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Abstract 
 
Decimal arithmetic is desirable for high precision requirements of many financial, industrial and scientific 
applications. Furthermore, hardware support for decimal arithmetic has gained momentum with IEEE 754- 
2008, which standardized decimal floating-point. This paper presents a new architecture for two operand and 
multi-operand signed-digit decimal addition. Signed-digit architectures are advantageous because there are 
no carry-propagate chains. The proposed signed-digit adder reduces the critical path delay by parallelizing 
the correction stage inherent to decimal addition. For performance evaluation, we synthesize and compare 
multiple unsigned and signed-digit multi-operand decimal adder architectures on 0.18 μm CMOS VLSI 
technology. Synthesis results for 2, 4, 8, and 16 operands with 8 decimal digits provide critical data in de-
termining each adder’s performance and scalability. 
 
Keywords: Computer Arithmetic, Decimal Arithmetic, Signed-Digit, Multi-operand Adder, BCD 

1. Introduction 
 
Translating a decimal fraction into a finite floating-point 
representation is prone to losing precision as a result of 
rounding errors. In almost all financial settings, decimal 
arithmetic is desired to guarantee balances are calculated 
correctly and lawfully. Some industrial and scientific 
applications require high-precision decimal arithmetic as 
well. Software packages have been available for most 
programming languages so that decimal numbers could 
be evaluated with decimal arithmetic to avoid error [1,2]. 
IBM recently departed from this software solution by 
incorporating a decimal floating-point arithmetic unit in 
the Power6 [3] and z10 processors [4]. A compelling 
reason to do such is a report [5] showing that 55% of the 
numbers stored in the databases of 51 major organiza-
tions are decimal. One study shows that for a set of five 
benchmarks, a 1.3 to 12.8 speedup factor was obtained 
by simulating a processor using virtual decimal arithme-
tic hardware against software routines [6]. Applications 
that spend a large proportion of the time consuming 
decimal calculation stand to benefit from hardware-based 
decimal operations. Therefore, research into decimal 
arithmetic has gained momentum. Decimal renditions of 
binary carry-save [7,8] and carry-lookahead adders [9-11] 
have been proposed. Decimal floating-point addition is 
treated in [12-14]. New decimal multipliers [15-18] and 
dividers [19-21] have also been proposed. In [17], new 

decimal encodings improve the latency and area for de-
cimal partial product generation and reduction for multi-
plication. Similarly, in [22], a new redundant digit set is 
used with special encodings called two-valued digits 
(twits), resulting in a faster implementation of both addi-
tion and subtraction. 

The main motivation behind this paper is to introduce 
a new signed-digit architecture and objectively compare 
it with signed and unsigned digit adders. Signed-digit 
decimal adders have the benefit of carry-free addition 
although a carry-propagate adder must be used to trans-
form the signed-digit sum into an unsigned sum. In the 
next two sections, we will present the theory of decimal 
encodings and signed-digit decimal numbers. In the sub-
sequent sections, brief descriptions of other adders are 
given: the nonspeculative multi-operand adder [7], mixed 
binary and BCD adder [23], reduced delay BCD adder 
[10], dynamic decimal CLA [11], Svoboda adder [24], 
speculative signed-digit adder [25], decimal carry-free 
adder [26] and Redundant Binary Coded Decimal 
(RBCD) adder [27,28]. Then, the proposed method for 
signed-digit addition is discussed. A constant addition 
technique will be applied to both the correction step in 
signed-digit decimal addition and conversion to binary- 
coded decimal (BCD). Multi-operand decimal addition 
based on signed-digit addition will follow. Finally, the 
synthesis results will be discussed. 

The notation used throughout this paper is as follows: 
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Variables are represented with a name and a subscript. 
Take xi for example, x is the label and i indicates the digit 
position. If no subscript is present, x will refer to the 
word-wide variable across all digit positions. Numbers 
enclosed in square brackets index the bit position. For 
example, the second bit of sum at the first digit position 
is sum0 [1]. 
 
2. Decimal Encodings 
 
A discussion of decimal encodings is related to signed 
digit arithmetic because the primary motivation for both 
are similar, i.e. they are concerned with achieving better 
performance by leveraging a more convenient number 
representation for certain tasks. For example, Binary- 
Coded Decimal (BCD) is the representation usually used 
for decimal arithmetic. A BCD digit is the binary repre-
sentation of a decimal number [0,9] with 4 bits. BCD is 
convenient for arithmetic, but is not optimal for storage 
because 4 bits for 10 decimal digits wastes 6 encodings. 
In IEEE 754-2008, storage of decimal floating-point 
numbers is specified to be in Densely Packed Decimal 
(DPD) form. In DPD, 3 decimal digits are encoded with 
10 bits, which is much more efficient for storage. 

For multiplication, several signed and unsigned repre-
sentations have been developed to increase performance. 
In [15], it is shown how a signed-digit representation can 
reduce the number of partial products in a decimal mul-
tiplier. These partial products can be efficiently accumu-
lated with a signed digit adder. In [15], the classic Svo-
boda adder [24] is used for partial product reduction, yet, 
it will be shown that the proposed signed digit represen-
tation can yield better performance. On the other hand, 
unsigned representations in multiplications are also 
gaining track. In [17], traditional BCD or BCD-8421 is 
recoded to BCD-5421, BCD-4221 and BCD-5211 to 
efficiently generate partial products and reduce the par-
tial product reduction tree. One of the advantages of this 
scheme is that multiplying by two from one encoding to 
another may simply require a left shift. Another advan-
tage of the encoding is that it allows the reuse of a binary 
radix-4 multiplier, sharing components to save area. 
These new encodings also have advantages over BCD- 
8421 in division, as demonstrated in [20]. 

