous with a central sphere at 
the same time. This number is not necessarily the lattice 
near-neighbor number, but for the lower dimensions up 
to D = 5, it can represent the first co-ordination number 
in the most stable crystal structure at infinite pressure, or 
equivalently, at zero temperature. Kissing numbers for 
hyper-spheres are known up to D = 28 [12] but here 
(Figure 1) we compare with D = 1 to D = 5. The corre-
lation is convincing evidence that the virial expansion of 
non-space-filling hyper-spheres does not reflect the 
physically unreal packing (y = 1), seen in many theo-
retical approximate virial equations, but rather the 
maximum crystal close-packed states ( 0 ). 

Looking again at Table 1, the Bn values for the cases 
D = 3 (cubes) and D = 2 (squares) have similar maxima 
at B4 (D = 3) value 11.3333 and B5 (D = 2) value 3.7222. 
There are three different types of “kisses” in these sys-
tems, faces, edges and corners. Counting only faces and 
edges, we get for Bmax + D, 14.3 and 5.7, compared to 14 
and 4 for the respective kissing numbers of cubes and 
squares respectively. In these cases, the density relative 
to close packing 0 = packing fraction y, and the 
maximum density corresponds to y = 1. 
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Figure 1. Kissing numbers for D-dimensional hyper-spheres 
(shown as red circles centered on the exact whole number) 
compared to the values of Bn(max) + D (shown as smaller 
black circles); the maximum virial coefficients for D = 2 to 5 
are 4.243 (B9), 8.864(B8), 22.639(B6) and 39.784(B5) respec-
tively. 

Below, we will use y to represent reduced number 
density, and anticipate a singularity in the closed virial 
equations at y = 1. 

3. HARD PARALLEL CUBES 

The values of the known virial coefficients for hard 
parallel cubes are listed in Table 1. Although presently 
limited to B7, the values B5 to B7 are already indicative 
of a similar closed functional form to that obtained for 
hard-spheres [1,2]. In Figure 2, when plotted against 
exp(–n), by analogy with spheres in reference [2], the 
incremental values Bn – B(n-1) beyond (B5 – B4) decrease 
assymptotically as n   according to  

     0 1 21B B 2   n n-   A  A exp n  A exp n       (3) 

and approach a constant value (–25.5) which B7 – B6 ( = 
–24.62) is almost upon. Eq.3 corresponds to the EXCEL 
trendline fitted equation in Figure 2 below. 

Neglecting the higher order term, once A0 is obtained, 
the constant A1 is determined from Bm – Bm-1 and can be 
used to predict all higher values Bn from m + 1 to infinity, 
thereby effecting an analytic closure to the virial expan-
sion. 

As with hard spheres, interpolation of the known 
virial coefficients suggests that since the limiting value 
of Bn – Bn-1 is negative, the virial coefficients beyond B7 
will remain negative. The corresponding virial equa-
tion-of- state will be continuous in all its derivatives, 
eventually showing a negative pressure, with the first 
pole at 0, i.e. y = 1. 

 
Figure 2. Difference between successive virial coefficients (Bn 
– Bn-1) from n = 7 to n = 5 for Bn in the expansion in powers of 
the density relative to close packing: the difference Bn – Bn-1 
decreases exponentially, and appears to asymptotically appro- 
aches a constant value (–25.5) when n  . 

 
The virial equation-of-state for hard parallel cubes 

would then take the form 

      1 1 1
0 1

2 1
1 B B )

m n- m n-
n m  

n n m
Z y A A  e  y

  

  
       (4) 

In which each term of the second summation can be 
closed separately as with spheres, [2,3] to obtain an 
equation-of-state. Eq.4 enables the closure for any 
known n greater or equal to m = 7. The last term is a 
negligible correction for finite m and disappears for 
large m. It would appear from the data in Figure 1 and 
Table 1 that m = 7 is sufficiently large for accuracy of 
the same order as that of the available MD pressures in 
this case, which is about 4-figure precision. Accordingly, 
if we close the summation at m = 7 and put Ao = –25.5, 
Eq.4 reduces to a form which is the same as the closed 
virial equation for hard spheres [1,2] with A0 for cubes 
fixed at –25.5 (Figure 2). 
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This equation-of-state for parallel cubes (Eq.5) with 
A0 = –25.5) which can now be compared with the litera-
ture values of available thermodynamic pressures ob-
tained from MD simulations [11,14]. The virial equation 
it accurate to within the uncertainty in the experimental 
data up to the density around 0.2 to 0.3 and then it be-
gins to deviate. The pressure peaks, then decreases and 
goes negative, and eventually diverges with a negative 
pole at the density of maximum packing. The difference 
in pressure between the closed virial Eq.5, with A0 = 
–25.5, and the thermodynamic pressure from MD com-
putations in the vicinity of melting is shown in Figure 4. 
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Figure 3. Closed-virial equation-of-state (Eq.4) with m = 7 
and A0 = –25.5: solid line) compared with thermodynamic 
pressures (Z = pV/NkBT) obtained from MD simulations by 
Woodcock and van Swol [11] (red circles) and Hoover et al. 
[14] ( blue circles). 
 

