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Abstract 
Two additional solutions of new shear-horizontal surface acoustic waves (SH-SAWs) are found in 
this theoretical report. The SH-SAW propagation is managed by the free surface of a solid when it 
has a direct contact with a vacuum. The studied smart solid represents the transversely isotropic 
piezoelectromagnetic (magnetoelectroelastic or MEE) medium that pertains to crystal symmetry 
class 6 mm. In the developed theoretical treatment, the solid surface must be mechanically free. 
Also, the magnetic and electrical boundary conditions at the common interface between a vacuum 
and the solid surface read: the magnetic and electrical displacements must continue and the same 
for the magnetic and electrical potentials. To obtain these two new SH-SAW solutions, the natural 
coupling mechanisms such as e hµ α−  and 2εµ α−  present in the coefficient of the magnetoe-
lectromechanical coupling (CMEMC) can be exploited. Based on the obtained theoretical results, it 
is possible that a set of technical devices (filters, sensors, delay lines, lab-on-a-chip, etc.) based on 
smart MEE media can be developed. It is also blatant that the obtained theoretical results can be 
helpful for the further theoretical and experimental studies on the propagation of the plate SH- 
waves and the interfacial SH-waves in the MEE (composite) media. The most important issue can 
be the influence of the magnetoelectric effect on the SH-wave propagation. One must also be fa-
miliar with the fact that the surface, interfacial, and plate SH-waves can frequently represent a 
common tool for nondestructive testing and evaluation of surfaces, interfaces, and plates, respec-
tively. 
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1. Introductory Part 
There is single review work [1] concerning the piezoelectromagnetic shear-horizontal surface acoustic waves 
(SH-SAWs). Surface waves can propagate in a solid and are localized at the solid surface. The solid surface is 
free when there are no any external perturbations, but the contact with a vacuum above the surface. This report 
has an interest in an extra study of a smart solid (composite) material such as the transversely isotropic (hex-
agonal class 6 mm) piezoelectromagnetic (PEM) continuum concerning any possibility of the surface wave pro- 
pagation managed by the free surface. 

The PEM continua are also called the magnetoelectroelastic media. They can simultaneously exhibit evidence 
of the following effects [2] [3]: magnetoelectric (ME), piezoelectric (PE), piezomagnetic (PM). The knowledge 
of PEM smart material features can serve for the creation of intelligent structures and a set of innovative tech-
nical devices to record selected environmental and internal changes. Due to the extrinsic ME effect and the 
coupling interaction between the electrical and magnetic fields via the elastic field of the ME continuum [3] [4], 
the electrical polarization can occur upon the application of a magnetic field (direct ME effect) or the magneti-
zation can occur upon the application of an electric field (converse ME effect). 

There is much review work cited in [3]-[45] on the ME effect, ME materials, and their applications because 
two-phase piezoelectric-piezomagnetic multiferroic composite materials with strong coupling between ferroe-
lectric and ferromagnetic phases are frequently found [5] [6] and exhaustively studied [14]. The PEM SH-SAWs 
can be quite suitable for analyzing high-frequency technical devices and readily generated with the following 
noncontact technique [46]-[48]: electromagnetic acoustic transducers (EMATs). The use of this noncontact tech- 
nique can be preferable compared with the other traditional technique that uses the PE transduction [47] [48]. 

Two-phase PEM composite media possessing the PE and PM phases can be exploited in different technical 
devices because the ME coupling in such composites represents a product property resulting from the mechani-
cal interaction between the mentioned phases. Experimental studies of the ME effect in the two-phase compo-
sites were begun in the 1970s with pioneer works [49]-[52] to synthesize the BaTiO3-CoFe2O4 composites by a 
unidirectional solidification process. As a result, it was found that the obtained composites possessing the PE 
phase BaTiO3 and PM phase CoFe2O4 can have two orders larger value of the ME coefficient than that of the 
pioneer single-phase ME Cr2O3 crystal. References [53] [54] provide the material characteristics of different 
BaTiO3-CoFe2O4 hexagonal (6 mm) composites pertaining to the (0-3) connectivity when the PE phase serving 
as the 3-D matrix contains the PM phase as 0-D inclusions. The reverse connectivity is also possible. Also, PEM 
composites can have the (2-2) connectivity. In this case, they represent a multi-layered (sandwich-like) structure 
composed of linear homogeneous PE and PM layers with a perfect bonding at each interface. The study of such 
PEM laminated (composite) structures is up to date [55]. 

The PEM systems can demonstrate significant interactions between the elastic, magnetic, and electric fields. 
This allows direct applications in sensing and actuating devices. The material parameters of the frequently used 
BaTiO3-CoFe2O4 and PZT-5H-Terfenol-D laminated composites can be found in [56]-[59]. It is well-known that 
the ME effect in the single-phase PEMs (for instance, Cr2O3, LiCoPO4, and TbPO4 [3]) is usually very small. In 
addition, none of the single-phase ME materials can have combined large and robust magnetic and electric pola-
rizations at room temperature. However, it is a pleasure to state that the Sr3Co2Fe24O41 Z-type hexaferrite [5] 
was discovered in 2010. It actually possesses the realizable ME effect apt for practical uses. 

It is thought that the first theoretical work on the propagation of the PEM SH-SAWs managed by the free 
surface was written by Melkumyan [60]. He has discovered several new SH-waves corresponding to different 
boundary conditions. Theoretical works [60] [61] are relevant to the studies of the SH-SAWs directed by the 
free surface of the hexagonal PEMs of symmetry class 6 mm and book [62] studies the PEM SH-SAW existence 
in cubic crystals. The theoretical work presented in this paper belongs to the existence of extra new SH-SAWs 
along the free surface of the aforementioned hexagonal medium. This paper has the purpose to discover some 
extra solutions (new SH-SAWs) for a set of the magnetic and electrical conditions applied at the vacuum-solid 
interface when the solid surface is the mechanically free. Continuity of both the electrical displacement and 
magnetic flux and continuity of both the magnetic and electrical potentials are treated here at the interface. Var-
ious boundary conditions for the case when a medium simultaneously possesses both the PE and PM properties 
are perfectly described in paper [63]. 

