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ABSTRACT 
A series of Er3+/Yb3+ co-doped Sb2O3-WO3-Li2O glasses were prepared. Intense green upconversion fluorescence was 
observed near 524 and 544 nm under excitation at 980 nm. The upconversion process was proved to be a two-photon 
absorption process. The upconversion fluorescence efficiency was enhanced by increasing introduction concentration 
of Yb3+ ions. The low maximum phonon energy of the glasses indicated that the glasses were good potential for upcon-
version optical devices. 
 
Keywords: Upconversion Fluorescence, Glasses, Laser 

1. Introduction 
Recently, with the increasing requirement for laser diode 
(LD), magneto-optical disk and optical media, more and 
more attention has been focused on searching for lumi-
nescence materials with high upconversion efficiency 
[1-3]. The upconversion is greatly affected by sensitizing 
combination, pumping laser wavelength and conversion 
passage, which makes the host materials for rare earth 
(RE) ions and the dopant ions as the absorption and 
emission centers very important [4,5]. Glasses have been 
selected as the potential host materials because of its low 
phonon energy which can reduce the multiphonon relax-
ation (MPR) and thus achieves strong upconversion lu-
minescence. Though fluoride glasses have been studied 
because of their low phonon energies, oxide glasses are 
more appropriate for practical applications due to their 
high chemical durability and thermal stability. Although 
silicate glasses are stable, upconversion fluorescence is 
difficult to observe in silicate glasses because of its high 
maximum phonon energy [6]. Nowadays, tellurite and 
antimonate glasses are of growing interest due to their 
relative low phonon energy, high refractive index, good 
corrosion resistance, thermal and chemical stability. The 
antimonate glasses are more stable against the pumping 
light, possess high refractive index and are transparent up 
to the far infrared wavelengths which makes them suita-
ble for hosting the rare earth ions to give out high lumi-

nescence efficiency in the visible and NIR regions 
[7-10]. 

Triply ionized Er3+, Ho3+, Tm3+, Nd3+ ions of the lan-
thanide series have been widely studied for upconversion 
processes in various glass hosts. Erbium ion (Er3+) has 
been recognized as one of the most efficient ions for ob-
taining frequency upconversion [11,12]. In order to im-
prove the pumping efficiency of 980 nm LD, the sensiti-
zation of Er3+ doped materials with Yb3+ ions is a popular 
way to increase the optical pumping efficiency because 
Yb3+ ions exhibits an intense broad absorption cross sec-
tion between 870 and 1050 nm [13], while Er3+ has low 
absorption at 980 nm.  

In this paper, we report our progress on the fabrication 
and upconversion luminescence characterization of a 
novel Er3+/Yb3+ co-doped Sb2O3-WO3-Li2O (SWL) 
glasses. The phonon energy of this glass has been pre-
dicted from the FT-IR spectra. The purpose of this paper 
is to develop a new antimony glass with low phonon 
energy, and understanding of the upconversion behavior 
in this glassy host for predicting its potential laser prop-
erties. 

2. Experimental  

Antimonate glasses were prepared by melting the reagent 
grade Sb2O3, Li2CO3, WO3, Er2O3 and Yb2O3 as the 
starting materials. The starting materials were sufficient-
ly mixed and grinded, then were melted at 1000˚C - 
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1100˚C for 10 min, followed by an annealing at 270˚C 
for 3 h in a muffle furnace to eliminate the internal stress, 
then slowly cooled down to the room temperature. 
Compositions chosen in the present study are shown in 
Table 1. Finally, glass samples were cut, ground and 
polished for the following measurement.  

Thermal stability analyses of the glasses were deter-
mined by using a CRY-2CRY-1WRT-1 thermal analysis 
(DTA) at a heating rate of 10˚C /min from room temper-
ature to 800˚C. IR transmission spectra were recorded 
between 400 and 4000 cm-1 (Nicolet 6700). UV trans-
mission spectra were recorded between 300 and 1000 nm 
(Shanghai Lengguang S54). For Er3+/Yb3+ co-doped an-
timonate bulk glasses, the upconversion luminescence 
spectra were obtained with a spectrofluorimeter (Jobin 
Yvon Fluorolog3-p, France) upon excitation of 980 nm 
LD with a maximum power of 1 W. The glass was posi-
tioned so that the pump beam was allowed to be incident 
at the edge of the glass sample, and the optical path of 
emitted light through the sample to the detector was ap-
proximately 1 mm. 

