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Abstract 
During wound healing, the metabolic activity associated with each phase must occur in the proper 
sequence, at a specific time, and continue for a specific duration at an optimal intensity. Any dis-
turbance in appropriate thermal environment may complicate the wound healing process and 
may give rise to wound infection. In the presented paper a transient state two-dimensional 
mathematical model has been developed to analyse thermal variations in skin and subcutaneous 
tissue (SST) region of human limb. Due to circular shape of human limb, model has been devel-
oped in polar coordinates. The domain of the study consists of two types of tissues: abnormal tis-
sues and normal tissues. The post surgery peripheral tissue of human limb during healing time is 
considered as abnormal tissues. The effect of variable density of blood vessels in dermal layer of 
both tissues on the physical and physiological parameters is incorporated in the model. The effect 
of healing on physiological parameters of abnormal tissue is incorporated by considering the 
physiological parameters to be function of time “t”. The effect of different climatic conditions is 
considered in the model. Taking into account the variable core temperature due to anatomy of ar-
teries and variable physiological parameters in dermal layer of peripheral region, the well known 
Pennes’ bio heat equation is used to analyse the time-dependent temperature distribution of both 
normal and abnormal tissues. Comparison between temperature profiles of both normal and ab-
normal tissue has been done using finite element approach with bilinear shape functions in polar 
coordinates. A computer program in MATLAB has been developed to simulate the results. 
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1. Introduction 
Enzymes play a key role in the healthy functioning of organs and glands of our body. They work properly in 
20˚C - 37˚C body temperature [1] [2]. Any disturbance in body temperature disturbs the proper functioning of 
enzymes (metabolic activity). Thus it becomes important to study thermal variations in order to develop a 
mechanism for establishing the limits of thermal regulation in human body during the healing process. 

Pennes [3] in 1948 first gave the well known bio-heat equation of heat transfer in perfused tissue for the 
analysis of temperatures in the resting human forearm. Perl [4] in 1962 used it to illustrate heat distribution and 
tissue blood flow in body tissues. Since then it has been used by many researchers and scientists [1] [5]-[11] for 
analysis in their respective areas of research. A lot of research on wound healing has also been done by consid-
ering different parameters like size and shape of the wound, the effect of growth factors, the effect of angio-
genesis, the effect of oxygen concentration at the wound site etc. [12]-[18]. A few scientists have studied tem-
perature variations caused due to wound healing process after surgery [1] [19] [20].  

In this paper, a two-dimensional finite element model has been developed for transient state temperature dis-
tribution in normal and operated peripheral tissues of human limb during healing time by using Pennes’ bio heat 
equation [3]. Assuming the cross section of human limb to be circular in shape, model has been developed in 
polar coordinates (r, θ). The effect of the density of blood vessels in different layers of dermal region on tem-
perature distribution is incorporated by considering the physical and physiological parameters to be function of 
space coordinate “r” only in case of normal tissues and increasing function of time “t” also in case of abnormal 
tissues [1] [19] [20]. The position of major arteries, lying deep inside the skin, carrying blood from the core to 
the limbs is not symmetrically distributed along the angular direction [21]. Variable core temperature along an-
gular direction “θ” [22] has been considered to incorporate the effect of position of major arteries in limbs. The 
outer surface is exposed to the environment and an appropriate boundary condition for heat loss at the outer sur-
face has been incorporated. 

2. Model Description 
Nomenclature 

C1, C2, C3, C4 Unknown constants used for finding expression for temperature in an element 
E Rate of sweat evaporation in gm/cm2/min 
e eth element 
h Heat transfer coefficient due to conduction and convection in Cal/cm2/min/˚C 

K1, K2, K3 Thermal conductivity of subcutaneous tissues, dermis and epidermis respectively in Cal/cm/min/˚C 
L Latent heat of vaporization in Cal/gm 

M1, M2, M3 
Rate of heat transfer due to blood mass flow per unit volume per unit difference in temperature in subcutaneous 
tissues, dermis and epidermis respectively in Cal/cm3/min/˚C 

N Interpolation function 
n Normal to skin surface 
R Spatial coordinate originating from the centre of the limb in cm 
r Thickness of peripheral tissues in cm 
r  Local radial coordinate in cm 

r0, r6 Spatial coordinate of skin core and skin surface respectively starting from core in cm 
S1, S2, S3 Metabolic heat generation rate in subcutaneous tissues, dermis and epidermis respectively in Cal/cm3/min 

