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Abstract 
 
In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is 
obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly properly 
efficient solutions of set-valued optimization problem. 
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1. Introduction 
 
One important problem in vector optimization is to find 
the efficient points of a set. As observed by Kuhn, 
Tucker and later by Geoffrion, some efficient points ex-
hibit certain abnormal properties. To eliminate such ab-
normal efficient points, various concept of proper effi-
ciency have been introduced. The original concept was 
introduced by Kuhn and Tucker [1] and Geoffrion [2], 
and later modified and formulated in a more generalized 
framework by Borwein [3], Hartley [4], Benson [5], 
Henig [6], Borwein and Zhuang [7]; also see the refer-
ences there in. Particularly, the concept of tightly proper 
efficiency was introduced by Zaffaroni [8], and he used a 
special scalar function to characterize the tightly proper 
efficiency, and obtained some properties of tightly 
proper efficiency. 

In this paper, we study the characterization and well- 
posedness for tightly proper efficiency in set-valued 
vector optimization problem. The paper is organized as 
follows. In Section 2, some concepts of tightly proper 
efficiency and some preliminary results are given. In 
Section 3, the characterization and well-posedness for 
tightly proper efficiency in set-valued vector optimiza-
tion problem is discussed. 
 
2. Preliminaries 
 
Throughout this paper, let X  be a linear space,  and Y
Z  be two finite dimensional, with topological dual 

spaces  and *Y *Z . For a set A Y , , , clA intA A , 
and cA  denote the closure, the interior, the boundary 
and the complement of A , respectively. Moreover, we 
will denote with  the closed unit ball of Y . A set 

 is said to be a cone if 
B

C  Y c C   for any c C  
and λ ≥ 0. A cone C is said to be convex if C C C  , 
and it is said to be pointed if . In the 
sequel we suppose that  is a convex, closed, 
pointed cone with nonempty interior. We say that the set 

 C C  = 0 
YC 

Y   is a base for  if  is convex with 0C  clC  
and    ,\ 0 =C c =e : =Y y  , > 0on y   .  

Definition 2.1: A point y S  Y  is said to be 
efficient with respect to  (denoted C  , y E S C ) if  

  = 0YC S y   

Definition 2.2: [8] The point y S  Y  is called 
tightly proper efficient with respect to C  (denoted 

 ,y TPE S C
K

) if there exists an open convex set 
Y  with 0Y K  satisfying  S y  =K   and 

there exists > 0  such that  

 cK B C B  
 

It is easy to verify that  

  , ,S S C

0y

TP

clS

E C E

S

 

Definition 2.3: [9] Let  be a nonempty subset of 
. The contingent cone (or the Bouligand tangent cone) 

to  at 
Y

S   is the set  

    
 0 0with = limn n

n
y y v y y


 

0, : ,y Y R : ,Y
 

n ny

n

T S v  
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Jahn [9] have gotten the following proposition on the 
contingent cone to  at S 0y clS .  

Proposition 2.1  a nonempty convex 
subset of a real normed space. Then  

: [9] Let S  be

   , =T S C clcone S y  

 
3. Tightly Proper Efficiency and 

Well-Posedness 
 

onsider the following vector optimization problem with C
set-valued maps: 

(VP) min  F x , 

   s.t. G x D   ,  x X , 

where : 2YF X   and : 2ZG X   are set-valued 
maps, respectively. D  is a x, pointed cone 
of

 closed,conve
 Z . 
Den uote the feasible sol tion set of (VP) by  

 th image of 

      := : 9A x X G x D   

and e A  under F  by  

   =
x A

F A F x  


Definition 3.1: A point x  is said to 
proper efficient solution  (VP)

be a tightly 
of , if there exists 

 y F x  such that   ,y TPE F A C    , and the point 
 ,x y  
of 

is said to be a tightly properly efficient minimizer 

e define

(VP).  
Definition 3.2: For a set S Y . Let the function 

 R   b

     \=S S Y S

:S Y  d as  

y d y d y   

where    = inf :Sd y s y s  ith   =d yS  w  .  

S  was introduceThe function d in in 
properties are g ed together in the following pro- 
position.  

osition 3.1: [8] Let be e wi
, 


ather

 [8], its ma

Prop  a convex con th 
no

 C  
nempty interior then the function C  is convex, 

positively homogenous and lipschitzian. Moreover, this 
function is negative on the interior of C  null on C,   
and positive on int cC .  

We consider the parameterized scalar problem: 

 yP  min  C y y   

s.t.  y F A  
where y Y . 