3. Results and Discussion 
3.1. DTA and XRD Spectra 
The DTA spectra of 0.25Er3+/0.75Yb3+ co-doped 
Sb2O3-WO3-Li2O glasses (mol%) (No. 7) was shown in 
Figure 1. From the figure, it can be seen that the transi-
tion temperature and melting temperature of this glass is 
272˚C and 584˚C respectively. The 550˚C point is the 
beginning of melting temperature point. There is an ob-
vious crystallization peak at 385˚C (Tx). The difference 
between the glass transition temperature (Tg) and the 
onset crystallization temperature (Tx), ΔT = Tx – Tg has 
been frequently quoted as a rough indicator of glass sta-
bility against crystallization [14-16]. It is desirable for a 
glass host to have a ΔT as large as possible. ΔT here is 
113˚C (ΔT = Tx – Tg = 385 – 272 = 113˚C), indicating 
that the SWL glasses have fairly good thermal stability 
and are capable for further performing fabrication and 
crystal- ree fiber drawing. 
 
Table 1. The composition of Er3+ doped Sb2O3-Li2O-WO3 
glasses and Er3+/Yb3+ codoped Sb2O3-Li2O-WO3 glasses 
(mol%). 

No. Sb2O3 WO3 LiO Er2O3 Yb2O3 
1 80 10 10 0.25 - 
2 80 10 10 0.50 - 
3 80 10 10 0.75 - 
4 80 10 10 1.00 - 
5 80 10 10 0.25 0.25 
6 80 10 10 0.25 0.50 
7 80 10 10 0.25 0.75 
8 80 10 10 0.25 1.00 

 
Figure 1. The DTA spectra of 0.25Er3+/0.75Yb3+ codoped 
Sb2O3-Li2O-WO3 glasses (mol%). 
 
3.2. Absorption Spectra 
Figure 2 showed IR spectra of 0.25Er3+/0.25Yb3+ and 
0.25Er3+/0.75Yb3+ co-doped SWL glasses. The absorp-
tion band near 947 and 697 cm-1 is attributed to the vi-
bration of W-O and W-O-W respectively. The absorption 
band near 600 cm-1 is attributed to symmetric bending 
vibrations of Sb–O–Sb and the absorption band near 480 
cm-1 is attributed to doubly degenerate bending vibra-
tions of [SbO3] structural units. In the glasses, Sb3+ ions 
form a threefold coordination environment with oxygen 
and Sb3+ behaves as a classic network-forming cation in 
oxide glasses, creating a continuous random network of 
Sb–O–Sb. The position of the highest phonon band is 
important because the multi-phonon decay of rare-earth 
ions in a glass depends on the maximum phonon energy 
of the host glass [17,18]. In this kind of antimonate 
glasses, the highest band (600 cm-1) could be attributed to 
the vibration of W-O. The maximum phonon energy of 
the glass is low [10,19]. Therefore, it can be expected 
that Sb2O3-WO3-Li2O glasses are good candidates for 
fabrication of upconversion optical devices. 

The absorption spectra of the Er3+/Yb3+ co-doped an-
timonate bulk glass in the visible region was shown in 
Figure 3. Four absorption bands are shown by the ex-
cited levels, which are attributed to the transitions from 
the ground state (4I15/2) to the excited state of Er3+ ions: 
4F7/2, 2H11/2, 4F9/2 and 4I11/2 respectively [20]. The absorp-
tion at the wavelength region at 980 nm is due to the 
large contribution of the absorption of Yb3+, which arises 
from the 2F7/2→

2F5/2 transition. Upon the introduction of 
Yb3+ ions to Er3+ doped antimonate glasses, the absorp-
tion efficiency at about 980 nm bands is enhanced by 
energy transfer process Er3+: 4I15/2 + Yb3+: 2F5/2 → Er3+:  
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Figure 2. IR spectra of the 0.25Er3+/Yb3+ codoped Sb2O3- 
Li2O-WO3 glasses (mol%). 