 

Figure 4. Deviation of closed-virial equation-of-state (Eq.5): 
m = 7, A0 = 25.5) and thermodynamic pressures obtained from 
MD simulations by Woodcock and van Swol [11] (red circles) 
and Hoover et al. [13] (blue circles): DZ = ZMD – Z(virial). 
 

Inspection of the discrepancy, between closed virial 
Eq.5, and thermodynamic MD pressures, in Figure 4, 
suggests that the virial pressure begins to deviate from 
the thermodynamic pressure at a density on or below the 
available volume percolation density (ypa) [11]. This 
deviation is statistically significant; it would appear from 
the forgoing analyses that it cannot be explained either 
by uncertainties in the thermodynamic pressures, or er-

rors in the known virial coefficients, or any combination 
of both. To do so the virial coefficients B8 and beyond 
would have to take an extraordinary unusual twist. As 
with spheres, however, we cannot say that within the 
uncertainties, the deviation does not begin at an even 
lower density, perhaps at the lower percolation transition 
density (ype) associated with the excluded volume (see 
also references [3,12]). 

4. HARD PARALLEL SQUARES 

Turning now to the 2-D case of hard parallel squares, 
inspection of incremental values of successive virial 
coefficients in Table 1 shows that squares are behaving 
similar to 2-D disks. Differences in successive Bn, in 
powers of density relative to crystal close packing in 
Eq.1, Bn – Bn-1 are plotted in Figure 5. With only the 
three points available the graph that beyond (B5 – B4) 
the increment decrease varies according to 

  0 11B B   n n-   α  α n            (6) 

Eq.6 is the same functional form that was obtained for 
hard disks where the virial coefficients are known up to 
B10. As with disks, this interpolation of the known virial 
coefficients suggest that since the limiting constant 0 is 
negative, the virial coefficients will eventually become 
negative and the corresponding virial equation-of- state 
will eventually give a negative pressure, with the first 
pole at y = 1, as with cubes. Eq.6 with the parameters 
obtained from the EXCEL trendline in Figure 5 predicts 
the first negative coefficient for squares will be B8. In 
the corresponding closed-virial equation for D = 2 disks 
B31 is predicted to be the first negative coefficient [5]. 

By analogy with disks, then the analytic closed form 
virial equation-of-state for the hard parallel square fluid 
takes the same form as that of the hard-disk fluid as fol-
lows (the derivation is given in the APPENDIX of ref-
erence [5]). 
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where Bm is the highest known virial coefficient, pres-
ently B7. 

Using only the known coefficients B5 to B7 as given in 
Table 1, the constants in the closed virial equation for 
parallel squares, from the limiting value of Bn – B(n-1) 
Figure 5, are 0 = –4.90, and the slope α = 24.9. The 
closed virial equation-of-state for the pressure of the 
parallel-square fluid can then be compared with the 
thermodynamic pressure from the recent MD computations  
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Figure 5. Difference between successive coefficients (Bn – Bn-1) 
from n = 7 to n = 5 in the expansion in powers of the density 
relative to close packing: the difference Bn – Bn-1 is decreasing 
roughly as 1/n, and would approach the constant –4.8973. 
 
of Hoover et al. [14]. The virial pressure deviates from 
the thermodynamic pressure at a density well-be- low 
the freezing transition (around y = 0.7) eventually gives 
an unrealistic negative pressure and diverges with a 
negative pole at maximum close packed density 0 cor-
responding to y = 1. 