T Unknown temperature of tissue in ˚C 
Ta, Tb Atmospheric temperature and arterial blood temperature in ˚C 
T(e) Temperature in eth element 

( )eT  Nodal temperature matrix of eth element 

t Time in min 
Ω(e) Domain of the eth element 

α0(1), β0(1), γ0(1) Unknown constants used to find linear expression for K, M and S respectively in dermis 
χ(t), ϕ(t) Time factor in M and S respectively in abnormal tissues 

ρ Density of tissue in gm/cm3 
θ Angular coordinate in radian 
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2.1. Mathematical Formulation 
Pennes’ bio-heat equation for two dimensional unsteady state case in polar coordinates takes the form: 

( )
2 2

2 2 2

1 1
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Here K, S, mb, cb, ρ, c, T and Tb are thermal conductivity, metabolic heat generation rate, rate of blood mass 
flow per unit volume, specific heat of blood, tissue density, specific heat of tissue, unknown tissue temperature 
and temperature of blood. 

The inner core of the human limb is at a variable temperature and hence it is formulated as: 

( ) ( )0 , , 0T R t f tθ θ= ∀ ≥                               (2) 

Here R0 is the radius at the inner core of skin and ( )f θ  [6] is given by: 

( ) 2
1 2 3f c c cθ θ θ= + +                                   (3) 

where c1, c2, c3 are determined using conditions: 

( ) ( ) ( )0 , π , 2πf T f T f Tα β αθ θ θ= = = = = =                         (4) 

Here Tα  is greater than Tβ . The boundary condition at outer surface of skin is: 
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Here h, Ta, L, E and T
n

∂
∂

 are heat transfer coefficient, atmospheric temperature, latent heat of vaporization,  

rate of evaporation and partial derivative of unknown tissue temperature along the normal direction to the skin 
surface. Heat transfer along angular direction is assumed to be negligible. 

The surface of the limb is insulated initially [1] [9]. So initial condition is given by: 

( ) ( ), ,0T R f Rθ θ= ∀                                 (6) 

2.2. Use of Finite Element Method—Discretisation of Domain  
The circular cross section of annular shaped region of peripheral tissues of human limb is discretised into a total 
of twenty four elements (Figure 1). Skin tissues are naturally divided into three layers viz. epidermis, dermis 
and subcutaneous tissues. We have further divided dermis into four layers. Each layer is further divided into four 
coaxial circular sectors at 0, π 2, π and 3π 2θ = . Thus there are in all twenty four elements and twenty eight 
nodes. The bio heat equation can be written for each element in discretised variational form as: 
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where Ω(e) and Γ(e) represents the domain and outer boundary along the angular direction of eth element. In the 
second integral λ(e) is 1 for surface elements and zero for other elements. 

2.3. Physiological Parameters for Normal and Abnormal Tissues 
In this model, it is assumed that there is negligible variation in thermal conductivity, blood mass flow rate and 
metabolic heat generation rate along angular direction.  
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Figure 1. Cross section of annular shaped region of peripheral tissues of human limb. In all there are twenty four coaxial 
circular sector elements and twenty eight nodes. 

2.3.1. For Normal Tissues 
There is no blood flow and metabolic heat generation in the epidermis. Hence it is assumed that M3 = 0 = S3 in 
epidermis. Physical and physiological parameters like thermal conductivity (K1), rate of heat transfer due to 
blood mass flow (M1) and metabolic heat generation rate (S1) have almost constant value in subcutaneous layer. 
In dermis K2, M2 and S2 are function of radial coordinate only and expressed by interpolating linearly between 
the corresponding values at epidermis and subcutaneous tissues. 