The reader can find the comprehensive theory of SH-wave propagation in the transversely isotropic media in 
books [61] [64] [65], of which books [64] [65] study the interfacial and plate anti-plane polarized waves, respec-
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tively. It is necessary to briefly review the theory developed in book [61] for the SH-SAW propagation along the 
free surface of the hexagonal (6 mm) PEMs. For a PEM medium, acoustic wave propagation coupled with both 
the electrical and magnetic potentials requires suitable thermodynamic functions and thermodynamic variables. 
The mechanical stress, electrical induction (D), and magnetic flux (B) can be chosen as the appropriate thermo-
dynamic functions [61] in the case of linear elasticity. As a result, the thermodynamic variables are the mechan-
ical strain, electrical field (E), and magnetic field (H). In such thermodynamic treatment, all the material con-
stants can be thermodynamically determined. The electrical field components (Ei) and the magnetic field com-
ponents (Hi) can be defined by the electrical potential φ and magnetic potential ψ, respectively: Ei = – ∂φ/∂xi and 
Hi = – ∂ψ/∂xi, where xi represent the real space components and the index i runs from 1 to 3. 

Exploitation of the equilibrium equations and the corresponding Maxwell equations written in the form of the 
quasi-static approximation [66] [67] can constitute the coupled equations of motion representing partial second 
derivatives. Using the plane wave solution, the coupled equations of motion can be then written in the tensor 
form representing the Green-Christoffel equation [61]. The Green-Christoffel equation representing a polynomi-
al is the main equation to study acoustic wave propagation coupled with both the electrical and magnetic poten-
tials. To resolve this equation means to determine the eigenvalues and corresponding eigenvectors. 

There are high symmetry propagation directions [67] [68] in which “pure” waves with the in-lane polarization 
and “pure” waves with the anti-pale polarization (shear-horizontal polarization) can exist. When the pure waves 
with the anti-plane polarization are coupled with both the electrical and magnetic potentials, the pure waves with 
the in-lane polarization represent purely mechanical waves, and vice versa. The appropriate cuts and propaga-
tion directions for materials with an assortment of symmetry classes are listed in works [67] [68]. It is central to 
state that each symmetry class has its own set of the material constants [69] [70]. 

For materials of symmetry class 6 mm, the suitable propagation directions are mentioned in review paper [71] 
and review paper [1] exhibits the coordinate system that is fitting for PEMs, pure PEs, and pure PMs. It is ne-
cessary to mention that in the pure PEs (or PMs) the surface Bleustein-Gulyaev waves [72] [73] can propagate. 
Using the rectangular coordinate system (x1, x2, x3), it is necessary to clarify that the SH-SAW propagation di-
rection, sixfold symmetry axis of the PEM material, and the surface normal must be managed along the x1-, x2-, 
and x3-axes, respectively. Consequently, such propagation directions can support the coupling of the elastic 
SH-waves with both the electrical and magnetic potentials. For the case of the SH-wave propagation, the 
Green-Christoffel equation is simplified and all the apt eigenvalues and the corresponding eigenvectors in the 
form of ( )0 0 0 0 0

2 4 5, ,U U Uϕ ψ= =  can be analytically determined. 
The following section starts with the Green-Christoffel equation for the case of the SH-wave propagation in 

the suitable direction when there is the coupling of the SH-waves with both the magnetic and electrical poten-
tials. It also develops the theory leading to extra two solutions of new SH-SAWs (see final formulae (60) and 
(66) corresponding to the coupling mechanism such as e hµ α−  [74]) for the certain set of the boundary condi-
tions mentioned above. It is also worth noting that the eighth and ninth new SH-SAWs corresponding to the 
other coupling mechanism such as e hα ε−  [74] were discovered in theoretical work [75]. Consequently, one 
has to look through the further analysis to be familiar with the explicit forms of the discovered tenth and ele-
venth new SH-SAWs. These extra two new solutions are possible because only one of three suitable eigenvalues 
depends on the phase velocity and all the apt corresponding eigenvector components do not depend on the ve-
locity that will be demonstrated in the following section. 

2. Theory Leading to Two New Results 
In the appropriate propagation directions mentioned in the previous section, the SH-wave propagation can be 
coupled with both the magnetic and electrical potentials. In the case of surface wave, the anti-plane polarized 
SH-waves can be localized at the free surface of the transversely isotropic PEM continuum of symmetry class 6 
mm. The treated SH-waves propagates along the x1-axis of the rectangular coordinate system (x1, x2, x3). In this 
case there is only the single mechanical displacement component U = U2 directed along the x2-axis. These 
propagation directions allow the existence of the following independent nonzero material constants: the elastic 
stiffness constant C, piezomagnetic coefficient h, piezoelectric constant e, dielectric permittivity coefficient ε, 
magnetic permeability coefficient μ, and electromagnetic constant α. They are defined by the following equali-
ties: 44 66C C C= = , 16 34e e e= = , 16 34h h h= = , 11 33ε ε ε= = , 11 33µ µ µ= = , and 11 33α α α= =  [61]. 