In Figure 7, the deviation of Eq.7 for squares from 
MD pressures [14] are plotted as a function of density 
for all the MD data points above  in Figure 3 except 
the data point at the density 0.35 which is an aberration 
that may contain an error. This plot suggests that the 
deviation is originating in the vicinity of a low density 
percolation transition. We have not seen a report of the 
determination of this percolation transition for squares, 
but the deviation is around the same value of /0 (= y 
for squares) as that found by Hoover et al. to be the on-
set of the free volume percolation transition for the D = 
2 hard-disk fluid [6]. 

6. CONCLUSIONS 

In this paper we have looked at the trend in Bn – Bn-1 

for the known virial coefficients of cubes and squares in 
the Mayer virial expansion Eq.1 and observed that the 
same closed virial equations exhibit the same functional 
forms, as has been obtained for spheres and disks re-
spectively [1-5]. 

When the resultant closed vrial equations are com-
pared with available thermodynamic pressures, as with 
the fluids of spheres and disks, the virial pressure begins 
deviating from the thermodynamic pressure at a low 
fluid density. The percolation transition associated with 
free volume has only been estimated for cubes, and has 
not yet been reported for squares. Nonetheless, all the evi- 
dence is that the onset of the deviations may be associ-
ated with higher-order thermodynamic phase transitions. 

 

Figure 6. Closed-virial equation-of-state for a system of hard 
parallel squares (Eq.4 with m = 7 and the parameters A and A0 
as given in Figure 5: solid line) compared with thermodynamic 
pressures (Z = pV/NkBT) obtained from MD simulations by 
Hoover et al. [14] (blue circles). 
 

 

Figure 7. Density dependence of pressure difference between 
closed-virial equation-of-state (Eq.4: m = 10) and thermody-
namic pressures obtained from MD simulations by Hoover et 
al. [14] for the system of hard parallel squares. 
 

The APPENDIX to this paper illustrates the belief that 
the virial expansion of Mayer [15] is actually equivalent 
to the fluid equation-of-state of these hard core models, 
at least up to freezing, is a widespread misapprehension 
amongst theoretical physicists. In response to the various 
suggestions that the empirical results of these closed- 
virial comparisons are “speculative”, it seems that what 
has been unduly “speculative” is the incorrect assump-
tion that Mayer’s cluster expansion represents the ther-
modynamic state functions of the fluid phases up to or 
beyond the freezing transition. In the five cases we have 
so far looked at, first spheres and disks [1-5], and now 
here, squares and cubes, and also D = 4 hyper-spheres 
(unpublished), the virial equations are deviating at a low 
equilibrium-fluid density. 

Many statistical theories are based upon the belief that, 
if all the terms in the Mayer cluster expansion could be 
approximated accurately, it would be a theory of “liq-
uids”. We now see that all these simple hard-core models 



L. V. Woodcock / Natural Science 3 (2011) 622-632 

Copyright © 2011 SciRes.                                                                    OPEN ACCESS 

627

have two fluid phases, the low density gas phase where 
the Mayer virial expansion represents the thermody-
namic state functions, and the high density fluid phase 
where it is invalid. Looking again at the theory of simple 
liquids, we may now conjecture that the high density 
fluid phase belongs to the same phase as the supercooled 
“liquid” phase, by definition. For hard-spheres this is the 
metastable branch that is a continuous extrapolation of 
the equilibrium high-density fluid at freezing, and which 
terminates at the random close packed (RCP) state.  
Perhaps we should now take another look at the RCP 
state as a starting point for the general theory of liquids. 

Standard treatises on simple liquids’ deal largely with 
theories of the liquid state based upon “configurational 
surgery” of Mayer virial cluster diagrams [15,16]. We 
now see that the Mayer cluster expansion whilst being 
an essentially exact theory of low density gases, may not 
be a starting point for theories of the liquid state. An 
analytical theory with all the virial coefficients correct 
would not still represent the high density equilibrium 
fluid. The title of Hansen and McDonald [16], when the 
4th Edition comes to be published, might be retitled “The 
Theory of Simple Gases”! 
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APPENDIX 1. Debate on the Scientific Merit 
of Reference [5]: 

PRL anonymous Referee A said: “This manuscript 
appears to me to be seriously flawed and either the flaws 
must be corrected or it must be explained why my per-
ceived objections are invalid. My concerns are as fol-
lows: 

1) It is rigorously established that the pressure is a 
monotonic non decreasing function of the density. 
Therefore it disturbing that the equation-of-state (4) di-
verges to negative infinity as 0r r . 