( ) ( ) ( )
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2.3.2. For Abnormal Tissues 
Since surgery results in loss of blood and tissue, it is assumed that initially at time t = 0, blood mass flow rate 
and metabolic heat generation rate is almost negligible and gradually increase with time to attain normal values. 
For abnormal tissues these are increasing function of time too. 
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Here 
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( ) ( ) ( )( ) ( ) ( ) ( )( )0 1 0 1e and ee e e et tt tη νχ η η φ ν ν− −= + = +                      (10) 

where ( ) ( ) ( ) ( )
0 1 0 1, , ,e e e eη η ν ν  are unknown constants which are found using conditions [1]: 

( ) ( ) ( ) ( )0 0, 1, 0 1 20, 1χ χ φ φ= ∞ = = ∞ =                         (11) 

2.4. Interpolation Function for Circular Coaxial Sector Element 
We have chosen the bilinear shape function in polar coordinates for the variation of temperature within each 
element, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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Here i, j, k and l are the local node numbers. The interpolation functions, thus, obtained are— 
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In this paper, the domain has been divided into circular coaxial sector elements of varying thickness i.e. “a” 
takes three different values: ( )1 1 3a  for subcutaneous tissues, dermis and epidermis respectively. Using the above 
values and expressions for physical and physiological parameters and expression for temperature variation (12) 
in (7), integral ( )eI  is evaluated as: 
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Equation (16) has been differentiated with respect to each nodal temperature of the element then expressed in 
matrix form and minimized. The corresponding global matrix equation has been formed and assembled. Crank 
Nicolson Technique has been employed to solve the system of equations to obtain the temperature profile at 
each node for progressive time. A computer program has been developed in MATLAB to simulate the results. 

3. Numerical Results and Discussions 
In order to enhance the applicability of the present model in different climatic conditions, the numerical calcula-
tions have been done for three cases of atmospheric temperatures. The values of physical and physiological pa-
rameters taken [1] [10] [19] [22] [23] to obtain the numerical results are given in Table 1 and Table 2.  
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Table 1. Value of physical and physiological parameters. 

Parameter Value Parameter Value 

K1 0.060 Cal/cm·min·˚C c 0.830 Cal/gm·˚C 

K2 variable Tb 37˚C 

K3 0.030 Cal/cm·min·˚C Ta 15˚C, 23˚C, 33˚C 

L 579.0 Cal/gm ρ 1.090 gm/cm3 

h 0.009 Cal/cm2·min·˚C   

 
Table 2. Value of M1 and S1 at different Ta and E. 

Parameter Ta (˚C) M1 (Cal/cm3·min·˚C) S1 (Cal/cm3·min) E (gm/cm2·min) Tα (˚C) Tβ (˚C) 

Values 

15 0.003 0.0357 0.0 37 35 

23 0.018 0.018 0.0 37 35 

   0.00024   

   0.00048   

33 0.0315 0.018 0.00024 37 35 

   0.00048   

   0.00072   

 
The constants ( )( )0 1 6ir i =  have been assigned the following values: 

0 1 2 3 4 5 62.0 cm, 2.5 cm, 2.6 cm, 2.7 cm, 2.8 cm, 2.9 cm and 3.1 cmr r r r r r r= = = = = = =  

Nodal temperature versus time graphs (Figures 2-8), steady state nodal temperature versus radial coordinate 
graphs (Figures 9-11) and steady state nodal temperature versus angular coordinate graphs (Figures 12-14) have 
been plotted for three different atmospheric temperatures for both, normal and abnormal tissues.  

For plotting Figures 2-8 four nodes chosen are: one at core of the skin, one at the interface of subcutaneous 
and dermis, one at the interface of dermis and epidermis and one at the surface of the skin for each value of θ = 
0(π/2)3π/2. For plotting Figures 9-11 seven nodes chosen are at ri, i = 0(1)6 for each value of θ = 0(π/2)3π/2. 
For plotting Figures 12-14 the five nodes chosen are at θ = 0, π/2, π, 3π/2 and 2π for each ri; i = 0, 1, 5 and 6. 
These graphs give us an idea about the magnitude of the thermal effect of surgical wound on temperature pro-
files in the skin layers. 

