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Abstract 
The conservation of the energy flux in turbulent jets which propagate in the intergalactic medium 
(IGM) allows deducing the law of motion in the classical and relativistic cases. Three types of IGM 
are considered: constant density, hyperbolic and inverse power law decrease of density. An ana-
lytical law for the evolution of the magnetic field along the radio-jets is deduced using a linear re-
lation between the magnetic pressure and the rest density. Astrophysical applications are made to 
the centerline intensity of synchrotron emission in NGC315 and to the magnetic field of 3C273. 
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1. Introduction 
The analysis of turbulent jets in the laboratory offers the possibility of applying the theory of turbulence to some 
well defined experiments, see [1] [2]. The experiments of Reynolds can be seen in [4]. Analytical results for the 
theory of turbulent jets can be found in [4]-[7]. Recently the analogy between laboratory jets and extragalactic 
radio-jets has been pointed out, see [8] [9]. We briefly recall that the theory of “round turbulent jets” can be 
defined in terms of the velocity at the nozzle, the diameter of the nozzle, and the viscosity, see Section 5 in [6]; 
as an example the gradients in pressure are not considered. The application of the theory of turbulence to 
extragalactic radio-jets produces a great number of questions to be solved because we do not observe the 
turbulent phenomena but the radio features which have properties similar to the laboratory’s turbulent jets, i.e. 
similar opening angles. We now pose the following questions.  
• Is it possible to apply the conservation of the flux of energy in order to derive the equation of motion for 
radio-jets in the cases of constant and variable density of the surrounding medium?  
• Can we extend the conservation of the flux of energy to the relativistic regime?  
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• Can we model the behaviour of the magnetic field and the intensity of synchrotron emission as functions of 
the distance from the parent nucleus?  
• Can we model the back reaction on the equation of motion for turbulent jets due to radiative losses?  

In order to answer these questions, we derive the differential equations which model the classical and 
relativistic conservation of the energy flux for a turbulent jet in the presence of different types of medium, see 
Sections 2 and 3. Section 4 presents classical and relativistic parametrizations of the radiative losses as well as 
the evolution of the magnetic field. 

2. Energy Conservation 
The conservation of the energy flux in a turbulent jet requires the perpendicular section to the motion along the 
Cartesian x-axis, A  

( ) 2πA r r=                                      (1) 

where r is the radius of the jet. The section A at position 0x  is  

( )
2

0 0π tan
2

A x x α  =   
  

                                (2) 

where α  is the opening angle and 0x  is the initial position on the x-axis. At position x we have  

( )
2

π tan .
2

A x x α  =   
  

                                 (3) 

The conservation of energy flux states that  

( ) ( ) ( ) ( ) ( )33
0 0 0

1 1
2 2

x v A x x v x A xρ ρ=                             (4) 

where ( )v x  is the velocity at position x and ( )0 0v x  is the velocity at position 0x , see Formula A28 in [10]. 
The selected physical units are pc for length and yr for time; with these units, the initial velocity 0v  is 

expressed in pc·yr−1, 1 yr = 365.25 days. When the initial velocity is expressed in km·s−1, the multiplicative 
factor 61.02 10−×  should be applied in order to have the velocity expressed in pc·yr−1. 

2.1. Constant Density 
In the case of constant density of the intergalactic medium (IGM) along the x-direction, the law of conservation 
of the energy flux, as given by Equation (4), can be written as a differential equation  

( ) ( )( )
3

2 3 2
0 0

d 0.
d

x t x t v x
t

  − = 
 

                                (5) 

The analytical solution of the previous differential equation can be found by imposing 0x x=  at 0t = ,  

( ) ( )32 5 25
0 0 0

1 3 5 3 .
3

x t x tv x= +                                 (6) 

The asymptotic approximation is  

( ) 2 5 3 5 3 2 3 55
0 0

1~ 3 5 .
3

x t v x t                                   (7) 

The velocity is  

( ) ( )
( )( )

22 5 2
0 0 0 0

4 532
0 0 0

3 5 3

5 3

x tv x v
v t

x tv x

+
=

+
                                 (8) 
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and its asymptotic approximation  