Unsigned decimal adders usually work with BCD 
numbers, but that is not required. The partial product 
adder in [29] uses the Overloaded Decimal Representa-
tion (ODR), a redundant unsigned 4-bit encoding to store 
and add intermediate partial products in a carry-save 
format. In ODR, a decimal digit may take on values 0 
through 15. In iterative operations, the decimal correc-
tion vector of +6, which is usually required for unsigned 
decimal addition, is easier to detect and less costly to add. 

The correction is only needed when a digit exceeds 16, 
which is easily detected by inspecting the digit’s carry 
out. When the carry out is detected, adding 6 occurs in 
the next iteration, which shortens the critical path. 

Another adder that leverages encodings other than 
BCD is the mixed binary and BCD multi-operand adder. 
The mixed binary and BCD multi-operand adder [23], 
which will later be described in more detail and imple-
mented, uses both binary and BCD representations and 
operations. Binary addition occurs for a column of BCD 
digits. The binary result is then converted back to BCD 
number. The process will repeat until there are two rows 
of BCD numbers to be inputted into a 2-operand BCD 
adder. 

In signed-digit adders, there appear to be three popular 
representations: the Svoboda code [24], the two’s com-
plement representation (used in the proposed method), 
and the positive/negative component representation. 

The Svoboda code uses 5-bits to represent numbers in 
the set [−6,6]. A positive number xi is represented in 
Svoboda code as 3i iX x 

31 3i

 while a negative number is 
represented as iX x   . For example, positive 
decimal numbers 1 and 6 are represented in Svoboda 
code as 110 = 00011 and 610 = 10010 respectively; nega-
tive decimal numbers −1 and −6 are represented in Svo-
boda code as −110 = 11100 and −610 = 01101 respectively. 
There are two representations for zero (00000 and 
11111). The Svoboda code allows for quick addition, but 
the encoding may be difficult to work with or costly to 
convert to and from. 

The two’s complement representation for signed-digit 
numbers is used in the RBCD adder [27,28] and in this 
work. In RBCD, the digits are 4-bits wide and represent 
numbers between 7 and −7 inclusive. RBCD’s number 
range requires BCD numbers to go through a conversion 
step (since 8 and 9 must be recoded). Our proposed adder 
does not require a conversion step because we use 5-bits 
to represent a signed decimal digit in the range of [−9,9]. 
This convenience is a key feature of our design. 

In [25,26], a signed-digit is represented as the sum of 
one positive 4-bit binary vector x+ and one negative 4-bit 
binary vector x−. This positive/negative component rep-
resentation may store −2 in various ways: as x+ = 0001 
and x− = 0011 or as x+ = 0010 and x− = 0100. With this 
representation, numbers can be easily inverted by swap-
ping x+ and x−. Additionally, no conversion from BCD is 
needed. However, there are 8 bits to a digit. Though this 
fact does not automatically imply more area consumption, 
the results do suggest it. 
 
3. Decimal Signed-Digit Theory 
 
The decimal signed-digit number system used here has 
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

all the properties and limitations set forth in [30]. A de-
cimal signed-digit set D is a special case of general 
signed-digit sets when r = 10 (r is the radix or base). 

 3 1 3 5 2 

 , , 1, 0,D                 (1) 

where α, β and r are related by (2). 

1 r                       (2) 

Usually, symmetric signed-digit sets are used (α = β). 
The signed-digit set is said to be redundant (any number 
has multiple representations) if (3) holds. 

1

2

r 
                       (3) 

The decimal signed-digit set used in this work is [−9,9] 
or −9 to 9 inclusive (r = 10, α = 9). With this decimal 
signed-digit set, to add two decimal signed-digits xi and 
yi, three quantities must be added together: the interme-
diate sum ui (i.e., interim sum), the carry ci (i.e., transfer) 
which can take values in {−1,0,1}, and the correction 

. The intermediate sum ui is xi + yi and ranges 
from −18 to 18 inclusive with the digit set [−9,9]. The 
carry ci is generated using a rule set such that −8 ≤ ui − 

 ≤ 8 holds. Determining ci is done by comparing 
ui to comparison constants. For the decimal signed-digit 
set used, one comparison constant is in [−8,−1], the other 
in [1,8], and are usually chosen to minimize hardware 
complexity [31]. If −1 and 1 were the comparison con-
stants, then ci is −1 when ui is less than −1; ci is 1 when 
ui is greater than 1; ci is zero when ui is −1, 0 or 1. The 
correction is  and adds to the intermediate sum 
ui along with the previous digit’s carry to obtain the sum. 
Note that i  is between −8 and 8 inclusive, so 
an input carry of −1 or 1 will never cause a carry to 
propagate to the next decimal digit. The above is ex-
pressed in (4)-(6). 