2) The authors will argue that their equation (4) is 
called a “closed-virial equation-of-state'' to which the 
mono-tonicity argument does not apply. This argument 
itself is questionable and is in contradiction with every 
approximate equation of state of which I am aware. If 
the authors must persist in such a claim they must cite 
the many papers which they are contradicting and ex-
plain why they are correct and the rest of the field is 
wrong. 

3) The statement on page 5 that “the virial equation is 
continuous in all its derivatives'' makes no sense. In par-
ticular if the system has a second or higher phase transi-
tion as the authors suggest then the virial expansion will 
have a singularity (at which some derivative will diverge) 
at the phase transition density; a density which will be 
smaller than close packing. 

4) On the purely numerical side of extrapolating virial 
coefficients beyond the first 10 which have been com-
puted is it a completely unverified assumption that reli-
able extrapolations may be carried out to order 31 which 
is where the authors claim that first negative coefficient 
occurs. 

5) The authors seem to be completely unaware of the 
long debated and studied question of the nature of the 
transition in hard discs. At least they make no mention of 
this literature in their bibliography. The authors may find 
some of the references in their reference 4 relevant.” 

Objection 1) is based upon a misapprehension. The 
thermodynamic pressure of the hard-sphere fluid as de-
fined and derived from a partition function, and obtained 
by MD simulations, is not necessarily the same as pres-
sure of a purely theoretical low-density-limit virial ex-
pansion. We do not know where the first phase transition 
is in the thermodynamic equation-of-state of the 
hard-disk fluid, but it must coincide with the initial de-
viation of the virial equation, beyond which the virial 
equation must become physically unreal having no such 
“monotonic” constraint.  

Objection 2) is also invalid: there is no scientific 
“monatonicity argument” for a virial expansioni in the 
paper we point out that all the evidence is that the virial 
coefficients of hard-core systems in higher dimensions, 

including discs, go negative and can stay negative. 
Objection 3) is again incorrect. The virial equation, 

with the coefficients defined using the Mayer cluster 
integrals, is an expansion about zero density which is 
everywhere continuous in all its derivatives. The ther-
modynamic state function pressure, by contrast is not, it 
will exhibit discontinuities at phase transitions. 

Objection 4) appears to be prejudiced by the referee’s 
misunderstanding above, and his failure to look at the 
correlation data we present in Table 1 and Figure A1. 
You only need to look at the numbers in Table 1 to see 
the evidence for the closure is compelling, albeit em-
pirical. This behavior in two-dimensions is anticipated 
by extrapolation from higher dimensions. The referee, 
moreover, appears not to have seen Reference [1] (the 
analogous science published in the JCP paper of the 3D 
hard-sphere fluid). 

Objection 5) could not be further from the truth! See 
LAN LarXiv: 0806.1109 [pdf] 2008 Title: Two-phase 
coexistence in the hard-disk model Authors: Leslie V 
Woodcock Comments: Hard-disk controversy. In fact, I 
have been interested in this phase transition for 30 years: 
see “Melting in two dimensions: determination of phase 
transition boundaries” (Cape, van Swol and Woodcock) 
Journal of Chemical Physics, Volume 73, 913-922 (l980). 

Referee B said: “This paper presents some numerol-
ogy using the known virial coefficients to predict the 
behavior of hard disks at higher densities than the con-
vergence of the known virial coefficients. Let me remind 
the authors that non-analytical behavior is not predict-
able, such as phase transitions. Their results, though in-
teresting, are purely speculative, consequently. I would 
suggest that the manuscript be considered for publication 
in Physical Review E” 

Please read the paper beyond the abstract? 
Referee A again (9-point reply): 

1) “The rebuttal letter of the authors emphasizes in 
many places that the virial expansion will not agree with 
the genuine thermodynamic equation-of-state beyond the 
point of the first order fluid solid transition. This is, in 
fact, exactly the reason which this present study is of 
very little interest because all of the interesting behavior 
which the authors report is indeed in the region where 
the virial expansion no longer represents the physics of 
the situation. 

