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Abstract

In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is
obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly properly
efficient solutions of set-valued optimization problem.
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1. Introduction

One important problem in vector optimization is to find
the efficient points of a set. As observed by Kuhn,
Tucker and later by Geoffrion, some efficient points ex-
hibit certain abnormal properties. To eliminate such ab-
normal efficient points, various concept of proper effi-
ciency have been introduced. The original concept was
introduced by Kuhn and Tucker [1] and Geoffrion [2],
and later modified and formulated in a more generalized
framework by Borwein [3], Hartley [4], Benson [5],
Henig [6], Borwein and Zhuang [7]; also see the refer-
ences there in. Particularly, the concept of tightly proper
efficiency was introduced by Zaffaroni [8], and he used a
special scalar function to characterize the tightly proper
efficiency, and obtained some properties of tightly
proper efficiency.

In this paper, we study the characterization and well-
posedness for tightly proper efficiency in set-valued
vector optimization problem. The paper is organized as
follows. In Section 2, some concepts of tightly proper
efficiency and some preliminary results are given. In
Section 3, the characterization and well-posedness for
tightly proper efficiency in set-valued vector optimiza-
tion problem is discussed.

2. Preliminaries

Throughout this paper, let X be a linear space, ¥ and
Z be two finite dimensional, with topological dual
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spaces Y and Z".Foraset AcY, cld, intA, 04,
and A° denote the closure, the interior, the boundary
and the complement of A, respectively. Moreover, we
will denote with B the closed unit ball of Y. A set
CcY is said to be a cone if AceC for any ceC
and 4 > 0. A cone C is said to be convex if C+CcC,
and it is said to be pointed if Cm(—C)= {0} In the
sequel we suppose that CcY is a convex, closed,
pointed cone with nonempty interior. We say that the set
®cY is abase for C if O is convex with 0¢ c/C
and C\{O}=cone®={yeY:y=l€,/1>0,€e®}.
Definition 2.1: 4 point yeScY is said to be
efficient with respect to C (denoted y e E(S,C)) if

(§-y)n-C={0,}

Definition 2.2: [8] The point yeScY is called
tightly proper efficient with respect to C (denoted
ye TPE(S,C) ) if there exists an open convex set
KcY with 0, €e0K satisfying (S—f)mK = and
there exists & >0 such that

K‘N(6B-C)c B
It is easy to verify that
TPE(S,C)c E(S,C)
Definition 2.3: [9] Let S be a nonempty subset of

Y . The contingent cone (or the Bouligand tangent cone)
to S at y,eclS istheset

T(S.y,)={veY:3{A}cR 3y }cY .,

Y, =¥, with v = lim4, (yn - ¥ )}

n—»o0
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Jahn [9] have gotten the following proposition on the
contingent cone to S at y, €clS.

Proposition 2.1: [9] Let S be a nonempty convex
subset of a real normed space. Then

T(S,C) = clcone(S—f)

3. Tightly Proper Efficiency and
Well-Posedness

Consider the following vector optimization problem with
set-valued maps:

(VP) min F (x),

s.t. G(x)ﬁ(—D) D, xe X,
where F:X —»2" and G:X —2° are set-valued
maps, respectively. D is a closed,convex, pointed cone
of Z.

Denote the feasible solution set of (VP) by

A= {xeX:G(x)ﬁ9—D¢®}

and the image of 4 under F by

F(a)= UF()

Definition 3.1: A point X is said to be a tightly
proper efficient solution of (VP), if there exists
yeF(x) suchthat y € TPE[ F(A),C |, and the point
()_cj) is said to be a tightly properly efficient minimizer
of (VP).

Definition 3.2: For a set ScY. Let the function
Ag:Y — RU{two}  be defined as

As (y):ds (y)_dY\s(J’)

where d(y)=inf{]s-y|:se S} with d(y)=+wo.

The function A; was introduced in [8], its main
properties are gathered together in the following pro-
position.

Proposition 3.1: [8] Let C be a convex cone with
nonempty interior, then the function A, is convex,
positively homogenous and lipschitzian. Moreover, this
function is negative on the interior of C, null on 0C
and positive on intC* .

We consider the parameterized scalar problem:

(P) min A (y-¥)

st. yeF(A4)

where yeY.

