
Journal of Software Engineering and Applications, 2011, 4, 426-432 
doi:10.4236/jsea.2011.47049 Published Online July 2011 (http://www.SciRP.org/journal/jsea) 

Copyright © 2011 SciRes.                                                                             JSEA 

Mapping Software Metrics to Module Complexity: 
A Pattern Classification Approach 

Nick John Pizzi 
   

Department of Computer Science, University of Manitoba, Winnipeg, Canada. 
Email: pizzi@cs.umanitoba.ca 
 
Received June 3rd, 2011; revised June 30th, 2011; accepted July 1st, 2011. 

 
ABSTRACT 

A desirable software engineering goal is the prediction of software module complexity (a qualitative concept) using 
automatically generated software metrics (quantitative measurements). This goal may be couched in the language of 
pattern classification; namely, given a set of metrics (a pattern) for a software module, predict the class (level of com-
plexity) to which the module belongs. To find this mapping from metrics to complexity, we present a classification 
strategy, stochastic metric selection, to determine the subset of software metrics that yields the greatest predictive pow-
er with respect to module complexity. We demonstrate the effectiveness of this strategy by empirically evaluating it us-
ing a publicly available dataset of metrics compiled from a medical imaging system and comparing the prediction re-
sults against several classification system benchmarks. 
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1. Introduction 

Software systems are used to solve or model increas-
ingly complex problems in a variety of application do-
mains. However, problem complexity should not mani-
fest itself as software module complexity. That is, prob-
lem complexity should only produce software complex-
ity as an emergent property and not as an intrinsic prop-
erty of individual software modules (functions, objects, 
templates, and so on). Intrinsic module complexity is an 
undesirable characteristic that is often subjectively iden-
tified by software developers for some form of remedial 
action. However, this subjective process is slow, tedious, 
and error-prone. Automating (to some extent) this proc-
ess would be desirable especially if coupled with a more 
rigorous quantitative approach. One possible strategy is 
the prediction of software module complexity using auto- 
matically generated quantitative measurements, namely 
software metrics [1,2]. 

A software metric is a mapping from a software mod-
ule to a set of numerical values to quantify one or more 
software attributes [3]. These metrics are commonly re-
garded as important factors reflecting the nature of soft-
ware systems including, among other characteristics, the 
property of complexity [4-7]. Software complexity has a 
direct influence on its quality, clarity, extensibility, and 
maintainability. The analysis of complexity may be cast 

as a problem of pattern classification: find a mapping that 
predicts the class label (level of software complexity) of 
a pattern (software module), given only its features 
(software metrics). Such a classification system could 
serve as a “complexity filter” for software modules. For 
instance, a project manager or software developer could 
use such a filter to predict module complexity to identify 
highly complex software modules for review and possi-
ble revision. 

While some metrics may have discriminatory power, 
that is, predictive utility vis-à-vis complexity, other met-
rics may have none. Moreover, it is possible for some 
metrics to have a potential deleterious effect on the clas-
sification process [8-11]; these confounding metrics dis-
tort class boundaries in the metric space (for instance, 
delineating between high complexity and low complexity 
modules), thereby reducing classification performance 
(accuracy). Therefore, it is important not only to identify 
discriminatory metrics but to also cull confounding ones. 
To this end, stochastic metric selection is investigated as 
a pattern classification strategy to determine the subset of 
software metrics that best predict software module com-
plexity. The strategy, which stochastically examines 
subsets of software metrics for their predictive power, is 
empirically evaluated using a database of software met-
rics from a large medical image processing system, and 
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the strategy’s classification performance is compared 
against several classification system benchmarks. Section 
2 presents a brief overview of the dataset’s software met-
rics. Section 3 describes the classification strategy for 
finding a mapping between software metrics and module 
complexity. Details relating to the design of the experi-
ments and the results compared against the benchmarks 
are presented in Section 4 and Section 5, respectively, 
with concluding remarks in Section 6. 

2. Classification & Software Measurements 

Couched in classification terms, we are interested in 
finding a mapping between patterns (metrics) and class 
labels (complexity); formally, X={(xk, ωk), k = 1,2,…,N} 
is a set of N patterns, xk∈

n, with respective class labels, 
ωk ∈={1,2,…,c}. X is randomly allocated to a design 
subset (often referred to as a training set), XD, comprising 
ND patterns, or a validation subset (often referred to as a 
test set), XV, comprising NV patterns (ND + NV = N). A 
classification system finds a mapping, f: XD  . Sub-
sequently, f is validated using XV, f: XV  . In our spe-
cific case, X is the dataset described in Section 2.1 where 
xk is the list of software metrics (see Section 2.2) for 
software module k. As defined in Section 2.3, we will use 
c = 2 class labels for complexity: low, ω1, and high, ω2. 