( )
( )

( )

2 52 5 2 3 15
0 0

4 53 2
0 0

3 1251~ .
5

x v t
v t

v x

−

                                 (9) 

The velocity as a function of the distance is  

( )
2 3
0 0

2 3 .x vv x
x

=                                        (10) 

A first comparison can be made with the laboratory data on turbulent jets of [11] where the velocity of the 
turbulent jet at the nozzle diameter, 1jD = , is 1

0 2.53 m sv −= ⋅  and at 50jD =  the centerline velocity is 
10.314 m sv −= ⋅ . The formula (10) with 0 1x =  and 50x =  gives an averaged velocity of 10.186 m sv −= ⋅  

which multiplied by 2 gives 10.372 m sv −= ⋅ . This multiplication by 2 has been done because the turbulent jet 
develops a profile of velocity in the direction perpendicular to the jet’s main axis and therefore the centerline 
velocity is approximately double that of the averaged velocity. The transit time, trt , necessary to travel a 
distance of maxx  can be derived from Equation (6)  

2 23
max 0 max 0

0 0

3 3
.

5tr
x x x x

t
x v

−
=                                   (11) 

An astrophysical test can be performed on a typical distance of 15 kpc relative to the jets in 3C 31, see Figure 
2 in [12]. On inserting 15,000 pc 15 kpcx = = , 0 100 pcx = , and 1

0 10,000 km sv −= ⋅  we obtain a transit time 
of 72.488 10 yrtrt = × . 

The rate of mass flow at the point x, ( )m x , is  

( ) ( )
2

π tan
2

m x v x x αρ   =   
  

                                 (12) 

and the astrophysical version is  

( ) ( )( )24 3 2 3
0 00.0237 tan 2

M
m x nx x

yr
α β= 

                           (13) 

where x and 0x  are expressed in pc, n is the number density of protons expressed in particles cm−3, M


 is the  

solar mass and 0
0

v
c

β = . The previous formula indicates that the rate of transfer of particles is not constant  

along the jet but increases 4 3x∝ . 

2.2. An Hyperbolic Profile of the Density 
Now the density is assumed to decrease as  

0
0

x
x

ρ ρ  =  
 

                                      (14) 

where 0 0ρ =  is the density at 0x x= . The differential equation that models the energy flux is  

( ) ( )
3

3 2
0 0 0

d 0
d

x x t x t v x
t

  − = 
 

                               (15) 

and its analytical solution is  

( ) ( )34 4
0 0 0

1 3 4 3 .
3

x t x tv x= +                               (16) 

The asymptotic approximation is  
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( ) 3 3 44 4
0 0

2~ 3 2 .
3

x t v x t                                    (17) 

The analytical solution for the velocity is  

( ) ( )
( )( )

24
0 0 0 0

3 43
0 0 0

3 4 3

4 3

x tv x v
v t

x tv x

+
=

+
                                  (18) 

and its asymptotic approximation is  

( )
( )

3 144 4
0 0

3 43
0 0

3 641~ .
4

x v tv t
v x

−

                                   (19) 

The transit time can be derived from Equation (16)  
2 23

max 0 max 0

0 0

3 3
4tr

x x x x
t

x v
−

=                                    (20) 

and with 15,000 pc 15 kpcx = = , 0 100 pcx = , and 1
0 10,000 km sv −= ⋅  as in Section 2.1, we have 

65.848 10 yrtrt = × . 

2.3. An Inverse Power Law Profile of the Density 
Here, the density is assumed to decrease as  

0
0

x
x

δ

ρ ρ  =  
 

                                       (21) 

where 0ρ  is the density at 0x x= . The differential equation which models the energy flux is  

( )
2

2 2 20
0 0

1 d 1 0.
2 d 2

x x t x v x
x t

δ
    − =     

                              (22) 

There is no analytical solution, and we simply express the velocity as a function of the position, x,  

( ) 0 0

0

1x vv x
x x

x

δ
=

 
 
 

                                   (23) 

see Figure 1  
 

 
Figure 1. Classical velocity as a function of the distance from the nucleus 
when 0 100 pcx =  and 1