10 ic 

10 ic

10 ic 

10iu  c

ii iu x y                      (4) 

110i i i is u c c                  (5) 

1 if 1

1 if 1

0 otherwise

i

i i

u

c u

 
 




               (6) 

An example demonstrates that the signed-digit tech-
nique still produces carries, but never propagates them. 
In other words, a digit’s carry out is not a function of its 
carry in. In this example, the operands are absent of neg-
ative digits only to facilitate demonstration. The com-
parison constants are −1 and 1. For the least significant 
digit column, the intermediate sum is 8 + 8 = 16. Since 
16 > 1, c0 = 1 is added to the next column and –10 is the 
correction for the least significant column. 

8  
+  3 4 7 8  
 3 1 6 9 9 16 u vector 
 −10 0 −10 −10 −10 −10 correction vector 

1 0 1 1 1 1  c vector 
1 −7 2 −3 0 0 6 s vector 

The general algorithm is as follows: 
1) For each digit, add the two operands to get the in-

termediate sum, ui. The range for ui is −18 to 18 inclu-
sive. 

2) If ui > 1, set correctioni = −10 and ci =1. If ui < −1, 
set correctioni = 10 and ci = −1. In the example, the c 
vector is shifted one digit position to the left so that addi-
tion occurs within each column. 

3) Find the sum of the three vectors, u, correction and 
c. This operation, as those before, will not propagate 
carries because the method guarantees: −9 ≤ si ≤ 9. 
 
4. Prior Work in Unsigned-Digit Decimal 

Addition 
 
4.1. Nonspeculative Multi-operand Adder 
 
In [7], a nonspeculative multi-operand adder is presented 
that can sum up to 16 operands. For each digit column, 
M operands are added using a linear array of M-2 binary 
carry-save adders. Carries outside the 4-bit range for 
each digit are transferred to the next column, and saved 
for later use. A 4-bit CPA finds a 5-bit uncorrected in-
termediate sum after the carry-save adders. This uncor-
rected intermediate sum together with the saved carries 
are inputted into combinational logic to find the carry out 
and a 4-bit correction vector. Another 4-bit CPA adds the 
correction vector to the uncorrected intermediate sum to 
yield the corrected intermediate sum. Finally, the carry- 
outs and the corrected intermediate sum must be added 
with a word-wide carry-propagation adder. In this work, 
multioperand adders requiring decimal carry-propagation 
addition use the dynamic decimal CLA [10] because it 
gives the best delay and area usage. 
 
4.2. Mixed Binary and BCD Multi-operand 

Adder 
 
This adder, proposed in [23], presents a scalable scheme 
to realize any N-operand addition. First, for each digit 
column, the N operands are added with N:2 reduction 
and a CPA. Each column sum is then converted into a 
decimal number with a network of binary to decimal 
converter cells. Depending on the number of decimal 
digits this conversion process produces, another stage of 
binary addition and binary to decimal conversion may 
ensue. When the digits of the converted decimal sum is 
two, a fast decimal carry-propagation adder (in this work, 
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the dynamic decimal CLA adder [10]) is used to obtain 
the final decimal sum. 

For 3 to 11 operands, only one stage is needed because 
maximum number of digits for the sum of a digit column 
with 11 operands is . Thus, 2-operand ad-
dition follows to calculate the final sum. For 12 to 111 
operands, two stages are needed because the maximum 
decimal sum for a digit column is 999, which is three 
digits. Adding three digits across each digit column is 
3-operand addition, and necessitates another stage. 

2 : 9 11 99 

 
4.3. The Reduced Delay BCD Adder 
 
In [10], the 2-operand decimal adder is composed of a 
4-bit binary adder, an analyzer circuit, a carry network, 
and another 4-bit binary adder to add the correction vec-
tor. Using the intermediate sum from the first 4-bit bi-
nary adder, the analyzer circuit finds the generate and 
propagate signals for that digit. The signals from all dig-
its are passed to a Kogge-Stone carry network to find the 
carries. Appropriately wiring the generated carries to the 
final 4-bit adder will add the correction vector (0, 6, 1 or 
7), which depends on the carry in and the carry out for 
that digit. 
 
4.4. The Dynamic Decimal Adder Using Carry 

Lookahead 
 
Like the reduced delay BCD adder, the dynamic decimal 
CLA adder [11] is a 2-operand adder that finds digit 
propagate and generate signals to be used in a carry loo-
kahead scheme for fast carry propagation. These signals 
are generated per digit using combinational logic on the 
bit propagate and generate signals of the two input BCD 
digits. The sum bits are calculated as a function of the bit 
generate and propagate signals, the carry in, and the car-
ry out. A speculation technique is used for the upper two 
bits of each digit to speed up the addition time. With 
dynamic logic, this technique can yield impressive speed. 
 
5. Prior Work in Signed-Digit Decimal 

Addition 
 
5.1. Svoboda Adder 
 
The Svoboda adder [24] was an early 2-operand design 
that added digits from −6 to 6 inclusive. The Svoboda 
adder uses the Svoboda code described in Section 2. This 
code helps simplify decimal addition. On the other hand, 
converting BCD operands into the Svoboda code and 
back requires overhead. 

BCD to Svoboda code conversion begins by trans-
forming each input BCD digit to a 5-bit vector corre-

sponding to the Svoboda code of that digit minus 4. Then, 
a Svoboda adder adds 4 to the Svoboda code of all digits. 