Figure 2 represents thermal variations at selected nodes with progression of time for Ta = 15˚C and E = 0 
gm/cm2 min. Similarly Figures 3-5 and Figures 6-8 represents thermal variations for Ta = 23˚C, E = 
0.0(0.00024)0.00048 gm/cm2 min and Ta = 33˚C, E = 0.00024(0.00024)0.00072 gm/cm2∙min respectively. Fig-
ure 9 represents nodal temperature distribution (when thermal equilibrium is reached) with respect to radial co-
ordinate at Ta = 15˚C and E = 0 gm/cm2 min. Likewise Figures 10(a)-(c) and Figures 11(a)-(c) represent steady 
state nodal temperature distribution for Ta = 23˚C, E = 0.0(0.00024)0.00048 gm/cm2 min and Ta = 33˚C, E = 
0.00024(0.00024)0.00072 gm/cm2 min respectively. Figure 12, Figures 13(a)-(c) to Figures 14(a)-(c) represent 
steady state temperature distribution along angular direction for Ta = 15˚C, 23˚C (E = 0.0(0.00024)0.00048 
gm/cm2∙min) and 33˚C (E = 0.00024(0.00024)0.00072 gm/cm2∙min) respectively. 

All the graphs (Figures 2-14) show that at the skin core nodal temperatures are given by the function f(θ) as 
assumed. 

From Figures 2-8 it is observed that with the increase in time, there is steep decrease in temperature for first 
10 minutes and 20 minutes for normal and abnormal tissues respectively. This is due to the fact that on exposure 
to atmosphere (at lower temperature), heat is lost from the tissues due to radiation and conduction. Heat is also 
lost due to evaporation of sweat, which is produced on activation of sweat glands when peripheral tissues are at 
higher temperature. Heat of peripheral tissues is lost in the form of latent heat of vaporization. This fall in tem-
perature is higher in abnormal tissues than that in the normal ones. It is because of temporary vasoconstriction in 
incised blood vessels of the tissues [2] [24]. Results show that, abnormal tissue temperature takes more time to 
obtain steady state than that of normal tissue. For normal tissues, the temperature becomes almost steady after  
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Figure 2. Graph between nodal temperature T and time t for normal (black solid line) and abnormal (blue solid line) tissues 
at (a) θ = 0, 2π, (b) θ = π/2, 3π/2, (c) θ = π, 215 C, 0 gm cm minaT E= = ⋅  and 0.01η ν= = . 

 

 
Figure 3. Graph between nodal temperature T and time t for normal (black solid line) and abnormal (blue solid line) tissues 
at (a) θ = 0, 2π, (b) θ = π/2, 3π/2, (c) θ = π, 223 C, 0 gm cm minaT E= = ⋅  and 0.01η ν= = . 

 
20 minutes. In case of abnormal tissues, after attaining the minimum value the temperature begins to rise for 
about 180 - 250 minutes without and with different rates of evaporation (Figures 2-8). It is further observed that 
during this increment period, the rate of increase in temperature is fast for first 40 - 50 minutes approximately 
followed by further increment but with slower rate in the remaining period. This may be due to the fact that ini-
tially the rate of blood mass flow and heat generated due to metabolic activity of the operated tissues are very 
small in comparison to normal tissues but as time progresses, the value of these parameters also increase which 
helps the abnormal tissue to return to normal temperature and restart cell mitotic division to accomplish wound 
healing [25] [26]. Thus abnormal tissues take more time to attain steady state temperature in comparison to 
normal tissues and it can be validated on the basis of experimental results of Gannon [26].  

In all the graphs, the fall in tissue temperature is more at the skin surface in comparison to the interior tissues 
because more heat is lost at the surface due to convection, radiation and evaporation. 
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Figure 4. Graph between nodal temperature T and time t for normal (black solid line) and abnormal (blue solid line) tissues 
at (a) θ = 0, 2π, (b) θ = π/2, 3π/2, (c) θ = π, 223 C, 0.00024 gm cm minaT E= = ⋅  and 0.01η ν= = . 

 

 
Figure 5. Graph between nodal temperature T and time t for normal (black solid line) and abnormal (blue solid line) tissues 
at (a) θ = 0, 2π, (b) θ = π/2, 3π/2, (c) θ = π, 223 C, 0.00048 gm cm minaT E= = ⋅  and 0.01η ν= = . 