 

 
Figure 3. The adsorption spectra of Er3+/Yb3+ codoped 
Sb2O3-Li2O-WO3 glasses. 

 
4I11/2 +Yb3+: 2F7/2. The results at this condition will make 
more Er3+ ions involving the pumped process [21,22].  

3.3. Upconversion Fluorescence Spectra 
Figure 4 illustrated the upconversion emission spectra of 
the 0.25 mol% Er3+, 0.5 mol% Er3+, 0.75 mol% Er3+ and 
1.00 mol% Er3+ single doped SWL glasses in the wave-
length range of 500 - 700 nm with 980 nm LD under the 
same powder 1062.6 mW excitation. The observed up-
conversion luminescence in the green spectral bands has 
three humped peaks at 524, 544 and 656 nm wavelength 
are attributed to the Er3+: 2H11/2 → 4I15/2, 4S3

/2 → 4I15/2 and 
4F9/2 → 4I15/2 transitions respectively. The intensity gain 
increases with the increasing of Er3+ concentration from 
0.25mol% to 0.75mol%, while decrease significantly 
when the Er3+ concentration reaches 1.00 mol% due to 
upconversion fluorescence quenching of Er3+ ions.  

The upconversion emission spectra of 0.75 mol% Er3+ 

 
Figure 4. The upconversion emission spectra of the (a) 0.25 
mol% Er3+, (b) 0.5 mol% Er3+, (c) 0.75 mol% Er3+ and (d) 
1.00 mol% Er3+ doped Sb2O3-Li2O-WO3 glasses in the wa-
velength range of 500 - 700 nm with 980 nm LD under the 
same powder 1062.6 mW (CI: 20 mA). 
 
doped SWL glasses in the wavelength range of 500 - 700 
nm with 980 nm LD under different powder are shown in 
Figure 5. The LD current intensity (CI) is varied from 10 
mA to 20 mA every 2 mA, the corresponding power is 
372.6 mW, 510.6 mW, 648.6 mW, 786.6 mW, 924.6 
mW and 1062.6 mW.  

Figure 6 shows the log-log dependences of the inte-
grated green (524 and 544 nm) intensities on the excita-
tion power at 980 nm. In frequency upconversion 
process, the upconversion emission intensity Iup in-
creases in proportion to the input power of infrared (IR) 
excitation intensity IIR, that is, Iup ∝ IIR n, where n is 
the number of IR photons absorbed per visible photon 
emitted. A plot of log Iup vs. log IIR yields a straight line 
with slope n. The quadratic dependence indicates that 
two photons are involved for the upconversion process.  

The upconversion emission spectra of Sb2O3-WO3- 
Li2O bulk glasses and the 0.25 mol% Er3+/0.25 mol% 
Yb3+, 0.25 mol% Er3+/0.5 mol% Yb3+, 0.25 mol% Er3+ 
/0.75 mol% Yb3+ and 0.25 mol% Er3+/1.00 mol% Yb3 + 
co-doped Sb2O3-Li2O-WO3 glasses in the wavelength 
range of 500 - 700 nm with 980 nm LD under the same 
powder 1062.6 mW were shown in Figure 7. Figure 8 
showed the log dependences of the integrated green (524 
and 544 nm) intensities on the amount of Yb3+ ions. 
From the Figure 8, it can be seen that the addition of 
small amount of Yb3+ ions to the glass containing Er3+ 
enhances the emission intensity of Er3+ ions 3 - 5 times 
for 524 and 544 nm bands respectively and subsequently 
the fluorescence intensity of Er3+ ions. 

3.4. Upconversion Mechanisms Analysis 
Based on the Figures 4-8 and according to the precious 
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Figure 5. The upconversion emission spectra of 0.75 mol% 
Er3+ doped Sb2O3-Li2O-WO3 glasses in the wavelength 
range of 500 - 700 nm with 980 nm LD. 