To convert back to BCD, a similar, but reversed proc-
ess is used. Constants are iteratively added with a 
Svoboda adder until all the digits are between –4 and 5 
inclusive. The worst case (i.e., the number of times the 
loop is executed) depends on the number of digits. We 
have implemented the Svoboda adder with the suggested 
BCD to Svoboda code conversion scheme but without 
the suggested Svoboda code to BCD conversion scheme. 
Instead, we have replaced it with a faster carry-looka- 
head conversion scheme. First, the Svoboda code is 
transformed into a two’s complement number ranging 
from −6 to 6 inclusive. Second, generate and propagate 
signals are detected and used in a Kogge-Stone prefix 
network to generate carries so that the proper corrections 
can be applied to each digit. Also, the Svoboda adder 
was originally designed with two stages of chained full 
adders with end-around-carries. In the experiment, we 
have replaced the full adder chains with prefix adders in 
order to improve speed performance. 
 
5.2. Speculative SD Adder 
 
This architecture [25] is rather complex as it implements 
a clever speculation technique that facilitates the addition 
of input carries. The input operands are in the positive/ 
negative component representation. For example, −3 
would be represented like this (let the two vectors be 
expressed as (x+, x−): 

 
 2 5 3

0010,0101

  
  

Internally, the speculative SD adder uses compressors 
to add the input operands. These compressors resemble 
carry-save addition, but are modified to handle negative 
bits. The two comparison constants are 1 and −1. A sign 
detection unit is necessary to determine the carry out. 
Once the carry out is found, a correction is added if nec-
essary. 

No input conversion is necessary since BCD is within 
the speculative SD’s digit set. The adder is speculative 
because it prepares two pairs of sums, one which can be 
easily incremented by one and another that can be easily 
decremented by one. The last step of this adder involves 
adding a correction vector according to the digit posi-
tion’s carry out. 

For conversion back to BCD, the negative component 
is subtracted from the positive component to yield a 5-bit, 
two’s-complement number between −9 and 9. This num-
ber is inputted into an analyzer circuit to find generate 
and propagate signals to use in a carry-lookahead scheme. 
Once the carries are known, the right constants can be 
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added to the SD number to get an unsigned BCD result. 
 
5.3. Decimal Carry-Free Adder 
 
The Decimal Carry-Free Adder (DCFA) from [26] uses a 
digit set from −9 to 9. DCFA represents numbers in the 
same way [25] does, with two 4-bit vectors (positive/ 
negative component representation). This design is dif-
ferent than [25] because it speculates the addition of sev-
eral corrections (not just the addition of the transfer in). 
Two sign detection circuits determine the transfer out 
(like in [25]). The positive and negative transfer out and 
the negative transfer in signals select the sum in three 
levels of multiplexors. The positive transfer in signal is 
wired into the first bit of the selected sum to effectively 
add it. 
 
5.4. RBCD Adder 
 
The 2-operand Redundant Binary Coded Decimal adder 
(RBCD) [27,28] adds 4-bit wide signed-digits between 7 
and −7 inclusive represented in two’s complement. The 
reduced digit set dramatically simplifies carry detection 
at the expense of some initial overhead required to con-
form BCD operands to the adder’s digit range. The adder 
is implemented with two 4-bit adders, a carry generation 
block and a correction vector generation block. It is very 
similar to the proposed 2-operand adder, but differs in 
the digit set, the carry detection circuit, and especially 
correction method. Also, RBCD, as well as the other SD 
adders, do not discuss multi-operand addition. 

Additional circuits are described to perform BCD to 
RBCD and RBCD to BCD conversion. The former case 
requires less logic. On detection of a 7, 8 or 9, a carry 
will be sent to the next digit and 6 will be added to the 
current digit. In the RBCD to BCD conversion, generate 
and propagate signals are found and used in a carry- 
lookahead circuit. Once the carries are known, a 4-bit 
adder corrects the sum in each digit. 
 
6. Proposed Signed-Digit Decimal Adder 
 
6.1. Methodology 
 
In the proposed signed-digit architecture, the digit set 
used is −9 to 9 inclusive and is represented using a con-
ventional 5-bit, two’s complement vector [32]. For the 
digit at position i, xi and yi are added to yield a 6-bit wide 
intermediate sum, ui (the carry-propagate adder (CPA) 
chosen in these designs uses a prefix tree). Then, two 
levels of simple logic determine the carry ci, which uses 
positive and negative magnitude components to represent 
{−1, 0, 1}: and . ic

ic

i i ic c c                     (7) 

The proposed rule set for ci selects the two comparison 
constants to be −8 and 7 for reduced hardware complex-
ity. As opposed to the rule set in (6), this rule set can be 
implemented as a boolean function of 3 variables with 4 
minterms as opposed to a boolean function of 6 variables 
with 9 minterms. The proposed rule set is defined in (8). 
After an exhaustive design space exploration, it has been 
found that this rule set requires the minimum logic use. 
All other valid pairs of comparison constants will have a 
higher logic complexity and the evidence of this is visi-
ble by looking at the upper 3 bits of the two’s comple-
ment boolean numbers in the set [−18,18]. 