 
For the same rates of evaporation, the decline in tissue temperature is more at lower atmospheric temperature 

than that at higher atmospheric temperature and the steady state temperature of the tissue at lower atmospheric 
temperature is less than that with the higher atmospheric temperature (Figure 2, Figure 3 or Figure 4, Figure 6 
or Figure 5, Figure 7).This is because the temperature gradient at the skin surface is more at lower atmospheric 
temperature than that at higher atmospheric temperature and amount of heat transfer is directly proportional to 
temperature gradient. But with the slight increase in evaporation rate at higher atmospheric temperature, the 
temperature profiles become closer in spite of considerable amount of difference in atmospheric temperature. 
For example, it is observed that the temperature profiles for Ta = 15˚C and E = 0.0 gm/cm2 (Figure 2) and Ta = 
33˚C, E = 0.24 × 10−3 gm/cm2 (Figure 6) are close in spite of a difference of 18˚C in atmospheric temperature 
and a small rate of sweat evaporation at higher temperature. This highlights the significant role of evaporation of 
sweat by utilizing latent heat of vaporization in gaining thermal balance. 
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Figure 6. Graph between nodal temperature T and time t for normal (black solid line) and abnormal (blue solid line) tissues 
at (a) θ = 0, 2π, (b) θ = π/2, 3π/2, (c) θ = π, 233 C, 0.00024 gm cm minaT E= = ⋅  and 0.01η ν= = . 

 

 
Figure 7. Graph between nodal temperature T and time t for normal (black solid line) and abnormal (blue solid line) tissues 
at (a) θ = 0, 2π, (b) θ = π/2, 3π/2, (c) θ = π, 233 C, 0.00048 gm cm minaT E= = ⋅  and 0.01η ν= = . 

 
For the same atmospheric temperature, the fall in tissue temperature increases as the rate of evaporation in-

creases (Figures 3-5 or Figures 6-8).This again shows that rate of evaporation has a significant role in tempera-
ture regulation in SST region.  

From Figures 9-11 it is observed that the slope of the curve changes at the junction of each layer (r = 
2.5(0.1)2.9 cm). This is due to the different physiological properties of each layer. The steepness of the curves 
increases as we move from the inner core towards outer surface. It is because of the maximum temperature gra-
dient at the surface which results in maximum temperature fall at the surface and this effect reduces as we move 
towards core of the limb. Also it is observed that at a given atmospheric temperature and evaporation rate, the 
thermal variation along angular direction decreases as we move radialy outwards from the core. It implies that 
effect of core temperature on thermal distribution of tissues decreases in angular direction with increase in dis-
tance from the core. 
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Figure 8. Graph between nodal temperature T and time t for normal (black solid line) and abnormal (blue solid line) tissues 
at (a) θ = 0, 2π, (b) θ = π/2, 3π/2, (c) θ = π, 233 C, 0.00072 gm cm minaT E= = ⋅  and 0.01η ν= = . 

 

 
Figure 9. Nodal temperature versus distance from core graph for Ta = 15˚C, E = 0.0 gm/cm2∙min, η = ν = 0.01 for normal 
(black solid line) and abnormal (blue solid line) tissues at thermal equilibrium. Note: Nodal temperature of normal and ab-
normal tissues is almost same at equilibrium so overlapping of curves has occurred.  

 
From Figure 12, Figures 13(a)-(c) and Figures 14(a)-(c) it is noted that the variation in tissues temperature 

in angular direction, in each layer reflects the effect of assumed boundary condition at the core of limb. 
On comparing Figure 9 with Figure 10(a), Figure 10(b) with Figure 11(a), Figure 10(c) with Figure 11(b), 

it is observed again that (for fixed evaporation rate) the fall in nodal temperature along radial direction increases 
as atmospheric temperatures decreases but lowering of atmospheric temperature has no significant effect on the 
fall of nodal temperature along angular direction (compare Figure 12 with Figure 13(a), Figure 13(b) with 
Figure 14(a) and Figure 13(c) with Figure 14(b)). It is because lowering of atmospheric temperature is sym-
metric about “θ” and increases temperature gradient significantly in radial direction only. 

On comparing Figures 10(a)-(c) or Figures 11(a)-(c), it is observed that at given atmospheric temperature, 
the increase in evaporation rate increases the decline in nodal temperature along radial direction but has no ef-
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fect on the thermal variations along angular direction (compare Figures 13(a)-(c) or Figures 14(a)-(c)). It is 
because the increment in evaporation rate is also symmetric about “θ” and increases temperature gradient sig-
nificantly in radial direction only. 