The propagation direction can be defined by the directional cosines (n1,n2,n3) respectively directed along the 
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(x1, x2, x3) axes, where n1 = 1, n2 = 0, and n3 ≡ n3. They are coupled with the components (k1,k2,k3) of the wave-
vector K as follows: ( ) ( )1 2 3 1 2 3, , , ,k k k k n n n= , where k is the wavenumber in the propagation direction. All the 
suitable eigenvalues n3 and the corresponding eigenvectors ( ) ( )0 0 0 0 0 0

2 4 5, , , ,U U U Uϕ ψ =  must be disclosed. 
When only the SH-wave propagation is coupled with both the electrical potential φ and the magnetic potential ψ, 
the corresponding coupled equations of motion representing the partial differential equations of the second order 
are written and they have the plane wave form solutions [61]. Substituting the solutions into the differential form 
for the coupled equations of motion, the tensor form of the coupled equations of motion can be expressed by 
three homogeneous equations. The differential and tensor forms of the coupled equations of motion are identical 
and therefore, it is possible to start the analysis with the tensor form known as the modified Green-Christoffel 
equation. Using the corresponding nonzero Green-Christoffel tensor components [61], the following three ho-
mogeneous equations naturally written in the matrix form can be composed: 

( )2
04

0

0

0
0
0

ph tC m V V em hm U
em m m
hm m m

ε α ϕ
α µ ψ

  −       
    − − =    

   − −    
 

                           (1) 

where 2
31m n= + ; ρ and Vph are the PEM mass density and the phase velocity, respectively. The velocity Vph is 

defined by Vph = ω/k, where ω is the angular frequency. Also, Vt4 stands for the speed of the shear-horizontal 
bulk acoustic wave (SH-BAW). This velocity is uncoupled with both the electrical and magnetic potentials. This 
speed of the purely mechanical SH-wave is defined by 

4tV C ρ=                                             (2) 

All the appropriate eigenvalues n3 can be determined when the determinant of the coefficient matrix in Equa-
tions (1) vanishes. Expanding the matrix determinant, the following secular equation consisting of three factors 
can be readily obtained: 

( ) ( )22
41 0em ph tm m K m V V × × + − =  

                                 (3) 

In expression (3), 2
emK  stands for the coefficient of the magnetoelectromechanical coupling (CMEMC) de-

fined by the following formula: 

( )
( ) ( )

( )
2 2

2
2 2

2
em

e e h h e he h ehK
C C

µ α α εµ ε α
εµ α εµ α

− − −+ −
= =

− −
                      (4) 

It is obvious that CMEMC (4) can be represented as the material parameter depending on the following three 
different coupling mechanisms [74] that naturally contain the electromagnetic constant α: 

e hµ α−                                           (5) 

e hα ε−                                           (6) 
2εµ α−                                           (7) 

It is apparent that equality (3) is satisfied as soon as one of three factors on the left-hand side is equal to zero. 
Thus, the first and second factors can become equal to zero for the following identical eigenvalues [61] [64] 
[75]: 

( ) ( )1 3
3 3 jn n= = −                                        (8) 

The third factor in equation (3) provides the following suitable eigenvalue [61] [64] [75]: 

( ) ( )25
3 j 1 ph temn V V= − −                                   (9) 

where the velocity Vtem represents the speed of the SH-BAW coupled with both the electrical and magnetic po-
tentials and is defined as follows: 



A. A. Zakharenko 
 

 
99 

( )1 22
4 1tem t emV V K= +                                  (10) 

Found suitable eigenvalues (8) and (9) possess negative imaginary parts to have wave damping towards depth 
of the PEM material. Using them in equations (1), it is possible to reveal the corresponding eigenvectors [61]. It 
is natural to use the first equation in matrix form (1) to demonstrate the dependence of the eigenvector compo-
nent U0 on both the components φ0 and ψ0. Using this U0 for the second and third equations, it is possible to get 
two homogeneous equations. Therefore, one can write 

0 0 0em hmU
A A
ϕ ψ= − −                                  (11) 

2
0 0 0me meh

A A
ε ϕ α ψ

   + + + =   
  

                        (12) 

2
0 0 0meh mh

A A
α ϕ µ ψ

  + + + =  
   

                        (13) 

( )2
4ph tA C m V V = −  

                                (14) 

It is natural to utilize Equations (11) and (13) to obtain the eigenvector components such as U0, φ0, and ψ0. 
Using 2

31 0m n= + =  for eigenvalues (8), it is possible to have the following eigenvector components [61] 
discussed in [76]: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )0 1 0 1 0 1 0 3 0 3 0 3, , , , 0, ,U Uϕ ψ ϕ ψ µ α= = −                     (15) 

For eigenvalue (9) with m ≠ 0, the corresponding eigenvector components are as follows: 

( ) ( ) ( )( )

( ) ( ) ( )( )

2
0 5 0 5 0 5

2 2 2

2 2 2 2
2

, , , ,

1 , , .

em em em

em m em
em

e h h ehU
CK CK CK

e h C K K K K
K α

µ αϕ ψ µ α

µ α µ α

 −
= − + − 
 

= − − − −

                 (16) 

where 
( ) ( ) ( ) ( )0 1 0 1 0 5 0 5e h e h e hϕ ψ ϕ ψ µ α+ = + = − .                            (17) 

In expression (16), the nondimensional parameters 2Kα  and 2
mK  are defined by 

2
2

eh ehK
C Cα

α
α α

= =                                      (18) 

2
2
m

hK
Cµ

=                                           (19) 

where the last is called the coefficient of the magnetomechanical coupling (CMMC). 
The obtained eigenvalues and the corresponding eigenvectors are employed to compose the complete me-

chanical displacement UΣ, complete electrical potential φΣ, and complete magnetic potential ψΣ. Using the 
weight factors F(1), F(3), and F(5), these parameters are also written in the plane wave forms as follows: 

( ) ( ) ( )( )0
1 1 3 3

1,3,5
exp jp p p

ph
p

U F U k n x n x V tΣ

=

 = + − ∑                    (20) 

( ) ( ) ( )( )0
1 1 3 3

1,3,5
exp jp p p

ph
p

F k n x n x V tϕ ϕΣ

=

 = + − ∑                    (21) 

( ) ( ) ( )( )0
1 1 3 3

1,3,5
exp jp p p

ph
p

F k n x n x V tψ ψΣ

=

 = + − ∑                    (22) 
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where t is time and j is the imaginary unity, j = (–1)1/2. 
These weight factors can be found when the boundary conditions are applied. The mechanical, electrical, and 

magnetic boundary conditions are perfectly described in theoretical work [63]. For the further analysis, let’s use 
F1, F2, and F3 instead of F(1), F(3), and F(5), respectively. It is worth mentioning that in this case there are two 
identical eigenvalues (8). This fact allows the utilization of F = F1 + F2 that will be naturally used below and 
plays a crucial role in the discovery of new SH-SAWs. Therefore, it is possible to state that this three-partial 
wave with F1, F2, and F3 looks like a hidden two-partial wave with F and F3. 