Definition 3.3: Let y Y
 

, the parameterized scalar 
optimization problem  yP  is Tikhonov well-posed if  

1)    = > 0C Cy y d y     for all y  y F A  
with y y ;  

2) for all  n  y F A  with   0C nd y y    
implies that ny y .  

 denote by  We

  = yWPVP Fy ov we

Lemma 3.1 onsid llowing

A P is Tikhon ll posed . 

: [8] C er the fo  statements:  
(a) the point y  is a tightly properly efficient point in 

(b) there exists an open convex set  such that 
S ;  

K Y
 \ 0YC K   and   =S y K   ;  

(c)    , = 0YT S C C  .  

If Y

y

n it holds that
finite dim

all state ents are equivalent.  
eorem c cterize the relation 

between
parameterized sc ro

 is a any normed space, the  
)  . If is ensional, we have 
( )  and 

( ) ) (a b c
also that ( )c a

 followi

(
 

Y  

h
m

The harang t
 tightly properly efficient points of(VP) and the 

alar p blem  yP . 
Theore et m 3.1: L x A ,  y F x . The  ,x y  is 

a tightly properly efficient minimizer of (VP), then y  is 
a solution of  yP .  

Proof. We show that y  is a solution of the scalar 
problem  yP . Indeed 3.1 and Lemma 
3.1(b), we have  

, by Proposition 

     = 0,C Cy y d y y F A        

Noting  

y

 that   = 0Cd y y  , thus we have that y  is 
just the solution of  yP . the problem              �  

otRemark 3.1: The converse of Theorem 3.1 ma be n  
valid, the following example can illustrate the case. 

1: Let 

y 

Example 3. =X R , 2=Y R  and =Z R . 
Given 2=C R , =D R .  

 
    
  

[0,1]

, ,

F

2
, 1 1 1 ,x y R R y x if x

=x


       

x y R R otherwise

  


 

   = , 1 , for anyg x x x x X     

Thus, the feasible set of (VP)  

    = | = [0,A x X G x R )       

 F A  can see Figure 1.  The set of 
 

 

 F A . Figure 1. The set of 
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, but   1, 1,0
 (VP). Th

 1,0y Y   is a solution of yP  is 
not a tightly properly efficient minimizer of us, 
the converse of Theorem 3.1 is not valid. 

Theorem 3.2: Let ,  y F xx A . Then, the 
 ,x y  is a tightly properly efficient minimizer of  yP  
if and only if the scalar problem  yP  is Tikhonnov 
well-posed.  

Proof. If  ,x y
 

 is a tightly properly efficient 
minimizer of  yP , let us show that the scalar problem 
 yP  is Tik  well-posed. We argue by contr - 
diction: if the conclusion is false, then there exists a 
sequence 

honnov

y

a

 n  F A  such that ny y B   for some 
> 0  and   0ny y  , which means that there 

exists a sequence  nc C  with 
Cd

0n ny c y    and 

2
B 

 
. Since we ay = n nn  c

 
can alw s write nc    with 

n  , it follows that n  does not co verge to zero, 
i.e., there exists a subsequence (we ag all it n

n
ain c  ) with 

>n   for som >e 0 . Now take 
1

2=n n ny c y   , 

since n  is bounded away from zero and 0n  , thus 

we have <n n  . Set  =n n n nc      to obtain 

= 0n n ny c y     n n ny c y   and 

 1
n n ny c y     And by 1, we 0  .  the Lemma 3.

get contra that diction, therefore it shows  yP  is 
posed. Tikhonov well-

Con
en

real norm e and L ), there exist
 th

versely, we argue by contradiction: if the 
conclusion is false, then by Y  is a finite dim sional 

al spac emma 3.1(c s 
 \ 0  such at Yv C v T S C  e , y . Thus ther

exist  n y F A ,  nc C  with ny   and nc y
 n R  that    such 

 = lim n n n y
n

v y c


           (1)

It follows that 

 

     = 0C n n C n n ny y y c y        . Since   

 yP  is Tikhonov well-posed, we have  

  0n ny y    

By (1), we have n nc v  , but since C  is pointed 
and  0Y . Therefore it is a contradiction. \v C �  

We wi ple to il e Theorem lu

3.2.  
example

strat

Example 3.2: In this , we shall continue to 
consider Example 3.1. By Definition 3.1 and Definition 
3.3, we can get  

   

 give the follo ng exam

      2
= , , | = 1 1 1 , 0,1x x y y x x   

 

and  

,TPE F A C

      2
= , | = 1 1 1 , 0,1WPVP x y y x x     

Therefore, Theorem 3.2 is valid. 
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