It is important to note at this point that the choices for 
metrics and class labels described below were made for 
the sake of expediency; specifically, these were the pa-
rameters that were supplied in the publicly available da-
taset. Class labels, based on change counts (see Section 
2.3), are unlikely to be the best delineators of software 
module complexity, nor are the supplied metrics neces-
sarily the best predictors of complexity. No claim is 
made as to the optimality of these parameters vis-à-vis 
complexity prediction, rather we make the simple prag-
matic assertion that they will serve as an experimental 
test bed to examine the efficacy of treating the assess-
ment of software module complexity as a problem of 
pattern classification. 

2.1. Medical Imaging System 

This investigation considers the Medical Imaging System 
(MIS) dataset [12] that has been used in some other stu-
dies dealing with software quality [13,14]. MIS is a 
commercial software system consisting of approximately 
4500 modules and comprising approximately 400000 
lines of code. The dataset consists of N = 390 software 
modules. Each module is described using n = 11 software 
metrics as well as its change count, which is a reflection 
of its complexity [7]. 

2.2. Software Metrics 

As the software engineering literature provides thorough 

and extensive discussions of the software metrics used in 
this investigation, including their relative advantages and 
disadvantages [13,15-17], we restrict ourselves to brief 
summaries. The first software metrics collected for each 
MIS module are the ubiquitous “lines of code” (L1), 
which is the total number of lines of code including pro-
grammer comments, and the number of lines of code 
excluding comments (L2). The next set of software 
measures includes the number of code characters (C1), 
comments (C2), comment characters (C3), and code 
characters (C4), respectively. 

Another set of software measures pertain to more 
complex computations based on the length of a program: 
Halstead’s measure of program length (P1), which is the 
sum of the total number of program operators and the 
total number of program operands [18]; Halstead’s soft-
ware measure of estimated program length (P2), P2 = 
η1logη1 + η2logη2, where η1 and η2 are the total number 
of unique program operators and program operands, re-
spectively; and, Jensen’s program length (P3), P3 = 
(logη1)! + (logη2)! [16]. 

The final two software measures concern program 
control flow graphs: McCabe’s cyclomatic number (F1), 
which is one more than the total number of decision 
nodes in the control flow graph [19]; and Belady’s 
bandwidth metric (F2), F2 = a–1 i (i  ai), where ai is the 
number of nodes at level i in a nested control flow graph 
of a nodes. 

2.3. Change Count 

In this investigation, the change count (CC) measure is 
used as the class label. While the MIS dataset has 42 
unique CC labels, it is unrealistic to expect reliable classi-
fication results using so many class labels with only 390 
modules. As a result, the CC class labels are aggregated 
into two qualitative classes, low (ω1) complexity versus 
high (ω2) complexity, using two different points of de-
lineation, DS3 (no more than three programmer changes) 
and DS4 (no more than four programmer changes). The 
delineations were arbitrarily chosen, before the classifica-
tion experiments were conducted, so that the two com-
plexity classes were well distributed (roughly an equal 
number of software modules in each class). 

With DS3, the number of software modules in the low 
complexity class is N11 = 192 and the number of software 
modules in the high class is N12 = 198, respectively. With 
DS4, the number of software modules in the low class is 
N21 = 220 and the number of modules in the high class is 
N22 = 170. 

3. Classification Method 

3.1. Stochastic Metric Selection 

The motivation for pre-processing strategies exploiting 
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pattern feature selection [20-22] is to simplify the deter-
mination and construction of optimal class boundaries in 
the feature space. An example of such a strategy is sto-
chastic metric selection (SMS), which is based on previ-
ous work described in [11] but modified to deal with 
software metrics. Figure 1 presents a flowchart of the 
iterative SMS algorithm, which individual steps we now 
describe below. 

The investigator must select the classifier types to be 
used; SMS operates with homogeneous or heterogeneous 
collections of pattern classifiers e.g., linear discriminant 
analysis, artificial neural networks, genetic algorithms, 
and support vector machines). The algorithm terminates 
upon exceeding a maximum number of iterations, τ, or a 
performance (classification accuracy) threshold, PS. A 
number of different performance measures may be used 
(see Section 4.2). The subsets of metrics are constrained 
by four parameters: the minimum and maximum number 
of metric subsets, and the minimum and maximum car-
dinality for a metric subset. Metric subsets may also be 
quadratically combined to produce “new” metrics (see 
below). Using b-fold validation, X is randomly allocated 
to either XD or XV. During the design phase, an instantia-
tion of one of the pattern classifier types is used with 
randomly sampled metric subsets (satisfying the con-
straints above) from XD to design a mapping. Subse-
quently, during the validation phase, the classification 
performance (accuracy), P, is measured using XV. This 
process iterates with many pairs of classifier instances 
and metric subsets. 