1 if 8

1 if 7

0 otherwise

i

i i

u

c u

  
 



            (8) 

Each digit’s positive and negative carry signals are 
easily calculated with (9)-(10). Figure 1(a) expresses 
these equations. 
 

 ui [4] 

ic
ic  

ui [3] 
Ui [5]

 
(a) 

 xi yi 

CPA 

3

6 

5 
ic

ic

1ic


 

1ic


 

CPA 

ui 

si 

5

correction vector 
generation 

carry
generation 

 
(b) 

Figure 1. The circuit in (a) elaborates the carry generation 
block. Once ui is obtained from the carry propagate adder, 

ic  and ic  are calculated with a few gates. In (b), a 
high-level diagram depicts the 2-operand SD adder. The up-
per 3 bits of the intermediate sum are used for carry genera-
tion while the lower 5 bits are inputted to the second CPA. 
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      5 4 3i i i ic u u u            (9) 

      5 4 3i i i ic u u u            (10) 

After ui and ci are found, the correction vector must be 
found and added. The correction vector corresponds to 

 from (5). However, since the incoming carry 
from the previous digit, ci-1, must eventually be added to 
ui as well, it is convenient to think of the correction vec-
tor as 1 . The correction vector (which is 
simply the constant term to be added to ui) is tabulated 
for every possible input combination in Table 1. Addi-
tion between ui and this correction vector will result in a 
5-bit sum, si. Note that because of the rule set chosen, the 
final sum for each digit will fall in [−9, 8] meaning that 
the carry-out of the last CPA will always be 0. 

10 ic 

10 i ic c   

The proposed SD decimal adder is shown in Figure 1 
(b). The carry generation block of the proposed adder is 
shown in Figure 1(a). It is apparent in this figure that 
carries only propagate to the next digit. There is no ripple 
effect since carry generation does not depend on the car-
ry in. This design is a necessary precursor to the im-
proved version in the next section. 
 
6.2. Parallel Addition of the Correction Vector 
 
The previously proposed adder’s correction generation 
block and correction vector CPA can be replaced by a 
parallel speculative structure to reduce delay since the 
bits of ui are available before the carries. In these parallel 
adders, speculative addition of the correction vector and 
incoming carry take place in one or two stages of logi-
cally minimized constant addition. For one stage, the 
addition of the constants −11, −10, −9, −1, 0, 1, 9, 10, 11 
are precomputed and selected with ci and ci-1 in a multi-
plexor. 

 
Table 1. Correction vector generation. 

ic  ic  1ic  1ic  Correction Vector 

0 0 0 0 000002  (010) 

0 0 0 1 111112   (–110) 

0 0 1 0 000012   (110) 

0 1 0 0 010102   (1010) 

0 1 0 1 010012   (910) 

0 1 1 0 010112   (1110) 

1 0 0 0 101102   (–1010) 

1 0 0 1 101012   (–1110) 

1 0 1 0 101112   (–910) 

For two stages, the addition of −10, 0 and 10 are pre-
computed and selected by ci in one stage; −1, 0 and 1 are 
precomputed and selected by ci-1 in the other stage [32]. 
Depending on the method of constant addition chosen, 
certain optimizations can be made. For example, the 
proposed parallel adder uses a method of constant addi-
tion such that the addition of x + c, where x is the 5-bit 
input and c is the constant, produces a vector f that indi-
cates which bits in x need to be inverted to obtain the 
sum. So, five XOR gates are needed to invert r for any 
constant addition. Hardware can be reduced by placing 
the XOR gates after the multiplexor instead of having 
groups of XOR gates for each constant before the multi-
plexor. 

The terminology and concept of the constant addition 
used were derived from the flag inversion cell (fic) se-
quences in [33]. The method in [33] describes adding 
two variables and a constant. For this architecture, only 
one variable and a constant are added. A detailed de-
scription of the constant addition mechanism can be 
found in [33]. 

In the two-stage parallel adder, the intermediate sum, 
ui, is fed to two constant addition blocks for adding and 
subtracting 10. A 3-to-1 multiplexer will select f for 
adding −10, 0 or 10 according to the selects: ic  and 

ic . The multiplexer’s output is XORed with ui to invert 
the flagged bits. This inversion yields . 10i iu c 

The remaining step is to add the incoming carry. Two 
more constant addition blocks are used to add or subtract 
1 from iu 10i c  . Another 3-to-1 multiplexer is used 
with XOR gates after it to invert another flagged set of 
bits and yield the sum. Breaking the addition up into two 
stages seems to sacrifice speed. However, the two levels 
involve a very small amount of logic. Both circuits (one- 
stage and two-stage implementations) have a better area- 
delay product with parallel constant addition than with-
out. 

The one-stage parallel adder is shown in Figure 2. 
This design takes advantage of the fact that ui is calcu-
lated before any of the carries. In fact, the correction 
vector speculative addition starts as soon as ui[0] arrives. 
Therefore, it can be seen that this type of speculation can 
improve performance. Most other decimal signed-digit 
adders do not speculate the constant addition. 
 