 

 
Figure 6. The log–log dependences of the integrated green 
(524 and 544 nm) intensities on the excitation power at 980 
nm. 
 
reports, the mechanisms of energy transfer from Yb3+ to 
Er3+ can be described as Figure 9. For the green emis-
sion, in the first step, the 4I15/2 level is directly excited 
with 980 nm light as follows: 

( ) ( )4 3 4 3
15/2 11/2F Er . H Era hpoton+ ++ →     (1) 

( ) ( )2 3 2 3
7/2 5/2F Yb . F Yba hpoton+ ++ →     (2) 

An incident 980 nm photon is strongly absorbed by Yb3+ 
ions and excites them to 2F5/2 level along with the direct 
absorption of Er3+ ions. The excited Yb3+ ions transfer 
their excitation energy to unexcited Er3+ ions, promoting 
them to 4I11/2 level thus enhancing the poplation of 4I11/2 
level further [23,24]. Thus, the second step involves as 
follows: 

( ) ( )4 3 4 3
11/2 7/2I Er . F Era hpoton+ ++ →      (3) 

 
Figure 7. The upconversion emission spectra of (a) 0.25 
mol% Er3+ and (b) 0.25 mol% Er3+/0.25 mol% Yb3+, (c) 0.25 
mol% Er3+/0.5 mol% Yb3+, (d) 0.25 mol% Er3+/0.75 mol% 
Yb3+ and (e) 0.25 mol% Er3+/1.00 mol% Yb3+ codoped Sb2O3- 
Li2O-WO3 glasses in the wavelength range of 500 - 700 nm 
with 980 nm LD under the same powder 1062.6 mW (CI: 20 
mA). 

 

 
Figure 8. The dependences of the integrated green (524 and 
544 nm) intensities on the amount of Yb3+ ions. 

 

 
Figure 9. Energy level diagram of Er3+/Yb3+ and upconver-
sion mechanisms of Sb2O3-Li2O-WO3 glasses under 980 nm 
excitation power. 
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( ) ( ) ( ) ( )2 3 4 3 2 3 4 3
5/2 11/2 7/2 7/2F Yb I Er F Yb F Er+ + + ++ → +  

(4) 
The populated 4F7/2 level of Er3+ then relaxes rapidly 

and non-radiatively to the next lower levels, 2H11/2 and 
4S3/2. The above processes then produce the two transi-
tions 2H11/2-4I15/2 and 4S3/2-4I15/2, which are centered at 
524 and 544 nm respectively. The trace presence of Yb3+ 
ions provides an additional channel to populate Er3+ ion 
levels, make more Er3+ ions involving the pumped 
process and thus enhance the green fluoroscence intensi-
ty. 

For the red emission, it can be seen from Figures 4, 5 
and 7, the upconversion luminescence in the red spectral 
bands at 650 - 670 nm wavelength is very weak, which 
means few Er3+ ions is involving the following processes: 

( ) ( )4 3 4 3
11/2 7/2I Er . F Era hpoton+ ++ →       (5) 

( ) ( )4 3 4 3
11/2 13/2I Er I Er .a hpoton+ +→ +       (6) 

( ) ( )4 3 4 3
13/2 9/2I Er . F Era hpoton+ ++ →        (7) 

4. Conclusions 
A series of Er3+/Yb3+ co-doped Sb2O3-WO3-Li2O glasses were 
prepared. Intense green upconversion fluorescence was 
observed near 524 and 544 nm in the Er3+/Yb3+ co-doped 
Sb2O3-WO3-Li2O glasses under 980 nm excitation. The 
upconversion processes were proved to involve the se-
quential two-photon absorption process for the green 
emissions. The maximum phonon energy of the glass is 
about 348 cm-1, which is much lower than silicate 
glasses. Upon the introduction of Yb3+ ions to Er3+ doped 
antimonate glasses, the upconversion fluorescence effi-
ciency is enhanced by increasing of Yb3+ concentration. 
The upconversion excitation increased with the increas-
ing of LD powder. The data presented in this work might 
provide useful information for further development of 
Er3+-doped materials for upconversion optical devices. 
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