2) The authors rebuttal letter contains the following 
phrase “PRL is not a review article; it would be inappro-
priate to cite the many previously proposed equations of 
state of the hard disc fluid.” I find this sentence to be 
extremely unprofessional. ALL scientific publications 
have an absolute requirement to fully credit existing 
work in the field. To say that a PRL is exempt from this 
mandatory requirement is to diminish the scientific 

http://lanl.arxiv.org/abs/0806.1109�
http://lanl.arxiv.org/pdf/0806.1109�
http://lanl.arxiv.org/find/cond-mat/1/au:+Woodcock_L/0/1/0/all/0/1�
http://lanl.arxiv.org/find/cond-mat/1/au:+Woodcock_L/0/1/0/all/0/1�
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credibility of the journal and must not be allowed. The 
authors MUST demonstrate that their approach is correct 
and the previous work is wrong. 

3) The response to referee B is also very peculiar 
where the author say that “a full PRE paper at this stage 
is inappropriate.” It is my understanding the articles in 
PRL are NOT supposed to be preliminary reports based 
on partial or incomplete analysis but instead are intended 
to be reports of completed research of exceptional inter-
est. The authors' response clearly demonstrates that the 
research does not meet the criteria of being fully com-
pleted. 

4) I do agree with the criticism made by referee B that 
the results are purely speculative. In my opinion purely 
speculative articles should not be published in PRL. 

5) The authors claim in their rebuttal letter that “all 
evidence is that the virial coefficients of hard core sys-
tems in higher dimensions go negative and can stay 
negative.” In the paper they say that “virial coefficients 
for all hard hyper-spheres of higher dimensionality than 
one eventually go negative.” This latter statement is not 
true. In all computed cases the virial coefficients of odd 
order are all positive. 

6) In 2 dimensions there is a long standing contro-
versy as to whether or not there is a first or a second 
order phase. This historical fact should be given refer-
ence. Indeed, there is no proof that a crystalline phase 
exists at all (although there is also no proof that a crys-
talline phase is impossible either). 

7) The authors assume without giving any reason at 
all that the leading singularity in the virial expansion is 
at the closest packing density and their conclusion that 
the virial coefficients become and stay negative is driven 
by this assumption. From the analysis of the Percus 
Yevick equation it is quite likely that in odd dimensions 
higher than the leading singularity is on the NEGATIVE 
density axis which is consistent with the alternating 
signs of the virial coefficients in dimensions 5 and 
higher. Since a leading singularity at negative density 
has nothing to do with close packing this referee does 
not see why for dimensions 2 and 3 the leading singular-
ity can be assumed to be at close packing. 

8) In the opinion of this referee this entire paper is 
built on the assumption that the leading singularity in 2 
dimensions is at close packing. Because this is a pure 
assumption the second referee is completely correct in 
pointing out that this paper is very speculative. 

9) It is disingenuous of the authors not to give refer-
ence to the many papers which do not make this as-
sumption and predict virial coefficients which are all 
positive. The authors are in effect claiming that most of 
the literature on approximate equations of state is wrong. 
I believe that if this were made clear by the authors that 

the editors of PRL would agree that unless the authors 
can clearly explain why they are right and where so 
many others are wrong that the paper does not meet the 
standards of the journal.” 

Point 1 is a U-turn; Referee A evidently conceding his 
original misapprehension, now turns towards political, 
i.e. non scientific, reasons for rejection. 

Points 2 and 3 are new, and non-scientific. 
Point 4: the Referee A again misconstrues an empiri-

cal observation as some theoretical “assumption”! There 
is no theoretical “assumption”, as there is, for example, 
in the Percus Yevick theory and similar theories of sim-
ple liquids.  

Point 5: the statement that “virial coefficients can, 
and in some will, go negative and stay negative” is cor-
rect and verifiable. 

Point 6: scientists seeking to publish discoveries 
should not be bound as a condition of publication to 
make reference to irrelevant and often unprincipled, 
scientific theory or scientific scams. There is now wide 
acceptance by most principled scientists in the field of 
statistical thermodynamics of condensed matter that the 
work that this referee A keeps insisting we refer to, was 
at best, a pie-in-the-sky theory, at worst a scam. 

Point 8: there is nothing “speculative” about 1) an 
empirical observation [Table 1 Figure A1] 2) an exact 
mathematical derivation [Equation 4, APPENDIX 1], 
and 3) a comparison with “experiment” (MD) [Figure 
A2 and A3.] In fact, there is no speculation in this paper 
at all. 