At the interface between the PEM medium and a vacuum (x3 = 0) the mechanically free surface requires that 
the normal component of the stress tensor must vanish, namely σ32 = 0 [61]. The electrical boundary conditions 
at the interface include the continuity of both the electrical induction (D3 = Df) and the electrical potential (φ = φ 

f) where the superscript f relates to a vacuum. Besides, the magnetic boundary conditions at the interface include 
the continuity of both the magnetic flux (B3 = Bf) and the magnetic potential (ψ = ψf). 

For the PEM medium, the parameters corresponding to the mechanical, electrical, and magnetic boundary 
conditions can be expressed as follows: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 0 1 1 0 1 1 0 1
32 1 3 3 3

3 0 3 3 0 3 3 0 3
2 3 3 3

5 0 5 5 0 5 5 0 5
3 3 3 3 .

F Ck U ek hk

F Ck U ek hk

F Ck U ek hk

σ ϕ ψ

ϕ ψ

ϕ ψ

 = + + 
 + + + 
 + + + 

                     (23) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 11 1 0 1 1 0 1
3 1 3 3 3

0 33 3 0 3 3 0 3
2 3 3 3

0 55 5 0 5 5 0 5
3 3 3 3

 

.

D F ek U k k

F ek U k k

F ek U k k

ε ϕ α ψ

ε ϕ α ψ

ε ϕ α ψ

 = − − 
 + − − 
 + − − 

                     (24) 

( ) ( ) ( )0 1 0 3 0 5
1 2F F Fϕ ϕ ϕ ϕ= + +                                    (25) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 11 1 0 1 1 0 1
3 1 3 3 3

0 33 3 0 3 3 0 3
2 3 3 3

0 55 5 0 5 5 0 5
3 3 3 3

 

.

B F hk U k k

F hk U k k

F hk U k k

α φ µ ψ

α φ µ ψ

α φ µ ψ

 = − − 
 + − − 
 + − − 

                     (26) 

( ) ( ) ( )0 1 0 3 0 5
1 2 3F F Fψ ψ ψ ψ= + +                                   (27) 

where F1 = F(1), F2 = F(3), and F3 = F(5).  
The corresponding vacuum parameters read: 

0 1 0jf f
ED F kϕ ε= −                                        (28) 

0
f f

EFϕ ϕ=                                             (29) 

0 1 0jf f
MB F kψ µ= −                                       (30) 

0
f f

MFψ ψ=                                            (31) 

where FE and FM are the electrical and magnetic weight factors, respectively.  
In order to elucidate the vacuum material parameters, it is essential to state that the elastic constant C0 of the 

free space (vacuum) is as high as C0 = 0.001 Pa [77]. It is clearly seen that it must be multiplied by a factor of 
1013 in order to be comparable with the corresponding material parameter of a solid. Thus, the neglect of this 
vacuum parameter is understandable in the calculations. However, the other two material parameters must be  
accounted. They are the magnetic permeability constant, [ ]–7 6 2

0 4π 10 H m 1.25663706144 10 N Aµ −  = × = ×   ,  

and the dielectric permittivity constant, ( ) [ ]–7 2 10
0 10 4π 0.08854187817 10 F mLCε −= = ×  where  

[ ]82.99782458 10 m sLC = ×  is the speed of light in the free space. For the magnetic and electrical potentials in 
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a vacuum, it is natural to write the corresponding Laplace equations of types ∆ψf = 0 and ∆φf = 0, where ∆ de-
notes the differential operator called the Laplacian that forms a vector field from a scalar one.  

Utilizing the equations corresponding to the mechanical, magnetic, and electrical boundary conditions written 
above, the following matrix form of three homogeneous equations [61] can be inscribed: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1 0 1 0 1 0 1 3 0 3 0 3 0 3 5 0 5 0 5 0 5
3 3 3

0 1 0 3 0 51 1 0 1 1 0 1 3 3 0 3 3 0 3 5 5 0 5 5 0 5
3 3 0 3 3 3 0 3 3 3 0 3

0 1 0 31 1 0 1 1 0 1 3 3 0 3 3 0 3
3 3 3 0 3 3 3 0

j j j

j j

n CU e h n CU e h n CU e h

en U n n en U n n en U n n

hn U n n hn U n n hn

ϕ ψ ϕ ψ ϕ ψ

ε ε ϕ α ψ ε ε ϕ α ψ ε ε ϕ α ψ

α ϕ µ µ ψ α ϕ µ µ ψ

     + + + + + +     

− − − − − − − − −

− − − − − − ( ) ( ) ( ) ( ) ( )( ) ( )0 55 5 0 5 5 0 5
3 3 3 0

1

2

3

j

0
0 .
0

U n n

F
F
F

α ϕ µ µ ψ

 
 
 
 
 
 − − − 
   
   ⋅ =   

  
  

 

(32) 
where the corresponding eigenvalues n3 are used instead of k3 = kn3. The vacuum material parameters ε0 and μ0 
are already accounted in equations (32) because the vacuum weight factors FE and FM can be naturally excluded; 
see the boundary conditions written above. 