SMS exploits the quadratic combination of metric 
subsets. The intent is that if the original metric space had 
non-linear class boundaries, the new (quadratic) parame-
ter space may end up having class boundaries that are 
more linear. SMS has three categories of quadratic com-
binations: using the original metric subset; squaring the 
 

SMS algorithm 

(1) Select parameter values, classifiers types, and P. 

(2) Repeat while iteration count   and P'  PS: 

i) Select metric subsets using histogram. 

ii) Perform quadratic transformation of subsets. 

iii) Instantiate a classifier type. 

iv) Repeat b times (b-fold validation): 

a) Randomly allocate X to XD and XV. 

b) Design mapping using classifier and XD. 

c) Assess performance using XV. 

v) If P'  PH, update frequency histogram. 

vi) If P' exceeds current best performance, update. 
(3) Report best P' (with standard deviation). 

Figure 1. Flowchart for SMS algorithm (P' is the median 
performance result of a set of b runs). 

metric values for a particular metric subset; and using all 
pair-wise cross products of metrics from two subsets. 
The probabilities (set by the investigator) of selecting 
one of these quadratic metric combination categories 
must sum to 1. 

The stochastic nature of SMS is controlled by a metric 
frequency histogram whereby the performance of each 
classification task is assessed using the selected per-
formance measure. If the performance exceeds the histo-
gram fitness threshold, PH, the histogram is incremented 
at those metric indices corresponding to the subsets used 
by the classification task. This metric histogram is used 
to generate an ad hoc cumulative distribution function, 
which is used when randomly sampling new metric sub-
sets. So, rather than each metric having an equal likeli-
hood of being selected for a new classification task (a 
new classifier instance), those software metrics that were 
used in previous “successful” classification tasks have a 
greater likelihood of being chosen. A temperature term, 0 
 t  1, provides additional control over this metric sam-
pling process. If t = 0, the cumulative distribution func-
tion is used but, as t  1, the randomness becomes more 
uniform (when t = 1 a strict uniform distribution is used). 

3.2. Underlying Classifier 

As previously mentioned, the SMS algorithm can operate 
with any kind of underlying pattern classifier. In this 
investigation, we chose a simple linear pattern classifier 
using linear discriminant analysis (LDA) [8], which de-
termines linear class boundaries between c classes (in our 
case, complexity) while simultaneously taking into ac-
count between-class and within-class variances. If the 
error distributions for each class are the same, it can be 
shown that LDA finds the optimal set of linear class 
boundaries. In real-world pattern classification situations, 
this optimality is seldom achieved since different classes 
of patterns typically give rise to different (sometimes, 
significantly different) distributions. 

The LDA algorithm allocates a pattern, x, to class k for 
which the probability distribution, pk(x), is greatest, that 
is, x is allocated to class k, if qk pk(x)  qi pi(x) (i  k), 
where qk are the prior (or proportional) probabilities. Lk(x) 
= logqk + mk

T W–1(x–½mk) is the discriminant function for 
class k where mk is the mean for class k and W is the co-
variance matrix. The metric space hyperplane, Fki(x), 
separating class k from class i is defined as Fki(x) = Lk(x) 
– Li(x) = 0. 

4. Experiment Design 

4.1. Benchmarks 

To assess the effectiveness of SMS for the prediction of 
module complexity, we compare it against the perform-
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ance of two classification system benchmarks, the sup-
port vector machine and the radial basis function net-
work. 

4.1.1. Support Vector Machine 
The support vector machine (SVM) [23,24] is an impor-
tant family of supervised learning algorithms that select 
models that maximize the error margin of a training (de-
sign) subset. This approach has been successively used in 
a wide range of pattern classification problems [25,26]. 
Given a set of patterns that are assigned to one of either 
two classes, an SVM finds the hyperplane leaving the 
largest possible fraction of patterns of the same class on 
the same side while maximizing the distance of either 
class from the hyperplane. The SVM approach is usually 
formulated as a constrained optimization problem and 
solved using constrained quadratic programming. 