0 10,000 km sv −= ⋅ : 0δ =  (full line), 1δ =  
(dashes), 1.2δ =  (dot-dash-dot-dash) and 1.6δ =  (dotted).                    
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The rate of mass flow at the point x is  

( ) ( )( )20
0 0 0π tan 2xm x x x v

x

δ

ρ α =  
 

                            (24) 

and the astrophysical version is  

( ) ( )( )20
0 0 00.0237 1.0 tan 2

Mxm x n x x
x yr

δ

α β =  
 



                      (25) 

where 0n  is the number density of protons expressed in particles cm−3 at 0x . The previous formula indicates  

that the rate of transfer of particles scales 
11
2x
δ−

∝  and therefore at 2δ =  is constant. 

3. Relativistic Turbulent Jets 
The conservation of the energy flux in special relativity (SR) in the presence of a velocity v along one direction 
states that  

( ) ( )0 02

2

1

1
A x e p v cost

v
c

+ =
−

                              (26) 

where ( )A x  is the considered area in the direction perpendicular to the motion, c is the speed of light, 
2

0e c ρ=  is the energy density in the rest frame of the moving fluid, and 0p  is the pressure in the rest frame of 
the moving fluid, see formula A31 in [10]. In accordance with the current models of classical turbulent jets, we 
insert 0 0p =  and the conservation law for relativistic energy flux is  

( )2
2

2

1 .
1

c v A x cost
v
c

ρ =
−

                                (27) 

Our physical units are pc for length and yr for time, and in these units, the speed of light is 10.306 pc yrc −= ⋅ . 
A discussion of the mass-energy equivalence principle in fluids can be found in [13]. 

3.1. Constant Density in SR 

The conservation of the relativistic energy flux when the density is constant can be written as a differential 
equation  

( ) ( )( )
( )

12

2
22

2

12 2
2 2 0

0 0 2

d
d dπ tan 1
d 2

π tan 1 0.
2

x t
tc x t x t

t c

v
c v x

c

αρ

αρ

−

−

           −             
 

   − − =   
    

                   (28) 

An analytical solution of the previous differential equation at the moment of writing does not exist but we can 
provide a power series solution of the form  

( ) 2 3
0 1 2 3x t a a t a t a t= + + + +                             (29) 

see [14] [15]. The coefficients na  up to order 4 are  
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( )
( ) ( )
( )
( ) ( )

0 0

1 0

3 6 4 2 2 4 6
0 0 0 0

2 2 2 2 4 2 2 4
0 0 0 0

3 6 4 2 2 4 6
0 0 0 0

3 2 2 2 4 2 2 4
0 0 0 0

5 11 3 31
3 2

5 11 3 31 .
3 2

a x
a v

v c c v c v v
a

x c v c c v v

v c c v c v v
a

x c v c c v v

=

=

− + +
=

+ + +

− + +
=

+ + +

                          (30) 

In order to find a numerical solution of the above differential equation we isolate the velocity from Equation 
(28)  

( )
( )2 2 2 4 4 4 2 2 4 4

0 0 0 0 0

0 0 2
0 0

2 41; , ,
2

x x x x x x c
v x x c

x

β β β β
β

β

− + − + +
=                 (31) 

where 0
0

v
c

β =  and separate the variables  

( )0

2
0 0

02 2 2 4 4 4 2 2 4 4
0 0 0 0 0

2 d d .
2 4

x t

x

x x t
x x x x x x c

β

β β β β
=

− + − + +
∫ ∫                     (32) 

The indefinite integral on the left side of the previous equation has an analytical expression  