Point 9: it is nothing to do with “standards”; it is 
about discovering, albeit by empirical means, the correct 
equation of state that reproduces the thermodynamic 
pressure with the 6-figure accuracy that it can now be 
computed up to the first thermodynamic phase transi-
tion. 

Referee B again (reply): My review stands. The other 
reviewer basically has the same objections as I and his 
reply saying that his remarks only apply to the theoreti-
cal virial expansion does not make the paper physically 
meaningful, though still of some interest. 

B still hasn’t read the paper! 
(new) Referee C said: “I basically agree with all the 

comments of referee A and do not find the author's re-
sponse persuasive at all. I do not recommend publication 
of this paper.” 

Comment 2. “I am particularly concerned by points 
(original objections) 3 and 4 raised by Referee A. Indeed, 
in objection 3, referee A correctly points out that if there 
is a phase transition at some density, then the virial ex-
pansion should have a singularity exactly at this density. 
This is well known in statistical physics, for instance in 
the study of the high temperature or high field expansion 
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of the 2-dimensional Ising model. On the contrary, in 
this paper, the authors suggest that there might be a 
phase transition while at the same time the low-density 
expansion should stay convergent. This is impossible”  

Comment 3: “In my opinion, the discrepancy between 
MD data and the equation of state proposed by the au-
thors is only due to an inaccuracy of the extrapolation” 
And indeed (point 4 of referee A) the extrapolation of 
complex virial coefficients based only on the first 10 
seems very dangerous. There are plenty of examples in 
the mathematical literature where such an extrapolation 
leads to completely wrong results” 

Comment 2 is basically agreeing with the original 
misapprehension of referee A, [Note: referee C doesn’t 
know that referee A has since changed his mind] Not 
only is it not “impossible”, but that is exactly what does 
happen. Moreover, this paper has nothing to do with 
phase transitions of lattice gases that do not have the 
same analytic virial expansion at zero density. 

Comment 3 is meaningless without a relevant exam-
ple. 

(new) Referee D said: “The paper presents an equa-
tion-of-state for the hard-disk liquid based on the first 10 
virial coefficients and then notes that this equation devi-
ates from the simulated area-pressure curve at a density 
of ~ 0.4, a value similar to that associated with the per-
colation of free volume. I cannot recommend publication 
of the paper in PRL. My reasons are as follows: 

1) The authors do not provide an explanation of the 
deviation they report. The connection with the Ree - 
Hoover results are an interesting speculation. 

2) The authors fail to make any case for the signifi-
cance of their work. Even if one went beyond their paper 
and regarded the connection between their observed de-
viation and the Ree-Hoover percolation as having been 
established, why would this be important? I do not mean 
to imply that it would not be important, merely that the 
authors seem to have taken it for granted that the sig-
nificance is obvious.” 

Point 1 overlooks the explanation based upon a 
change in density fluctuation   

Point 2 is also incorrect; there is no “speculation”; it 
is an empirical result! There’s always a chance that 
could be an unfortunate coincidence but when you look 
at the science, it’s highly unlikely. 

Referee A again said, in response to a request to sup-
ply an example of the references he repeatedly insists 
must be cited) 

“The theory of 2 dimensional melting has a large lit-
erature not referred to by the authors. Some relevant 
papers are 1) Kosterlitz and Thouless, J. Phys. C6 (1973) 
1181-1203; 2) Halperin and Nelson, Phys. Rev. Lett. 41 
(1978) 121-124; 3) Nelson and Halperin, Phys. Rev. B 

19 2457-2484; 4) Binder, Sangupta and Nielaba, J. Phys. 
Cond. Matt. 14 (2002) 2323-2333. To write on hard 
discs without making contact with this long standing 
problem is not acceptable. The authors have assumed 
that the virial expansion has its leading singularity at the 
close packed density. If this were correct then there is no 
Kosterlitz Thouless transition and no hexatic phase. The 
authors have not presented evidence to support this”  

There is no “longstanding problem”. In fact, the paper 
has nothing to do with 2-dimensional melting, let alone 
the fictitious “hexatic mesophase” to which referee A 
refers. Papers 1) to 3) above do not withstand scrutiny: 
the approximations in paper 1) and several of the equa-
tions in papers 2) and 3) cannot be validated. Papers 3) 
above are effectively a scientific fraud that unfortunately 
caught the imagination of a lot of “band-wagoners” who, 
over 30 years since, have published a lot of papers that 
tell us nothing, see e.g. paper 4) above.  