It is natural to use expressions (15) and (16) to simplify equations (32). As a result, the following equalities 
can be used to significantly simplify equations (32): 

( ) ( ) ( ) ( ) ( ) ( )0 1 0 1 0 1 0 3 0 3 0 3CU e h CU e h e hϕ ψ ϕ ψ µ α+ + = + + = −                      (33) 

( ) ( ) ( ) ( )
2

0 5 0 5 0 5
2

1 em

em

K
CU e h e h

K
ϕ ψ µ α

+
+ + = −                                  (34) 

( ) ( ) ( ) ( ) ( ) ( )0 1 0 30 1 0 1 0 3 0 3 2eU eUεϕ αψ εϕ αψ εµ α− − = − − = − +                     (35) 

( ) ( ) ( )
2 2

0 5 0 5 0 5 2
2 2 2 0
em em em

e eh h eheU
CK CK CK

µ α ε αεϕ αψ εµ α−
− − = + − − + =                (36) 

( ) ( ) ( ) ( ) ( ) ( )0 1 0 30 1 0 1 0 3 0 3 0hU hUαϕ µψ αϕ µψ αµ µα− − = − − = − + =                (37) 

( ) ( ) ( )
2 2

0 5 0 5 0 5
2 2 2 0
em em em

e h h h e hhU
CK CK CK
µ α α µαϕ µψ αµ αµ−

− − = + − − + =               (38) 

The exploitation of equalities from (33) to (38) and eigenvalues (8) and (9) for the matrix form (32) allows 
one to rewrite three homogeneous equations (32) in the following simplified forms: 

( )
22

1 2 3 2

1
1 0phem

temem

VK
e h F F F

VK
µ α

  + − + + − =    

                     (39) 

( ) ( )
2 2

2
1 2 0 3 0 2 0em m

em

K K
F F F

K
ε ε µ α ε µ

− + + − + =                       (40) 

2 2

1 2 3 2 0em

em

K K
F F F

K
αα

 −
− + + = 

 
                                  (41) 

It is apparent that three homogeneous equations written in matrix form (32) with their simplified forms ob-
tained in equations from (39) to (41) are identical. Therefore, it is possible to compose the determinant of the 
coefficient matrix called the determinant of the boundary conditions that must vanish to obtain a certain phase 
velocity Vph satisfying the boundary conditions. Analyzing equations from (39) to (41), it is possible to reveal 
that the composed determinant will have two identical columns such as the first and second ones. This peculiar-
ity allows the conclusion such that the matrix determinant will be equal to zero at any value of the phase veloci-
ty Vph. This means that there is uncertainty for the velocity Vph. However, the value of the suitable SH-SAW 
speed must not exceed the value of the SH-BAW speed Vtem. Indeed, all the apt SH-SAW speeds satisfying the 
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boundary conditions must be disclosed. 
To avoid this uncertainty for the phase velocity Vph, it is natural to use F = F1 + F2 and to rewrite equations 

from (39) to (41) as follows: 

( )
22

3 2

1
1 0phem

temem

VK
e h F F

VK
µ α

  + − + − =    

                      (42) 

( )
2 2

2
0 3 0 2 0em m

em

K K
F F

K
ε ε µ α ε µ

− + − + =                         (43) 

2 2

3 2 0em

em

K K
F F

K
αα

 −
− + = 

 
                                   (44) 

It is visible that the set of equations from (42) to (44) is the same to the set of equations from (39) to (41) be-
cause F = F1 + F2 was used. There is already no uncertainty of the phase velocity Vph for the set of equations 
from (42) to (44). This is true because they represent three homogeneous equations in two unknown weight fac-
tors such as F and F3. It is well-known that such new system of equations can have a certain solution of the ve-
locity Vph when three equations from (42) to (44) are dependable from each other. This happens as soon as one 
equation represents a sum of two others. Therefore, three equations from (42) to (44) must be properly trans-
formed into a set of suitable consistent equations. 

In order to obtain three consistent equations, it is natural to treat equation (43) as the main one and multiply 
Equations (42) and (44) by ( ) ( )0 –e hε ε µ µ α+  and α, respectively. So, one can get the following three ho-
mogeneous equations that are already consistent and have the same dimension: 

( )
22

0 3 2

1
1 0phem

temem

VK
F F

VK
ε ε µ

  + + + − =    

                     (45) 

( )
2 2

2
0 3 0 2 0em m

em

K K
F F

K
ε ε µ α ε µ

− + − + =                        (46) 

2 2
2

3 2 0em

em

K K
F F

K
αα

 −
− + = 

 
                                 (47) 

So, three equations from (45) to (47) in two unknowns F and F3 are consistent because the left-hand side of 
main equation (46) can become equal to zero as soon as equations (45) and (47) are successively subtracted 
from equation (46). This subtraction leads to the certain velocity of new SH-SAW. Also, main equation (46) can 
be used to disclose the explicit forms of the weight factors F and F3. It is also convenient to rewrite three equa-
tions from (45) to (47) as the following set of two equations in two unknowns F and F3: 

( ) ( )
22 2 2

2 2
0 3 02 2

1
1 0phem em

temem em

VK K K
F F

VK K
αε ε µ α α ε ε µ

  − +  + − + + + − =      

      (48) 

( )
2 2

2
0 3 0 2 0em m

em

K K
F F

K
ε ε µ α ε µ

− + − + =                                   (49) 

where Equation (48) represents a sum of equations (45) and (47). 
It is clearly seen in the first term of equations (48) and (49) that the factor at F such as ( ) 2

0 –ε ε µ α +   can 
be interpreted as coupling mechanism (7) of CMEMC (4) such as (εμ – α2) when the vacuum electrical parame-
ter ε0 must be also included. To determine the SH-SAW velocity, it is necessary to subtract equation (48) from 
Equation (49), or vice versa, because they must be identical. So, the value of the velocity Vnew2 of the new 
SH-SAW recently discovered in book [61] (the new SH-SAW velocity is defined by expression (120) in the 
book, see also papers [1] [78]) can be calculated with the following explicit formula: 
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( )

( )

( ) ( ) ( )
( ) ( )

1 22

2 2 2 2 2 20

2
2

0

1 22
2

0 0

2 2 2
0

1
1 1

1
2

em m L em

new tem

em

tem

K K C K K
V V

K

e h e h
V

C C e h eh

α
µ

α
µ

ε
ε

µ α ε µ α α ε ε

ε ε µ εµ α µ ε α

  
  − + −
  = −     + +      

   − + − +   = −  + − + + −   

           (50) 

In formula (50) there are two possibilities when Vnew2 = Vtem occurs: 0e hµ α− =  and 
( ) ( )2

0 0 0e hε µ α α ε ε+ − + = . Also, the speed of light CL in a vacuum is defined by 