( )0 0; , , ANI x c x
AD

β =                                    (33) 

where  

( )22 22 2
03 6 0 0

0 0 2 2 2 2 2
0 0 0 0 0 0 0 0

3 2 3 4 4 4 2 2 4 40
0 0 0 0 0 02 2

0 0 0

2 3 4 4 4 2 2 4 40
0 0 0 0 0 02 2

0 0 0

5 2 5 30
0 0 0 02 2

0 0 0

1
2 2 4 2 2 4 2 2 1 2 2 ,

2 4

2 4

2

ii x i xix ixAN x F x i
x x x x x

i ix x x x x x
x x

i ix x x x x x
x x

i ix x x
x x

ββ β
β

β β β

β
β β β β

β

β
β β β β

β

β
β β

β

 − = − + + − ×   
 

− − − + +

+ − − + +

+ − − 2 5 0
2 2
0 0 0

3 6 2 50 0
0 0 0 02 2 2 2

0 0 0 0 0 0

4

i ix
x x

i ii ix x x x
x x x x

β
β

β β
β β

β β

−

+ − + −

         (34) 

and  

2 4 4 4 4 2 2 4 40
0 0 0 0 0 02 2

0 0 0

6 2 4i iAD c x x x x x
x x
ββ β β β

β
= − − + +                    (35) 

where 1i = −  and  

( )
0 2 2 2

1; d
1 1

x
F x m t

t m t
=

− −
∫                            (36) 

is the elliptic integral of the first kind, see formula 17.2.7 in [16]. Figure 2 shows the behaviour of β  as  
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Figure 2. Relativistic β  as a function of the distance from the nucleus when 

0 200 pcx =  and 0 0.9β =  in the case of constant density.                    
 
function of the distance.  

A numerical solution can be found by solving the following non-linear equation  

( ) ( )0 0 0 0 0; , , ; , ,I x c x I x c x tβ β− =                            (37) 

and Figure 3 presents a typical comparison with the series solution.  
The relativistic rate of mass flow in the case of constant density is  

( )
( ) ( )( )

( ) ( )

22 2 2 4 4 4 2 2 4 4
0 0 0 0 0

2 2 2 2 4 4 4 2 2 4 4
0 0 0 0 0 0

2 4 π tan 2
  

2 1 2 4

x x x x x x c x
m x

x x x x x x

ρ β β β β α

β β β β β

− + − + +
=

− − + − + +
              (38) 

3.2. Inverse Power Law Profile of Density in SR  
The conservation of the relativistic energy flux in the presence of an inverse power law density profile as given 
by Equation (21) is  

( ) ( )( ) ( )

( )
12

2
22 0

0 2

12 2
2 2 0

0 0 0 2

d
d dπ tan 1
d 2

π tan 1 0.
2

x t
x tc x t x t

t x t c

vc v x
c

δ
αρ

αρ

−

−

  
          − +                 
 

   − − + =   
    

                 (39) 

This differential equation does not have an analytical solution. An expression for β  as a function of the 
distance is  

( ) 2 2 20 0
02

0 0

1 1
2

x xx x x D
x xx

δ δ

β β
β

    = − +         
                         (40) 

with  
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Figure 3. Non-linear relativistic solution as given by Equation (37) (full line) 
and series solution as given by Equation (29) (dashed line) when 0 100 pcx =  
and 0 0.999β = .                                                        

2 2 2

4 4 2 4 4 2 40 0 0
0 0 0 02 4 .x x xD x x x x

x x x

δ δ δ

β β β
          = − + +                         

                  (41) 

The behaviour of β  as a function of the distance for different values of δ  can be seen in Figure 4. A 
power series solution for the above differential equation (39) up to order three gives  

( )
( )

0 0

1 0

2 2 2 2 2
0 0 0

2 2 2
0 0

2 21 .
2

a x
a v

v c v c v
a

x c v

δ δ

=

=

− − +
=

+

                          (42) 

Figure 5 shows a comparison between the numerical solution of (39) with the series solution.  
Non-linear relativistic solution as given by Equation (39) (full line) and series solution as given by Equation 

(42) (dashed line) when 0 100 pcx =  and 0 0.999β = .  
The relativistic rate of mass flow in the case of an inverse power law for the density is  

( )
( )( )22 2 2 20 0 0

0 0

2

2 2 2 20 0
0 0 02 4

0 0

π tan 2

12 1 4 1

x x xx x D c x
x x x

m x
x xx x x D
x xx

δ δ δ

δ δ

ρ β α

β β
β

      − +             =
    − − + +         

              (43) 

where 0ρ  is the density at 0x  and D was defined in Equation (41). 