“Furthermore the conclusion is based on assumed 
form for the large n behavior of the virial coefficients Bn 
which leads to the conclusion for large n the virial coef-
ficients Bn will all be negative. This is a very strong 
conclusion which 1) is totally dependent on their as-
sumed form and 2) is at variance with every other as-
sumed form of the virial coefficients in the literature. In 
my opinion the authors do not give sufficient evidence to 
support this conclusion.” 

The form of Bn – Bn-1  as a function of n, is not “as-
sumed”, as the data in columns 3 - 4 of Table 1 confirm, 
it is an empirical result. 

Arbitration Report by PRL Divisional  
Associate Editor: J. Machta (Nov. 2010) 

“The authors have proposed a closed form equation of 
state for 2D hard disks based on a fit to the known virial 
coefficients. This paper provides an accurate equation of 
state for hard disks that will be useful to workers in the 
field. It also gives evidence for two interesting conjec-
tures: 1) the virial coefficients eventually become nega-
tive and 2) there is a free volume percolation transition 
with thermodynamic consequences as proposed some 
time ago by Hoover. Although this paper is interesting 
and should be published, I do not recommend publica-
tion in PRL. The manuscript has been reviewed by four 
independent, expert referees in the field. All of the refe-
rees definitively recommend against publication in PRL. 
I am in agreement with the referees that the paper does 
not meet the standards for publication in PRL.  

1) A fitted equation of state by itself is not of suffi-
ciently broad interest to warrant publication in PRL. 

2) I agree with the referees that the breakdown of the 
virial equation of state and its relation to Hoover’s pro-
posal is too speculative for publication in PRL. To be 
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more specific, the deviations between the MD results 
and the equation of state shown in Figure A3 are quite 
small, always less than 10–3. On the other hand, fitting 
over various rangesof n or adding a term of the form 
b/n^2 in Eq.3 suggests to me that the error in the coeffi-
cients alpha and alpha_0 is in not smaller than 0.01 and 
the accuracy is certainly not the 4 or 5 significant digits 
quoted in the paper without error bars. If uncertainty of 
this magnitude is put in Eq.4, it is sufficient to create 
deviations qualitatively like those shown in Figure A3 
without the need to invoke a breakdown in the virial 
equation of state. There may also be systematic devia-
tions from Eq.3 that appear for virial coefficients be-
yond 10. Thus, I must consider the reality of a phase 
transition at p = 0.4 to be speculative and not yet firmly 
supported by the data at the level required for publica-
tion in PRL. 

3. The authors clearly reject the idea of a continuous 
transition to a hexatic phase. Nonetheless, this idea has 
considerable currency in the community. The absence of 
any mention of competing ideas makes the paper un-
suitable for a general readership.” 

Reason 1: It is not a “fitted equation-of-state”. The 
closed virial equation is derived from the known virial 
coefficients without any fitted parameters . 

Reason 2: Changing a or a0 by 0.01 or up to 2% 
makes absolutely no difference to Figure A3. On an 
EXCEL spreadsheet it is easy to test; below is an addi-
tion to the revised version. 

This is Figure A3 with error bars. 
Quote: “The deviations shown in Figure A3 are rather 

insensitive to uncertainties of the order 1% in a and a0   

The reason is that the contribution to Z from all un-
known virial coefficients (B11 - B∞) in the density range   

from 0.4 to 0.7 is extremely small. DZ(B11 - B∞)/Z(total) 
varies from 0.0003 at rs3 = 0.4 to 0.0477 at rs3 = 0.7. 
Nevertheless, in order to be sure that the deviation be-
ginning at this low density is real, and not an artifact of 
any uncertainties in the determination of the constants a 
and a0 from the virial coefficients we have computed a 
range of combinations of a and a0 for the full width of 
uncertainty permitted by maxima and minima in all 
known Bn respectively. The range of a and a0 values also 
varies with the range of n used to obtain them. The low-
est and highest possible values obtained using only 
known values B5 to B10 are –0.432414:4.29360 and 
–0.441912:4.393061 for a:a0 respectively. The mean 
values (–0.43710:4.34468) are very close to the best 
EXCEL trendline for B5 to B14 shown in Figure A1. Thus, 
the commencement of the deviation as shown in Figure 
A3 cannot be caused either by errors in the known virial 
coefficients, errors in the extrapolated contribution to Z  