The steady state nodal temperature (SSNT) values shown in Figures 2(a)-(c) can also be observed in Figure 
9 for θ = 0 (or 2π), θ = π/2 (or 3π/2) and θ = π respectively. Further same values can also be observed in Figure 
12 at θ = 0 (or 2π), π/2 (or 3π/2) and π respectively. Similarly, SSNT values shown in Figures 3(a)-(c), Figures 
4(a)-(c) and Figures 5(a)-(c) can also be observed in Figures 10(a)-(c) respectively and in Figures 13(a)-(c) 
respectively at θ = 2π. The SSNT values shown in Figures 6(a)-(c), Figures 7(a)-(c) and Figures 8(a)-(c) can 
also be observed in Figures 14(a)-(c) respectively.  

 

 
Figure 10. Nodal temperature versus distance from core graph for Ta = 23˚C, (a) E = 0.0 gm/cm2∙min, (b) E = 0.00024 
gm/cm2 min, (c) E = 0.00048 gm/cm2∙min and η = ν = 0.01 for normal (black solid line) and abnormal (blue solid line) tis-
sues at thermal equilibrium. Note: Nodal temperature of normal and abnormal tissues is almost same at equilibrium so over-
lapping of curves has occurred.  

 

 
Figure 11. Nodal temperature versus distance from core graph for Ta = 33˚C, (a) E = 0.00024 gm/cm2∙min, (b) E = 0.00048 
gm/cm2∙min, (c) E = 0.00072 gm/cm2∙min and η = ν = 0.01 for normal (black solid line) and abnormal (blue solid line) tis-
sues at thermal equilibrium. Note: Nodal temperature of normal and abnormal tissues is almost same at equilibrium so over-
lapping of curves has occurred.  
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Figure 12. Graph between T(ri), i = 0, 1, 5, 6 and θ at Ta = 15˚C, E = 0.0 gm/cm2∙min and η = ν = 0.01 for normal (black 
solid line) and abnormal (blue solid line) tissues at thermal equilibrium. Note: Nodal temperature of normal and abnormal 
tissues is almost same at equilibrium so overlapping of curves has occurred.  

 

 
Figure 13. Graph between T(ri), i = 0, 1, 5, 6 and θ at Ta = 23˚C, (a) E = 0.0 gm/cm2∙min, (b) E = 0.00024 gm/cm2∙min, (c) E 
= 0.00048 gm/cm2∙min and η = ν = 0.01 for normal (black solid line) and abnormal (blue solid line) tissues at thermal equi-
librium. Note: Nodal temperature of normal and abnormal tissues is almost same at equilibrium so overlapping of curves has 
occurred. 

4. Conclusions 
The two-dimensional unsteady state finite element model has been developed to analyse thermal variations dur-
ing wound healing in the peripheral tissues of human limb with bilinear shape function in polar coordinates. It is 
concluded that the use of coaxial circular sector elements is appropriate to incorporate the thermal variations 
along the circumference of the human limb. The variation in tissues temperature in angular direction, in each 
layer due to asymmetric arrangement of arteries is modelled well by assumed boundary condition at the core of 
the limb. The fall in tissue temperature is more at the skin surface in comparison to the interior tissues. The fall 
in temperature profile in abnormal tissues is more in comparison to that in normal tissues. After attaining mini-
mum temperature values, abnormal tissues take more time (180 - 250 min) to resume steady state temperature  
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Figure 14. Graph between T(ri), i = 0, 1, 5, 6 and θ at Ta = 33˚C, (a) E = 0.00024 gm/cm2∙min, (b) E = 0.00048 gm/cm2∙min, 
(c) E = 0.00072 gm/cm2∙min and η = ν = 0.01 for normal (black solid line) and abnormal (blue solid line) tissues at thermal 
equilibrium. Note: Nodal temperature of normal and abnormal tissues is almost same at equilibrium so overlapping of curves 
has occurred.  

 
profiles in comparison to normal tissues. The time difference to attain steady state temperature profiles and 
magnitude of difference in temperature profiles between normal and abnormal tissues varies with ambient tem-
perature and evaporation rate. The effect of core temperature on thermal distribution of tissues decreases in an-
gular direction with increase in distance from the core. The present model can be extended to the deep tissues of 
human limbs where the properties also vary along angular direction.  

The findings of the present work are in coordination with the experimental results of Gannon [26]. This in-
formation can be used to generate the thermal information which may be useful to biomedical scientists in di-
agnosis and development of treatment regimen for surgical wounds. 
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