4. The Losses 
The previous analysis does not cover the radiative losses. The astrophysical version of the relativistic energy 
flux as represented by Equation (27) is  

2
49 0 100

2
0

d erg1.348 10
d s1

n RE
t

β
β

= ×
−

                             (44) 
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Figure 4. Relativistic β  for the relativistic energy flux conservation as a 
function of the distance from the nucleus when 0 100 pcx =  and 0 0.9β = : 

0δ =  (full line), 1δ =  (dashes), 1.2δ =  (dot-dash-dot-dash) and 1.4δ =  
(dotted).                                                              

 

 
Figure 5. Non-linear relativistic solution as given by Equation (39) (full line) 
and series solution as given by Equation (42) (dashed line) when 0 100 pcx =  
and 0 0.999β = .                                                              

 
where 100R  is the radius of the jet expressed in units of 100 pc, and n is the number density of protons 
expressed in particles cm−3. The above luminosity is 4 - 5 orders of magnitude too high for the radio sources 
here considered. In order to explain this discrepancy, one model assumes that extragalactic jets are much lighter 
than the surroundings. The second model assumes that the observed intensity of radiation, Iν , at a given 
frequency ν  is a fraction of the energy flux  

d erg
d s
EI
tν ε=                                     (45) 

where ε  represents the efficiency of conversion of the relativistic energy flux into radiation. At the moment of 
writing there is no exact evaluation of the efficiency of conversion. We now outline two different models for the 
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radiative losses and a model for the magnetic field. 

4.1. Losses through Recursion 
In the classical case, with constant density, we can model the radiative losses through the following recursive 
equation obtained by modifying Equation (5)  

2 2 2
3 3 3

1 1
1 1 1π tan π tan π tan
2 2 2 2 2 2n n n n n nv x v x v xα α αρ ε ρ ρ+ +

          + =          
          

             (46) 

where  

1 .n n nx x v t+ = + ∆                                     (47) 

Here n starts from 0, nv  is the velocity at the nth step, nx  is the position at the nth step, ε  is the 
efficiency of conversion into radiation, α  is the jet’s opening angle, and t∆  is the temporal step. The 
velocity at step 1n +  is  

( )

2 3 3

1 2 3
1 .n n

n
n n

x vv
v t x

ε
+

−
=

∆ +
                                  (48) 

Figure 6 shows the velocity as a function of the distance; 410ε −≈  does not modify in an appreciable way 
the velocity. 

In the relativistic case, with constant density, the radiative losses are modeled by a modification of Eq. (28) 
and the following recursive equation for the velocity at step 1n +  is obtained  

1
n

n
n

Nv
D+ =                                       (49) 

where  

( ) ( )

( )

4 2 2 2 2 2 2 4 4 2 3

4 2 2 2 2 4

4 44 22 2 4 2 4

4 2 2 2

2 4
4

2

2 2 2 2

2 2

4 8 2

4

2 2 .

n n n n n n n

n n n n

n n n n n nn n n n
n

n n
n n

n n n n n

N c t v c t v c tv x c tv x

c x c v x c S

v v t x v v t xv x v xS
c c c c

v x v t x
c

D c v x c v x

ε ε

ε

= ∆ − ∆ + ∆ − ∆

+ − −

∆ + ∆ +
= + − −

+ + ∆ +

= −

 

Figure 7 shows the relativistic velocity as a function of the distance and ε .  

4.2. The Parametrization of the Losses 
The radiative losses can also be modeled by an “ad hoc” law for the available flux of kinetic energy, which is  

assumed to decrease with an inverse power law of the type 0x
x

η
 ∝  
 

. The resulting differential equation in SR  

with constant density is  

( ) ( )( )
( )

12

2
22

2

12 2
2 2 0 0

0 0 2

d
d dπ tan 1
d 2

π tan 1 0.
2

x t
tc x t x t

t c

v xc v x
xc

η

αρ

αρ

−

−

  
         −            
 

     − − =           

                    (50) 
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Figure 6. Classical velocity as a function of the distance from the nucleus when 

0 100 pcx = , 42.5 10 yrt∆ = ×  and 1
0 10,000 km sv −= ⋅ : 0ε =  (full line), 

0.002ε =  (dashes), 0.004ε =  (dot-dash-dot-dash) and 0.006ε =  (dotted).         
 