Definition 3.3: Let y €Y, the parameterized scalar
optimization problem (}}) is Tikhonov well-posed if

DA (y-y)=d (y-y)>0 for all yeF(4)
with y#5y;

2) for all {y,}cF(4) with d.(y,-¥)—>0
implies that y, —> y.
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We denote by
WPVP = {y IS F(A)|P} is Tikhonov well posed} .

Lemma 3.1: [8] Consider the following statements:
(a) the point y is a tightly properly efficient point in
A

(b) there exists an open convex set K — Y such that
-C\{0,}cK and (S-y)NK=0;

(¢) T(S+C,y)n-C={0,}.

If Y is a any normed space, then it holds that
(@)= ()= (c). If Y is finite dimensional, we have
also that (c) = (a) and all statements are equivalent.

The following theorem characterize the relation
between tightly properly efficient points of(VP) and the
parameterized scalar problem (}}) .

Theorem 3.1: Let Xe A, yeF(x). The (X,y) is
a tightly properly efficient minimizer of (VP), then y is
a solution of (PI .

Proof. We show that y is a solution of the scalar
problem (Py) Indeed, by Proposition 3.1 and Lemma
3.1(b), we have

Ac(y=y)=d.(y-7)=20,VyeF(A)

Noting that d_.(y—y)=0, thus we have that y is
just the solution of the problem ( P;) . 0

Remark 3.1: The converse of Theorem 3.1 may be not
valid, the following example can illustrate the case.

Example 3.1: Let X=R, Y=R* and Z=R.
Given C=R’, D=R,.

{(x,y)cRx& y>1- l—(x—l)z},ifxe[o,l]

{(x,y)cRxRJ,

F(x)=
otherwise
g(x) = [—x,—x+1], forany xe X
Thus, the feasible set of (VP)
A={xe X|G(x)n(-R.) =D} =[0,+%)
The set of F(A4) can see Figure 1.

YA

Figure 1. The set of F(A).
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y=(1,0)€Y is a solution of P,, but (1,(1,0)) is
not a tightly properly efficient minimizer of (VP). Thus,
the converse of Theorem 3.1 is not valid.

Theorem 3.2: Let Xe A, yeF(X). Then, the
(X.) is a tightly properly efficient minimizer of (Py)
if and only if the scalar problem (Py) is Tikhonnov
well-posed.

Proof. If f,)_/) is a tightly properly efficient
minimizer of PV), let us show that the scalar problem
(P;) is Tikhonnov well-posed. We argue by contra-
diction: if the conclusion is false, then there exists a
sequence {y,} < F(A) suchthat y, -y ¢ &B for some
>0 and d_.(y,—y)—0, which means that there
exists a sequence {c,} = C with y, +¢,—y >0 and

g . . .
c, & 3 B . Since we can always write ¢, = 4,6, with

n-n

6, €0, it follows that A, does not converge to zero,
i.e., there exists a subsequence (we again call it 4, ) with

1
yo+e, =7
since A, is bounded away from zero and «, — 0, thus

A, > B for some B>0. Now take «, =

wehave a, <4,.Set ¢, =(4,-a,)0, toobtain

n

yr1+c:z_J_/:y,1+Cn_J_/_a9 —)0 and

n’n

a (y" +c, —)7) — -0 #0. And by the Lemma 3.1, we

get contradiction, therefore it shows that (PV) is
Tikhonov well-posed.

Conversely, we argue by contradiction: if the
conclusion is false, then by Y is a finite dimensional
real normal space and Lemma 3.1(c), there exists
ve—-C\{0,} such that veT(S+C,y). Thus there
exist {y,} cF(4), {¢,}=C with y,+¢, >y and
{B,} =R, such that

v=1limf, (y, +¢, - ¥) (1

It follows that
A—C (ﬂn (yn _)7)) = A—C (ﬂn (yn +Cn _y)) - 0 . Since
(P;) is Tikhonov well-posed, we have
B, (v, ~7)—>0

By (1), we have S, — v, but since C is pointed
and ve—-C\{0,} . Therefore it is a contradiction. [
We give the following example to illustrate Theorem
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Example 3.2: In this example, we shall continue to
consider Example 3.1. By Definition 3.1 and Definition
3.3, we can get

TPE(F((4).C))

:{(x,x,y)|y:1— 1—(x—l)2,xe(0,l)}

and
WPVP={(x,y)|y= 1- 1—(x—1)2,xe(0,1)}

Therefore, Theorem 3.2 is valid.
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