2

0 0

1
LC

ε µ
=                                         (51) 

It is worth mentioning that the SH-SAW defined by expression (50) represents one of the seven new SH- 
SAWs recently discovered in book [61]. This new SH-SAW can propagate along the free surface of the hex-
agonal PEM medium of symmetry class 6 mm. Also, it is natural to demonstrate the case when the piezomag-
netic and electromagnetic constants vanish, namely h = 0 and α = 0. In this case, the PEM SH-SAW defined by 
expression (50) reduces to the well-known velocity VBGpe of the surface Bleustein-Gulyaev waves [72] [73] 
propagating in a purely piezoelectric solid. The velocity VBGpe is defined by 

( )( )

1 22
2

2
0

1
1 1

e
BGpe te

e

K
V V

K ε ε

  
  = −  + +   

                         (52) 

In definition (52), Vte and 2
eK  respectively stand for the SH-BAW velocity coupled with the electrical poten-

tial and the coefficient of the electromechanical coupling (CEMC). They represent very important material cha-
racteristics of a pure piezoelectrics and read as follows: 

( )1 22
4 1te t eV V K= +                                  (53) 

2
2
e

eK
Cε

=                                         (54) 

In formula (53), the velocity Vt4 is defined by expression (2). 
Formula (50) for the new SH-SAW velocity discovered in book [61] is given in this paper for comparison 

with the other new results obtained below. The main purpose of this paper is to discover additional new SH- 
SAWs that can propagate in the PEM using the same set of the boundary conditions at the vacuum-solid inter-
face: σ32 = 0, φ = φf, D = Df, ψ = ψf, and B = Bf. Therefore, two new solutions for new SH-SAW propagation are 
obtained in subdivisions (i) and (ii) below. Also, it is necessary to state that this theoretical study can be useful 
for constitution of a set of technical devices based on smart PEM solids and the further researches on the propa-
gation of the plate and interfacial SH-waves. 

(i) Similar to the theory developed above for the PEM SH-wave propagation (see also in book [61]) it is 
possible to start with the analysis of three homogeneous equations from (42) to (44) in two unknowns F and F3. 
The second possibility for coupling mechanism (7) of CMEMC (4) such as (εμ – α2) can be also treated when 
there is also the coupling with the vacuum electrical constant ε0. Therefore, Equation (43) with the factor at F 
such as ( ) 2

0ε µ µ α + −   is the main equation that is not changed for this case. This main equation must 
couple Equations (42) and (44) together forming a system of three homogeneous equations in two unknown 
weight factors F and F3. It is flagrant that these three equations can become dependent on each other as soon as 
Equation (42) is multiplied by ( ) ( )2 e hεµ α µ α− −  and Equation (44) is multiplied by –ε0μ/α. Accordingly, 
three equations from (42) to (44) can be rewritten as follows: 
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( )
22

2
3 2

1
1 0phem

temem

VK
F F

VK
εµ α

  + − + − =    

                      (55) 

( )
2 2

2
0 3 0 2 0em m

em

K K
F F

K
ε ε µ α ε µ

− + − + =                         (56) 

2 2

0 3 2 0em

em

K K
F F

K
αε µ

 −
+ = 

 
                                   (57) 

It is flagrant that it is convenient to cope with the set of two homogeneous equations in two unknowns F and 
F3 instead of three equations from (55) to (57) written above. A sum of Equations (55) and (57) leads to the fol-
lowing convenient set of equations: 

( ) ( )
22 2 2

2 2
0 3 0 2 2

1
1 0phem em

temem em

VK K K
F F

VK K
αε ε µ α ε µ εµ α

  − +  + − + + − − =      

       (58) 

( )
2 2

2
0 3 0 2 0em m

em

K K
F F

K
ε ε µ α ε µ

− + − + =                                    (59) 

Therefore, the velocity Vnew10 of the tenth new anti-plane polarized SAW propagating along the free surface of 
the PEM medium is obtained by a subtraction of Equation (58) from Equation (59). Also, the velocity Vnew10 can 
be obtained by a successive subtraction of Equations (55) and (57) from main Equation (56). Thus, this reads: 

( )

1 222 2
0

10 2 2

1 22

0
2 2 2

1
1

1
2

m
new tem

em

tem

K K
V V

K

e e hh
V

e C C e h eh

αε µ
εµ α

µ αε
α εµ α µ ε α

  − = −  
− +   

 − 
 = − − 

− + + −   

                    (60) 

In expression (60), the following equality e hµ α=  results in Vnew10 = Vtem.  
So, it is possible to state that the new SH-SAW discovered in this paper can propagate with the velocity Vnew10 

expressed by formula (60). This is the new solution that was not considered in book [61]. Concerning the 
SH-wave propagation in the PEM plates [65], solution (60) discovered in this paper is more preferable and con-
venient than solution (50) discovered in book [61]. Also, solution (60) looks like simple one compared with so-
lution (50). However, one can find a very interesting peculiarity: ( )2 0Kα α → →∞  results in the fact that the 
new SH-SAW defined by expression (60) cannot exist because the expression under the square root in formula 
(60) can have a negative sign resulting in an imaginary value of the SH-SAW velocity. This peculiarity does not 
exist for solution (50) allowing SH-SAW propagation for very small values of the electromagnetic constant α, 
even for α = 0. 

(ii) Consider the second case that also leads to discovery of an extra new SH-SAW. However, it is essential to 
clarify why this case must be considered. The author of this paper has understood that this case can be possible 
after the study of the interfacial SH-wave propagation directed by the perfectly bonded interface between two 
dissimilar PEMs of symmetry class 6 mm [64]. This case is relevant to coupling mechanism (5) of CMEMC (4) 
such as (eμ – hα). 