 
Figure 7. Relativistic velocity as a function of the distance from the nucleus 
when 0 100 pcx = , 250 yrt∆ = , and 0 0.999β = : 0ε =  (full line), 

0.002ε =  (dashes), 0.004ε =  (dot-dash-dot-dash) and 0.006ε =  (dotted).         
 

Figure 8 shows the numerical trajectory as a function of time for different values of the exponent η : an 
increase in η  means a lower value for the traveled distance.  

4.3. The Magnetic Field 

The magnetic field in CGS has an energy density of 
2

8π
B  where B is the magnetic field. The presence of the  

magnetic field can be modeled by adding a second term for the density of energy in the rest frame of the moving 
fluid, see Equation (39) which models the relativistic flow of energy the in presence of an inverse power law  
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Figure 8. Relativistic distance as a function of time when 0 100 pcx = , and 

0 0.999β = : 0η =  (full line), 0.2η =  (dashes), 0.4η =  (dot-dash-dot- 
dash) and 0.6η =  (dotted).                                             
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     − + − + =     
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            (51) 

We continue assuming a constant of proportionality between the density of energy of the magnetic field and 
the rest mass all along the jet  

( )2
2 0 .

8π
B x xc

x

δ

ρ  ∝ ∝  
 

                                 (52) 

The magnetic field as a function of the distance x is  

2 0
0

xB B
x

δ
 =  
 

                                    (53) 

where 0B  is the magnetic field at 0x x= . We assume an inverse power law spectrum for the ultrarelativistic 
electrons of the type  

( )d dpN E E KE E−=                                   (54) 

where K is a constant and p the exponent of the inverse power law. The intensity of the synchrotron radiation 
has a standard expression, as given by formula (1.175) in [17],  

( ) ( ) ( )
( )1 218

1 223 1 2 1 26.26 100.933 10 erg sec cm Hz rad
p

p
pI p KlHν α

ν

−
+− − − − −

⊥

 ×
≈ × ⋅ ⋅ ⋅ ⋅ 

 
          (55) 

where ν  is the frequency, H⊥  is the magnetic field perpendicular to the electron’s velocity, l is the dimension 
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of the radiating region along the line of sight, and ( )p pα  is a slowly varying function of p which is of the 
order of unity. As an example, 2.5p =  produces an intensity of the type ( ) 0.75I ν ν −∝ . 

We now analyse the intensity along the centerline of the jet, which means constant radiating length. The 
intensity, assuming a constant p, scales as  

( ) ( ) 2 1 2
0

2 1 2
0

p

p

I B x
I x

B

+

+=                                     (56) 

where 0I  is the intensity at 0x x=  and 0B  the magnetic field at 0x x= . We insert Equation (53) in order to 
have an analytical expression for the centerline intensity  

( )
4 1 4

2 1 2 2 0
0 0 0

p

p xI x B I B
x

δ +

− −
  =      

                              (57) 

and Figure 9 shows the theoretical synchrotron intensity as well the observed one in 3C31, see Figure 8 in [12]. 
We test the goodness of fit through two standard statistical tests. The first test is the 2χ , which is computed as  

( )22

1

n

obs theo
j

I Iχ
=

= −∑                                    (58) 

where the index j varies from 1 to the number of available observations, n, obsI  is the observed intensity at 
position j, and theoI  is the observed one. A second test of the model works over different points of the jet and an 
observational percentage of reliability, obs , is introduced  

,

100 1 .
obs theo j

j
obs

theo j
j

I I

I

 −
 = − 
 
 

∑

∑
                                (59) 

Another application is to the spatial evolution of the magnetic field of 3C273 as observed by VLBA in the pc 
region, see [18]. Figure 10 shows the observed behaviour of the magnetic field as well the theoretical evolution 
as represented by Equation (53).  
 