While the original SVM approach [26] could only be 
used for linearly separable problems, it may be extended 
by employing a “kernel trick” [27] that exploits the fact 
that a non-linear mapping of sufficiently high dimension 
can project the patterns to a new parameter space in 
which classes can be separated by a hyperplane. In gen-
eral, it cannot be determined a priori which kernel will 
produce good classification results for a given dataset so 
one must rely on heuristic (trial and error) experiments. 
Common kernel functions, K(x, y), for patterns, x, y, in-
clude (x × y)d, (ax × y + b)d, tanh(ax × y + b), and 
exp(–½|x – y|2/σ). 

4.1.2. Radial Basis Function Network 
A radial basis function network (RBF) [28], which may 
be used for pattern classification, has an internal repre-
sentation of nodes that possess radial symmetry f(x) = 
φ(||x–μ||) where: μ is its centre; ||·|| is a distance metric 
that determines how far an input pattern is from μ; and, 
the transfer function, φ, must output high values when 
the distance from a pattern to μ is small, and low values 
otherwise. While RBF train quickly [29], selecting the 
number of receptive fields is strictly ad hoc. If μi is a 
column vector representing the centre of pattern layer 
node i and σi is its receptive region diameter, then zi(x) = 
exp[–(x – μi)

T(x – μi)/(2σi
2) is the output for a given pat-

tern, x. The values μ and σ may analogously be viewed 
as the mean and standard deviation of the response curve, 
respectively. 

The response function of an RBF node diminishes ra-
pidly as patterns deviate from its mean. Here, the pattern 
layer weights are trained as well as the location and 
shape of the response curves. Standard k-means cluster-
ing is used to compute a μ set. The radius of the normal-
ized zi is determined by σi. If μi is widely separated then 
σi should be large to cover the gaps. If they are tightly 

packed then σi should be small enough to accurately re-
tain the distinctiveness of each receptive field. P-nearest 
neighbor is a standard heuristic algorithm used to deter-
mine σi is. Given a receptive region’s centre, σi, let 
i1,…,ip be the indices of the P centres nearest to μi. Then 
σi = (P–1p||μi – μip||

2)½ (here, P=1). 

4.2. Measuring Performance 

Selecting a method for measuring the performance (ac-
curacy) of a classification system is often taken for 
granted, which often leads to overly optimistic classifica-
tion performance results. Given an n×n confusion matrix 
of desired versus predicted class labels, classification 
performance is typically measured using the observed 
agreement, Po = N–1i nii (i=1,2,…,c), which is the ratio 
of patterns that lie in regions associated with their corre-
sponding classes to the total number of patterns regard-
less of where they lie (nii are the diagonal elements of the 
confusion matrix). While often used to measure classifi-
cation performance, Po does not take into account the 
classification agreement that might be due to chance, Pr = 
N–2i (j nij j nji) (i, j=1,2,…,c) [30]. A more conserva-
tive classification performance measure is the κ score 
[31,32], a chance-corrected measure of agreement be-
tween the desired and predicted class assignments, κ = 
(Po – Pr)/(1 – Pr). If the classification agreement is due 
strictly to chance, κ = 0. If the agreement is greater than 
chance κ>0; κ = 1 indicates complete (perfect) agreement. 
If the agreement is less than chance then κ < 0 (the min-
imum value depends upon the marginal distributions). 

4.3. Parameter Settings 

The following parameter values were used with the SMS 
algorithm: underlying classifier, LDA; frequency histo-
gram threshold, 0.4; temperature threshold, t = 0.5; 
number of metric subsets, 1–11; metric subset cardinality, 
1–11; validation, b = 5; and classification performance 
measure, κ. For all experiments, five receptive fields 
were used for the RBF algorithm and the Gaussian kernel 
was used for SVM. Concerning SMS quadratic metric 
combinations, 30% were squared terms, pair-wise cross 
products were utilized 30% of the time, and the remain-
ing 40% used subsets of the original metrics. For SMS, 
each classification experiment was allowed to run for 105 
iterations. 

5. Results and Discussion 

5.1. Predictive Power 

Tables 1 and 2 list the breakdown of software module 
patterns into design (XD) and validation (XV) subsets of 
metrics for the respective datasets, DS3 and DS4, as des 
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Table 1. Low/high complexity breakdown: Design and vali-
dation subsets for DS3. 

Metric Patterns Class 
Label XD XV Total 

Low (1) 128 64 N11 = 192 

High (2) 128 70 N12 = 198 

 
Table 2. Low/high complexity breakdown: Design and vali-
dation subsets for DS4. 