Let’s start with the analysis of three equations from (42) to (44). It is indispensable to treat Equation (42) as 
the main equation that couples Equations (43) and (44) in a set of three homogeneous equations to make them 
consistent. For this purpose, it is necessary to multiply the left-hand side of Equation (43) by  

( ) 2
0eµ ε µ µ α + −   and the one of Equation (44) by the piezomagnetic constant h because it already has the 

factor such as the constant α. As a result, three equations from (42) to (44) can be rewritten as follows: 

( )
22

3 2

1
1 0phem

temem

VK
e h F F

VK
µ α

  + − + − =    

                         (61) 
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( )
2 2

0
3 2 2

0

0em m

em

K K
e F F

K
ε µ

µ
ε ε µ α

 −
+ = 

+ −  
                          (62) 

2 2

3 2 0em

em

K K
h F F

K
αα

 −
− + = 

 
                                     (63) 

The set of three equations from (61) to (63) can be rewritten as a set of two corresponding equations for con-
venience. Indeed, a sum of Equations (62) and (63) allows one to compose the following apt set of two homo-
geneous equations: 

( )
22

3 2

1
1 0phem

temem

VK
e h F F

VK
µ α

  + − + − =    

                       (64) 

( )
( )

2 2 2 2
0

3 2 2 2
0

0em em m

em em

K K K K
F e h F h e

K K
α ε µ

µ α α µ
ε ε µ α

 − −
− + − + = 

+ −  
          (65) 

These two equations lead to the following explicit form for the velocity Vnew11 of the eleventh new SH-SAW: 

( )

( ) ( ) ( )
( )( )

1 222 2 2 2
0

11 2 2 2
0

1 222
0 0

2 2 2 2
0

1
1 1

1
2

em em m
new tem

em em

tem

K K K Kh eV V
e h e hK K

e e h h e h
V

C C e h eh

α ε µα µ
µ α µ α ε ε µ α

ε µ µ α εµ ε µ α α ε

εµ ε µ α εµ α µ ε α

  − − = − − +  − − + + − +  

  − − + − −  = −  + − − + + −   

       (66) 

It is obvious that the following equality Vnew11 = Vtem occurs in expression (66) as soon as one treats the case 
of ( ) ( ) ( )2

0 0 0e e h h e hε µ µ α εµ ε µ α α ε− − + − − = . This equation can be also rewritten as  
( )2

0 emC K h e hε µ α ε= − . 
For the case of a very small value of the constant α (α → 0) formula (66) reduces to the following form: 

( )( )

1 22
2 2

11_ 0 0 2 2 2 2
0

1
1 1 1

m e
new tem

e m e m

K K
V V

K K K K ε ε

  
  = − − +  + + + + +   

                 (67) 

where 

( )1 22 2
0 4 1tem t e mV V K K= + +                                (68) 

( )2 2 20em e mK K Kα → → +                                 (69) 

With h = 0, formula (67) reduces to formula (53) for the velocity VBGpe of the surface Bleustein-Gulyaev wave 
[72] [73] existing in a purely piezoelectric solid. So, it is possible to conclude that the consideration of CMEMC 
coupling mechanism (5) such as (eμ – hα) results in the new SH-SAW propagating with the velocity Vnew11 de-
fined by explicit form (66). Solutions (50), (60), and (66) are true because they are based on the natural coupling 
mechanisms of the CMEMC. 

3. Numerical Results and Discussion 
Comparative numerical calculations are listed in Table 1 for the different BaTiO3-CoFe2O4 composites. For 
comparison, the table provides results of the calculations of the propagation speeds for six known SH-SAWs 
that can exist for the same set of the electrical and magnetic boundary conditions: the velocities Vnew1, Vnew2, 
Vnew8, Vnew9, Vnew10, and Vnew11 of the first, second, eighth, ninth, tenth, eleventh new SH-SAWs. The reader can 
find that all the speeds of the studied new SH-waves are slower than the SH-BAW speed Vtem. The interesting 
issue is the existence of the eighth and tenth new SH-SAWs. The eighth can exist only for the 20% volume fraction 
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Table 1. The material and wave characteristics of the piezoelectromagnetic composites consisting of BaTiO3-CoFe2O4 of 
class 6 mm. Following the results given in papers [53] [54], the material constants are given as percentage volume fraction 
(VF) of BaTiO3 in the composites consisting of BaTiO3-CoFe2O4. It is worth noting that the magnetic permeability of a va-
cuum is ( ) ( )–17 1 7

0 4π 10 H m ~ 12.566371 10 V s A mµ − − −   = × ⋅ × ⋅ ⋅ ⋅    ; 10–12 N⋅s/(V⋅C) = ps/m; F = C/V; T = Tesla = 

N⋅(A⋅m)–1. The mass density is assumed the same ρ = 5730 [kg/m3].                                                    

Composite VF 0% 20% 40% 60% 80% 100% 

C, 1010 [N/m2] 4.53 4.50 4.50 4.50 5.00 4.30 

e [C/m2] 0 0.1 0.2 0.3 0.4 11.6 

h [T] 560 340 220 180 80 0 

ε, 10–10 [F/m] 0.8 3.3 8.0 9.0 10.0 112.0 

μ, 10–6 [N/A2] –590 –390 –250 –150 –80 5.0 

α, 10–12 [N⋅s/V⋅C] 0 2.8 4.8 6.0 6.8 0 
2
emK  - −0.00591346104 −0.003191064178 −0.00257767111 0.001600108799 - 

Vt4 [m/s] 2811.71818686 2802.39239604 2802.39239604 2802.39239604 2953.98095634 2739.40924320 

Vtem [m/s] - 2794.09419095 2797.91751629 2798.77824255 2956.34335715 - 

Vnew1 [m/s] - 2794.09419031 2797.91751562 2798.77824023 2956.34335618 - 

Vnew2 [m/s] - 2794.09419051 2797.91751608 2798.77824189 2956.34335598 - 

Vnew8 [m/s] - 1354.51142927 does not exist does not exist does not exist - 

Vnew9 [m/s] - 2794.09350866 2797.91570936 2798.77104004 2956.32802670 - 

Vnew10 [m/s] - does not exist does not exist does not exist 1640.10493727 - 

Vnew11 [m/s] - 2794.03318064 2797.89160405 2798.74612598 2956.33971662 - 

 
of BaTiO3 in the composites consisting of BaTiO3-CoFe2O4. On the other hand, the tenth can exist only for the 
80% volume fraction. This fact can be explained by a strong dependence of the nondimensional parameter α2/εµ. 
This interesting found moment by the numerical study can be researched in the future more widely because this 
short report theoretically predicts and numerically demonstrates the existence of the new SH-SAWs. 