7. SD and BCD Conversion 
 
Any SD number can be converted to BCD, and vice- 
versa [30]. The proposed SD adders must extend an un-
signed BCD number by one bit for BCD to SD conver-
sion. On the other hand, a carry-propagation operation 
must be performed for SD to BCD conversion. A Kogge- 
Stone prefix network is used to accelerate the carry- 
propagation. The propagate signal pi is set when the SD  
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carry 
generation 

xi yi 

CPA 

ui 

fi 

si 

speculative 
constant 
addition 

multiplexor 

bitwise 
XOR 

3 
6 5 

ic

ic

1ic


1ic


 

Figure 2. The proposed one-stage signed-digit unit for one 
digit is shown. This figure shows that the carry generation 
and constant addition speculation occur in parallel, which is 
desirable for speed. 

 
digit is 0. The generate signal gi is set when the SD digit 
is negative. It should be apparent that −1 and 0 are the 
two possible values for the carry. 

Carries are generated using a Kogge-Stone prefix 
network, and are used to determine the correction vectors 
for each sdi to obtain bcdi. If there is a carry in to a digit 
that is greater than 0, −1 is added. If there is a carry in to 
a negative or 0 digit, 9 is added. If there is no carry in but 
the digit is negative, 10 is added. Equation (11) expresses 
these conditions in terms of gi, pi, and the carry in cin. 

 
 
 
 

if1

if9

10 if

if

in i i ini

in i i ini
i

i in i i in

i in i i in

c g p csd

c g p csd
bcd

sd c g p c

sd c g p c

  
        
   

    (11) 

To perform these corrections, constant addition is used 
again. The improvement in speed and area-delay inside 
the conversion circuit is around 20% when using a con-
stant addition correction scheme over conventional addi-
tion. Figure 3(a) shows the conversion block for 1 digit, 
Figure 3(b) for 8 digits. 

In [34], a hybrid SD number system shows that un-
signed and signed numbers have a continuum of number 
representations between them. For example, every third 
or every fourth digit can be signed. This in turn would 
limit the carry-propagation chains to those places. How-
ever, experiments with hybrid SD representations have 
shown that the added logic necessary to incorporate the 
two schemes together costs too much area and delay. 

8. Multi-operand Addition 
 
Two-operand signed-digit decimal adders can be used to 
add multiple numbers if arranged in a tree. In this way, 
corrections are made after every addition. However, it is 
apparent that immediate correction is not necessary. The 
correction step can be postponed in a similar manner as 
shown in [7] with the addition of new constraints to the 
problem (see Table 2). 

 
 sdi [0]

constant
addition

sdi [3] sdi [2] sdi [1]

sdi [4]

constant 
addition 

constant
addition 0000

sdi [1]
sdi [3]

sdi [2]
sdi [0]

+10+9 −1

4-to-1 

bcdi [1]
bcdi [2] 

bcdi [3] 
bcdi [0]

pi

cin

gi

 
(a) 

 sd7 sd1 sd0

5 5 5 

SD to BCD
converter

p g cin

bcd7

p g cin 

bcd1 

SD to BCD 
converter 

SD to BCD
converter

p g cin

bcd0

Kogge-Stone 
Prefix tree 

 
(b) 

Figure 3. In (a), SD to BCD conversion for one digit is 
shown. This circuit finds g and p so that a carry-lookahead 
generator can find cin for all digits. The conversion scheme 
for 8 decimal digits is shown in (b). 

 
Table 2. Ranges for multi-operand addition. 

Number of Operands Range of ui 
Bounds of 

10i iu c   

2 operands [–18,18] [–8,8] 

3 operands [–27,27] [–7,7] 

4 operands [–36,36] [–6,6] 

5 operands [–45,45] [–5,5] 
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c
7

n

The operations for n-operand addition for a digit in the 
ith position can be summarized in (12)-(14) (ai,n repre-
sents the nth input for the ith digit position). These show 
that an intermediate sum can be calculated from multiple 
operands and a similar correction procedure can be used 
to obtain the sum. Equation (14) must be satisfied for a ci 
in order for carry-free decimal signed-digit addition to 
work. For example, for three operand addition,  
–7≥ i  ≥ 7, for all possible ui in [−27,27], a ci 

value can be found that makes  true. 
Note that (14) finds the maximum bounds, but tighter 
bounds are possible so long as the bounds can represent 
all decimal digits. 

10iu  
7 10i iu c    

,1 ,2 ,i i i iu a a a              (12) 

110i i i is u c c                  (13) 

 : 10 10 10i i ic n u c        n      (14) 

with the maximally redundant digit set of [−9,9], 6 or 
more operands cannot be added without an intermediate 
correction since adding 5 carries restricts  to 
[−4, 4]. This condition cannot hold for such ui as −5, 5, 15. 

10i iu c 

Therefore, only 2, 3, 4 and 5-operand signed-digit ad-
ders are possible with the present scheme (see Figure 4). 
Furthermore, only the 2-operand adder can make use of 
the parallel addition technique; delay cannot be improved 
since the greater number of parallel additions increases 
the multiplexer size and the load. 

 
 

CPA 

correction vector 
generation 

ci ci−1

3 : 2 reduction 

carry 
generation 

ui 
CPA 

(3, 4 or 5) : 2 reduction 

 

Figure 4. The proposed signed-digit multi-operand addition 
unit for one digit is shown. This scheme is limited for addi-
tion of 3, 4 or 5 operands. 