 
Figure 9. Intensity profile along the centerline of 3C31 when 0 3.51 arcsecx = , 

0 4I =  mJy/(beam area), 2.5p = , 4
0 10B −=  gauss, 1.15δ = , 87.56%obs =  

and 2 3.05χ = .                                                       
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Figure 10. Observed magnetic field density of 3C273 as a function of the 
distance, empty stars, and theoretical curve as represented by Equation (53), 
dotted line, when 4

0 2.6 10 pcx −= × , 0 2B =  gauss, 0.6δ = .                      
 

The analytical expression for the magnetic field as a function of the distance allows finding the maximum 
energy which can be reached in the process of acceleration of the cosmic rays in extragalactic radio-sources. The 
Hillas argument, see [19], firstly introduces the relativistic ions’ gyro-radius, Zρ , expressing the energy in 1015 
eV units ( 15E ), the magnetic field in 10−6 gauss ( 6B− )  

15

6

1.08 pcZ
E

B Z
ρ

−

=                                    (60) 

where Z is the atomic number. The relativistic gyro-radius is equalized to the maximum transversal dimension of 
the jet, which is the diameter,  

2 tan .
2Z x αρ  =  

 
                                   (61) 

The resulting expression for the maximum energy is  

5 2 0
15 09.25 10 tan

2
xE x B Z
x

δα   = ×       
                          (62) 

where 0B  is expressed in gauss and x and 0x  in pc. Figure 11 reports the Hillas plot for 3C31 from which it 
is possible to say that 6

15 10E =  or 2110E =  eV can be reached at the end of the jet when the magnetic field at 
0 100 pcx =  is 0 0.025B =  gauss.  

5. Conclusions 
Classical turbulence: We modeled the physics of turbulent jets by the conservation of the energy flux. In the 
case of constant density, we derived solutions for the distance and velocity as functions of time, see Equation (6) 
and Equation (8). In the presence of an hyperbolic profile of density, the solutions for the distance and velocity 
as functions of time are Equation (16) and Equation (18). The case of a density which follows an inverse power 
law of density is limited to the derivation of the velocity, see Equation (23). The presence of an inverse power 
law introduces flexibility in the results and as an example when 2δ =  the rate of mass flow does not increase 
with x but is constant, see Equation (24). 

Relativistic turbulence: The conservation of the relativistic energy flux for turbulent jets is here analysed in  
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Figure 11. Maximum achievable energy, 15E , as a function of the distance 
when 0 100 pcx = , 0 0.9β = , 0 0.025B =  gauss, 0.1α =  and 1Z = .                      

 
two cases. In the first case we have a surrounding medium with constant density and the analytical result is 
limited to a series expansion for the solution, see Equation (29). In the second case the surrounding density 
decreases with a power law behaviour and the analytical result is limited to the velocity-distance relation, see 
Equation (40) and to a series expansion for the solution, see Equation (42). 

The losses: The choice of the flux of energy as a quantity to be conserved allows a parametrization of the 
losses. In the first model we considered the decrease of the available classical and relativistic flux of energy 
through a recursive relation, see Equation (46) and Equation (49). Figure 6 and Figure 7 show the velocity as a 
function of the regulating parameter ε . Values of 0.001ε <  do not affect the jet’s trajectory at the astrophy- 
sical distance of 15 kpc. In the second model, we fixed a law for the decrease of the available flux of relativistic 
energy as a function of the distance, see Equation (50) and we derived a law for the decrease of the velocity as a 
function of the regulating parameter η , see Figure 8. 

Astrophysical applications: We modeled the behaviour of the magnetic field assuming the conservation of 
the magnetic flux of energy in the case of constant density, see Equation (51). The availability of an analytical 
expression for the magnetic field, see the theoretical Equation (53), allows finding a law for the behaviour of the 
intensity of the synchrotron emission, see Equation (57). The application to the measured intensity of 3C31 
yields an efficiency over all the jet’s length of 87.56%, see Figure 9. A test on the magnetic field of 3C273 in 
the pc region can be seen in Figure 10. The presence of a law for the magnetic field allows fixing the Hillas plot 
for the maximum energy which can reached during the process of acceleration of the cosmic rays, which in the 
case of 3C31 is ≈1021 eV, see the caption of Figure 11. 
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