Let’s continue our debates on the following problem: how many surface SH-waves can exist in the trans-
versely isotropic piezoelectromagnetics. This is an important question because there is an opinion that in this 
particular case, an infinite number of analytical solutions obtained in explicit forms can be found. For today, the 
author can certainly state that as many as fourteen different SH-SAWs can propagate treating different sets of 
the electrical and magnetic boundary conditions. Indeed, the author of this theoretical report can agree only with 
three SH-SAWs of twelve theoretically discovered by Melkumyan [60]. Seven new SH-SAWs were theoretical-
ly discovered in book [61], two new SH-SAWs were discovered in paper [75], and extra two new SH-SAWs 
were discovered in this report. The number of possible SH-waves is big but it does not approach an infinity. The 
reader can check the relatively simple mathematics used above in this report to analytically find possible extra 
solutions. 

Concerning the boundary conditions used in this report, they represent the most complicated case. Therefore, 
more possibilities can exist and as many as six new SH-SAWs were discovered: the first and second in book 
[61], the eighth and ninth in paper [75], and the tenth and eleventh in this report. The existence of six SH-SAWs 
for the same set of the boundary conditions at the solid-vacuum boundary (σ32 = 0, φ = φf, D = Df, ψ = ψf, and B 
= Bf) can be naturally explain by the existence of the different possible coupling mechanisms of the CMEMC 
such as e hα ε− , e hµ α− , and 2εµ α− . It is possible to assume that the first two mechanisms represent ex-
change ones and only the third can relate to the magnetoelectric effect. Therefore, different solutions correspond 
to different CMEMC coupling mechanisms. The other important factor that influence of the number of possible 
SH-SAWs is the fact that there are two different sets of the eigenvector components for the same eigenvalue. 
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Utilization of two different sets of the eigenvector components can frequently lead to two different solutions. 
This fact certainly increases the number of possible SH-SAWs that can propagate in the transversely isotropic 
piezoelectromagnetics. It is also discussed that so many solutions for the transversely isotropic case are possible 
because only one of three suitable eigenvalues defined by formulae (8) and (9) depends on the phase velocity 
and all the apt corresponding eigenvector components do not depend on the velocity. The different picture there 
is for the problem of SH-SAW propagation in the cubic piezoelectromagnetics. It was numerically found in 
book [62] that two different sets of the eigenvector components lead to the same result for the propagation ve-
locity. As a result, only seven possible new SH-SAWs were numerically found in [62]: two different sets of the 
eigenvector components actually lead here to the same result for the propagation velocity for each possible set of 
the electrical and magnetic boundary conditions. The interesting issue is that the solutions can be obtained only 
by an analytical method for the transversely isotropic case but the solutions (after expanding the determinant of 
the boundary conditions) can be obtained only by a numerical method for the cubic case. The author will be glad 
if one can find analytical solutions for the cubic case. Also, the solution for the surface Bleustein-Gulyaev- 
Melkumyan wave can be also found analytically in the cubic piezoelectromagnetics [62]. 

Finally, some incorrect solutions obtained in papers [79] [80] and mentioned in review [1] for the propagation 
problem of SH-wave managed by the PEM free surface are also exist. It is possible to discuss them in a few 
words. These incorrect solutions pertain to the same set of the boundary conditions at the solid-vacuum boun-
dary: σ32 = 0, φ = φf, D = Df, ψ = ψf, and B = Bf. The authors of theoretical articles [79] [80] have used the other 
theoretical methods leading to the other forms [1] that are different from formulae (50), (60), and (66). Moreo-
ver, their results discussed in review [1] even differ from each other. Review paper [1] has also exhibited that 
their results are incorrect because they can definitely mix two different eigenvectors for the same material. The 
eigenvector mixing is possible when one eigenvector is used for one material and the second for the second ma-
terial for the problem of the interfacial SH-wave propagation along the common interface between two dissimi-
lar piezoelectromagnetics that was analytically demonstrated in paper [81]. Besides, the authors of papers [79] 
[80] did not demonstrate that they have found suitable eigenvectors. It is worth noting that to find all the suitable 
eigenvalues and the corresponding eigenvectors is the main mathematical procedure to resolve the coupled equ-
ations of motion. Therefore, the authors of papers [79] [80] did not find any true solutions for the coupled equa-
tions of motion and the author of this paper cannot agree with their solutions. Their method can be used for the 
study of this particular and particularistic case and cannot be used for the other cases, for instance, for the prob-
lem of the SH-SAW existence in the cubic piezoelectromagnetics. 

4. Conclusion 
This theoretical work has demonstrated that extra two new solutions of new SH-SAWs propagating along the 
free surface of the transversely isotropic PEM medium of symmetry class 6 mm can be found. The discovered 
two SH-SAWs relate to the case of σ32 = 0, φ = φf, D = Df, ψ = ψf, and B = Bf representing the boundary condi-
tions at the interface between the PEM and a vacuum. The found solutions correspond to two natural coupling 
mechanisms such as e hµ α−  and 2εµ α−  in the coefficient of the magnetoelectromechanical coupling 
(CMEMC). Comparative numerical calculations are listed in the table for the different BaTiO3-CoFe2O4 compo-
sites. The obtained theoretical results can be useful for constitution of an assortment of technical devices based 
on smart PEM materials. Also, it is thought that the obtained theoretical results can be useful for development of 
some further research on the propagation of the interfacial SH-waves and the plate SH-waves in the PEM 
(composite) systems are required to better understand their properties. Different SH-waves actually represent an 
interest in sensor technologies, nondestructive testing and evaluation of surfaces, interfaces, and plates. 
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