The combinational logic for carry generation becomes 
more constrained and more complex as n increases. For 
2-operand addition, there is a lot of flexibility in choos-
ing the rule set as evidenced by the logic minimization 
obtained in (8). For 5 operands, fewer rule sets are 
available to choose from. Since adding 5 SD numbers 
may result in 45 or −45 (maximum carry in of 4 or −4), 
the rule set must ensure that . The 
2-operand correction logic requires the 3 upper bits from 
ui whereas the 5-operand correction logic requires all bits 
from ui and many more minterms. 

5 10i iu c     5

For multi-operand addition requiring multiple modules 
(i.e. n > 5), combining reduction where possible can 
yield better performance [35]. The lower part of the SD 
adder that reduces and adds ui, ci−1 and  can be 
combined with the earlier part of the next level’s SD 
adder that reduces and adds n operands. The operation 
for these parts is addition, so the property of associativity 
can be exploited. 

10 ic 

As an example of multi-operand addition as well as 
this optimization technique, a 16-operand adder is shown 
in Figure 5(a). Three 5-operand adders add the first 15 
input operands. The 16th input operand is added on the 
second level with the three sums from the first level us-
ing a 4-operand adder. The circuit can be improved by 
considering the three parallel 5-operand adders together, 
and summing their internal ui, ci-1, and  terms 
together instead of separately. Basically, instead of per-
forming three separate 3:2 reductions followed by a CPA 
for each 5-operand adder, one large 9:2 reduction fol-
lowed by a CPA is performed. Adding the 16th input at 
this stage only involves growing the reduction circuit to 
10:2. Furthermore, only one CPA is needed to produce ui 
for the 4-operand circuit instead of four (one at the end 
of each 5-operand adder and one near the beginning of 
the 4-operand adder). This optimized 16-operand adder 
is shown in Figure 5(b). The reduction circuit should be 
organized to reduce the terms that become available first. 
First, the intermediate sums and leftover operands should 
be reduced. When the carries become available, their 
reduction should be merged with the intermediate sums. 
Likewise, reduction of the correction vector should be 
merged when it becomes available. 

10 ic 

 
9. Results 
 
All designs were written in Verilog HDL. Synthesis re-
sults for area and timing were obtained from Synopsys 
Design Compiler using MOSIS TSMC 0.18μm standard 
cell technology. Each design was compiled as an 8-digit 
(decimal) adder. Several of the designs are 2-operand 
only, but are arranged in a parallel tree to obtain multi- 
operand addition. 
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(a) 

 

ui 

ci ci–1 

–10*ci 

ui

ci–1 ci

(b) 

Figure 5. Multi-operand addition. ((a) 16-operand adder is constructed with 4-operand and 5-operand adders from Figure 4; 
(b) An improved 16-operand adder combines the reduction steps in the last stage of the three 5-operand adders with the first 
stage of the 4-operand adder.) 

 
The designs in Table 3 have been synthesized with 

BCD conversion (if necessary) before the SD operation. 
Thus, the adders are outputting different number repre-
sentations, but are adding BCD numbers. The Svoboda 
adder uses a 5-bit Svoboda code to facilitate addition. 
We see from Table 3 that even after accelerating the 
adders with a prefix tree, the Svoboda adder is still too 

costly in area. Furthermore, the special Svoboda code 
requires much more data conversion overhead to and 
from BCD (compare Table 3 to the 2-operand rows in 
Table 4 which shows 2-operand addition with conver-
sion from and to BCD). The speculative SD adder uses 
the positive/negative component representation. This 
representation is advantageous for inverting an operand. 
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Additionally, there is no overheard required for convert-
ing to the adder’s representation. However, the area and 
delay requirements are too much compared to other de-
signs. The DCFA [26] achieves a better area-delay 
product than the speculative SD while using the same 
number representation. The RBCD adder is strong in 
terms of delay and area, but the conversion from BCD 
puts RBCD behind many of the adders. 

The results in Table 3 for our proposed adders dem-
onstrate two points: i) The adder architecture is efficient 
in terms of area and delay and ii) The constant addition 
modification can improve delay or area (see last two 
rows). The architecture referred to by Table 3 as the 
proposed SD is shown in Figure 1. The proposed 
one-stage SD is shown in Figure 2. The advantage of the 
proposed SD's number representation is that it requires 
no conversion from BCD. Additionally, a digit's sign 
information is found in the digit's most significant bit. 
For the representation used in the speculative adder and 
the DCFA, a sign detector must be used on each digit to 
determine the digit’s sign. Therefore, we believe the 
proposed designs offer superior performance with the 
two’s complement representation. 

For the multi-operand results, every adder inputs de-
cimal digits in the BCD representation and outputs an 
unsigned BCD sum vector. An additional conversion step 
is necessary after all SD adders and before the RBCD 
and Svoboda adders. Since the operand size is 8 digits, 
the carry-free advantage of the SD adders is not being 
leveraged. 

 
Table 3. Area and delay comparison for 2-operand SD ad-
ders. 