Metric Patterns Class 
Label XD XV Total 

Low (1) 114 106 N21 = 220 

High (2) 114 56 N22 = 170 

 
cribed in Section 2.3. The SMS, SVM, and RBF algo-
rithms all use XD to design their respective classification 
mappings and XV to validate the classification perform-
ance. 

Table 3 lists the mean (with standard deviations) clas-
sification performance results for DS3 with all classifiers 
using the validation subset of metrics, XV. It is clear that 
the SMS algorithm produced significantly better classi-
fication results than either benchmark (recall that both 
benchmarks used all of the original metrics). Compared 
against the best classifier benchmark (the SVM algo-
rithm), SMS produced a 29% increase in the κ score 
(0.71 ± 0.02 versus 0.55 ± 0.02) and a 10% increase in 
the standard Po agreement measure (0.86 ± 0.01 versus 
0.78 ± 0.01). 

At this point, it is important to note the greater rate of 
improvement with the conservative κ score. This demon-
strates that the classification performance increase with 
SMS is more significant than Po would suggest. This is 
because the SMS algorithm had a concomitant improve-
ment in both the sensitivity and specificity results. Fi-
nally, the class-wise accuracy (0.90 ± 0.01) for high (ω2) 
complexity software modules is an excellent result as one 
of the motivations for this classification system is to have 
high predictive power for problematic software modules 
(that is, those considered to be of high complexity). 

Table 4 lists the mean (with standard deviations) clas-
sification performance results for DS3 with all classifiers 
using the validation subset of metrics, XV. Again, SMS 
produced better results than the best benchmark (SVM): 
a 12% increase in the κ score (0.58 ± 0.02 versus 0.52 ± 
0.02) and a 4% increase for Po (0.81±0.01 versus 0.78 ± 
0.01). It is interesting to note that the SMS Po values for 
DS3 and DS4 are similar, 0.86 and 0.81, respectively, 
(only a 6% difference) but the κ scores are sig nificantly 

Table 3. DS3 Validation Subset (XV) results with κ, PO, 
and class-wise accuracies. 

Accuracies 
Classifier

Low (1) High (2)  Po 

SMS 0.81 ± 0.01 0.90 ± 0.01 0.71 ± 0.02 0.86 ± 0.01

RBF 0.67 ± 0.03 0.81 ± 0.01 0.49 ± 0.03 0.75 ± 0.02

SVM 0.70 ± 0.01 0.84 ± 0.02 0.55 ± 0.02 0.78 ± 0.01

 
Table 4. DS3 Validation Subset (XV) results with κ, PO, 
and class-wise accuracies. 

Accuracies 
Classifier

Low (1) High (2)  Po 

SMS 0.86 ± 0.01 0.71 ± 0.02 0.58 ± 0.02 0.81 ± 0.01

RBF 0.80 ± 0.01 0.70 ± 0.02 0.49 ± 0.01 0.77 ± 0.01

SVM 0.81 ± 0.01 0.71 ± 0.02 0.52 ± 0.02 0.78 ± 0.01

 
different, 0.71 and 0.58, respectively (a 22% difference). 
This is evidenced by the poorer balance between the sen-
sitivity and specificity in the case of DS4. Again, while 
Po suggests little difference in the classification per-
formance results using the different datasets, κ strongly 
suggests that DS3 is a much better delineated dataset. 

5.2. Predictive Software Metrics 

In the case of DS3, two software metric subsets were 
selected as being highly discriminatory. One subset used 
eight of the original software metrics: C1, C2, C3, C4, P1, 
P2, P3, and F1. The other subset was a pair-wise cross 
product of the metrics C1, C2, C3, and C4 with C1, C2, 
and C3. In the case of DS4, two metric subsets were also 
selected. The first used ten of the original software met-
rics excluding only F2. The other metric subset was the 
squared values of all software metrics except F2 and F1. 
Both experiments demonstrate that quadratic combina-
tions of these software metrics effect greater predictive 
power than any combination of the original software me-
trics. 

6. Conclusions 

The stochastic metric selection algorithm has been shown 
to be an effective strategy for the prediction of software 
module complexity, as expressed by module change count, 
given a set of software metrics. Compared to the conven-
tional classification system benchmarks, this strategy 
produced significantly better overall classification results, 
as well as improved sensitivity and specificity, using 
only a subset of the original metrics. Finally, it was par-
ticularly effective in predicting the occurrence of high 
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complexity modules, which is an important characteristic 
for software project managers and program developers 
when maintaining and updating software modules. 
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