0.0000001

0.0000010

0.0000100

0.0001000

0.0010000

0 0.2 0.4 0.6 0.8

density ( )

Z
(M

D
)-

Z
(v

ir
ia

l)

MD range of    (0.7)
uncertainty

             ( 0.4)

percolation 
transition

density (p)

ao=-0.4417
a  =4.3919

 

Figure A1. Deviations for Machta values I. 
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Figure A2. Deviations from Machta values II. 

 
from (B11 – B∞) or from uncertainties in the MD pres-
sures. We have to conclude that the deviation is not an 
artifact of any of the data used to obtain the deviation 
plot in Figure A3.” 

End of QUOTE 
Reason 3: There is no such thing as “a continuous 

transition” to another phase in classical thermodynam-
ics; the above contradiction by Machta is as nonsensical 
as the concept itself. 

In summary, ALL of the three points above that DAE 
Professor Machta cites as his reason for rejection are 
invalid.  

{Machta was invited to withdraw reason 2 in the light 
of the above evidence. In response he requested to see 
Figure A3 redrawn with 4 different values of a and a0 he 
specified.}  

These figures are reproduced below. 
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Figure A3. Density dependence of pressure difference between 
closed-virial equation-of-state (Eq.4: m = 10) and thermody-
namic pressures obtained from MD simulations by Kolafa and 
Rottner (Ref.2).The percolation transition density determined 
by Hoover et al is indicated by the vertical arrow. The maxi-
mum uncertainties in the MD data for the thermodynamic 
pressures as quoted by Kolafa and Rottner are also indicated as 
horizontal lines; and range from ±0.000005 at the density 0.4 
to ±0.000019 at the density 0.7. The solid and dashed lines are 
continuous deviation error limits using the parametrized equa-
tion of state data using (EoS rmax = 0.88 ref.2) and calculated 
from values of a and a0 obtained from the extremities of un-
certainty. 
 

DAE Machta request: Figure A3 be redrawn with 
various different combinations of a and ao which he pre-
scribed; one combination which are here referred to as 
the Machta parameters which he had evidently fitted to 
remove the deviation between virial equation and the 

 

Figure A4. Demonstration that the Machta-contrived values of 
a and a0 predict incorrect Bn – B(n–1) values (upper line), com-
pared to the B-W equation (reference 5) and the known virial 
coefficients (lower line). 
 
thermodynamic pressures in an attempt to justify his 
rejection reason 2 above. 

There is no basis at all for a quadratic form, but it 
seems almost certain that if it were used for all Bn > B11 
it would give just the same result as seen here in Figures 
A1-A3. 

Machta rebuttal Figure A3. Deviations for Machta 
values IV 

Arbitrarily adding 0.01 to a AND subtracting 0.1 (to 
try to change the results to what Machta would like to 
see) is improper. It is clear from the very small uncer-
tainty in B8 B9 and B10 that the line must cross zero at 
B10 - B9 which is 0 ± 0.0003 i.e. within a very small error 
of uncertainty. Thus the proposed Machta combination is 
well outside the uncertainty permitted by theerrors in the 
known virial coefficients. This is clearly seen in the 
EXCEL table and Figure 4. 

 
Bn – Bn-1 C&M Bn – Bn-1 (B-W) MACHTA    

  PROPOSAL    

0.81379936      

0.75889212      

0.60322121      

0.43424182 0.43441440 0.46442000 constant A0 constantA – A/A0 

0.29335679 0.28971667 0.31638333    

0.18676531 0.18636114 0.21064286 –0.432414 4.296300 9.9356127 

0.10722915 0.10884450 0.13133750 –0.436730 4.363133 9.9904586 

0.04530845 0.04855378 0.06965556 –0.440427 4.384234 9.9545078 

–0.00319701 0.00032120 0.02031000 –0.441613 4.391239 9.9436362 

–0.04279730 –0.03914182 –0.02006364 –0.441912 4.393061 9.9410312 

–0.07267696 –0.07202767 –0.05370833 –0.439958 4.380815 9.9573482 

–0.09235146 –0.09985415 –0.08217692 –0.434507 4.345766 10.001602 

–0.12240047 –0.12370543 –0.10657857 –0.433772 4.340932 10.007405 

  MACHTA––––> –0.423800 4.441100 10.4792 

 