Decimal 
Adder 

Delay 
(ns) 

Area 
(mm2)

Area-Delay 
(ns*mm2) 

Area-Delay 
compared to
Proposed SD

RBCD 
[27,28] 

1.66 0.0384 0.0637 × 1.26 

Svoboda 
SD [24] 

2.18 0.0898 0.1960 × 3.87 

Speculative 
SD [25] 

1.40 0.0582 0.0815 × 1.61 

DCFA [26] 1.48 0.0498 0.0737 × 1.45 

Proposed SD 1.36 0.0373 0.0507 × 1.00 

Proposed 
1-stage SD 

1.27 0.0385 0.0489 × 0.96 

Proposed 
2-stage SD 

1.36 0.0346 0.0471 × 0.93 

Table 4 shows that the multi-operand SD adder pro-
posed in this work outperforms the existing SD designs 
at every corner (except against the RBCD adder’s area 
for two operands). The RBCD adder occupies the least 
area for 2 and 4 operands, but falls second to the pro-
posed adder for 8 and 16 operands. For hardware designs 
that can benefit from the two’s complement SD repre-
sentation, the proposed architecture should be considered. 
Among the unsigned adders in Table 5, the dynamic 
decimal adder using CLA yields the best delay. It also 
consumes the least area for 2 and 4 operands. For 8 and 
16 operands, the mixed binary and BCD adder architec-
ture yields the best area-delay product. It may be specu-
lated that the mixed binary and BCD approach will scale 
best, since the main growing component is the fast tree 
of binary adders. 

 
Table 4. Area and delay comparison for signed multi-ope- 
rand adders. 

Operands
Delay 
(ns) 

Area 
(mm2) 

Area-Delay 
(ns*mm2) 

Area-Delay 
compared to 
Proposed SD

Svoboda Adder [24] 

2 3.39 0.110 0.373 × 3.42 

4 4.93 0.242 1.19 × 5.36 

8 6.50 0.477 3.10 × 4.58 

16 8.15 0.912 7.43 × 4.17 

Speculative SD Adder [25] 

2 2.51 0.0713 0.179 × 1.64 

4 3.89 0.129 0.502 × 2.26 

8 5.22 0.288 1.50 × 2.22 

16 6.83 0.545 3.72 × 2.09 

DCFA Adder [26] 

2 2.79 0.0675 0.188 × 1.72 

4 4.15 0.172 0.714 × 3.22 

8 5.90 0.323 1.91 × 2.82 

16 7.40 0.649 4.80 × 2.70 

RBCD Adder [27,28] 

2 2.67 0.0486 0.130 × 1.19 

4 3.73 0.0794 0.295 × 1.33 

8 5.01 0.154 0.772 × 1.14 

16 6.21 0.306 1.90 × 1.07 

Proposed SD Adder 

2 2.08 0.0539 0.109 × 1.00 

4 3.18 0.0698 0.222 × 1.00 

8 4.37 0.155 0.677 × 1.00 

16 5.49 0.324 1.78 × 1.00 
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Table 5. Area and Delay Comparison for unsigned multi- 
operand adders. 

Operands Delay (ns) Area (mm2) Area-Delay (ns*mm2) 

Nonspeculative Adder [7] 

2 1.29 .0246 .0317 

4 3.15 .0614 .193 

8 4.03 .147 .592 

16 6.78 .280 1.90 

Mixed Binary and BCD Adder [23] 

2 1.29 .0246 .0317 

4 2.71 .0535 .145 

8 3.41 .101 .344 

16 4.45 .187 .832 

Reduced Delay BCD Adder [10] 

2 1.34 .0284 .0381 

4 2.57 .0644 .166 

8 3.68 .143 .526 

16 4.84 .278 1.34 

Dynamic Decimal using CLA Adder [11] 

2 1.29 .0246 .0317 

4 2.38 .0598 .142 

8 3.01 .123 .370 

16 3.82 .236 .902 

 
Proposed SD multi-operand addition with conversion 

to BCD does not outperform the best unsigned multi- 
operand scheme. However, the SD adders’ larger func-
tional domain must not be overlooked. That is, the ease 
at which subtraction can be performed with an SD adder 
over an unsigned adder strengthens the SD adder’s posi-
tion. 
 
10. Applications 
 
The ideal target applications for the proposed signed- 
digit schemes would leverage signed-digit advantages. 
One benefit is the elimination of carry propagation addi-
tion with long words (64 or 128 bits) operated on itera-
tively. If the application does not require iterative com-
putations, then immediate conversion back to an un-
signed representation will negate the carry-free addition 
performance. However, if the application requires know- 
ledge of sign at each iterative step, which signed-digit 
addition easily provides, then signed-digit addition is 
promising. Moreover, applications that can conveniently 
use the signed-digit representation for other operations as 
well as addition/subtraction stand to benefit. The itera-
tive multiplier in [15] uses a signed-digit adder because 
an earlier step (partial product generation) found that the 

signed-digit representation can increase performance. In 
SRT division, division is executed iteratively and the sign 
of the dividend is necessary at each iteration. Therefore, 
the proposed 2-operand adders can potentially serve a 
core role in division. For the proposed multi-operand 
scheme, adding multiple partial products to reduce cycles 
in iterative multiplication appears promising. Finally, 
advanced financial algorithms may stand to benefit. 
 
11. Conclusions 
 
In this study, new signed-digit two operand and multi- 
operand decimal adders are proposed. Performance of re- 
cent decimal adder architectures have been investigated 
and compared. The proposed SD adder excels in speed 
and area usage among previously proposed SD adders. 
The use of constant addition for speculation and the merg- 
ing of adjacent modules with sharable operations enable 
efficient implementation of two operand and multi-op- 
erand decimal addition. 
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