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ABSTRACT 
We present techniques for characterization, modeling and generation of workloads for cloud computing applications. 
Methods for capturing the workloads of cloud computing applications in two different models - benchmark application 
and workload models are described. We give the design and implementation of a synthetic workload generator that 
accepts the benchmark and workload model specifications generated by the characterization and modeling of work-
loads of cloud computing applications. We propose the Georgia Tech Cloud Workload Specification Language 
(GT-CWSL) that provides a structured way for specification of application workloads. The GT-CWSL combines the 
specifications of benchmark and workload models to create workload specifications that are used by a synthetic work-
load generator to generate synthetic workloads for performance evaluation of cloud computing applications. 
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1. Introduction 

Synthetic workload generation techniques are required 
for performance evaluation of complex multitier applica-
tions such as e-Commerce, Business-to-Business, Bank-
ing and Financial, Retail and Social Networking applica-
tions deployed in cloud computing environments. Each 
class of applications has its own characteristic workloads. 
There is a need for automating the process of extraction 
of workload characteristics from different applications 
and a standard way of specifying the workload characte-
ristics that can be used for synthetic workload generation 
for evaluating the performance of applications. The per-
formance of complex multitier systems is an important 
factor for their success. Therefore, performance evalua-
tions are critical for such systems. Provisioning and ca-
pacity planning is a challenging task for complex mul-
ti-tier systems as they can experience rapid changes in 
their workloads. Over-provisioning in advance for such 
systems is not economically feasible. Cloud computing 
provides a promising approach of dynamically scaling up 
or scaling down the capacity based on the application 
workload. For resource management and capacity plan-
ning decisions, it is important to understand the workload 
characteristics of such systems and measure the sensitive- 

ity of the application performance to the workload 
attributes. In this paper we briefly propose, 1) techniques 
for extraction of semantic and time behaviors from ap-
plications at both task and operational levels for mul-
ti-tenanted cloud platforms, 2) benchmark and workload 
models for complex multi-tier applications that allows 
describing different benchmarks in the form of building 
blocks, 3) the Georgia Tech Cloud Workload specifica-
tion language (GT-CWSL) that provides a standard way 
for defining application workloads in a form that can be 
used by synthetic workload generation techniques, and 4) 
workload generation techniques based on the workload 
specifications of enterprise applications, for generating 
synthetic workloads. In this paper we describe a work-
load characterization, modeling and generation approach 
that can be used for a wide range of multi-tiered applica-
tions. We evaluate the proposed methodology using the 
RUBiS e-commerce benchmark that models an online 
auction site (such as ebay.com) and TPC-W benchmark 
that models an online book store (such as amazon.com). 
We describe the characterization and modeling of the 
workloads of RUBiS and TPC-W benchmarks and pro-
vide a comparison of the generated synthetic workloads 
and empirical workloads obtained from logged traces. 
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2. Related Work 
Several studies on analysis and modeling of web work-
loads have been done [1-3]. Since obtaining real traces 
from complex multi-tier systems is difficult, a number of 
benchmarks have been developed to model the real sys-
tems [4-8]. There are several workload generation tools 
developed to study Web servers such as SPECweb99 [3], 
SURGE [9], SWAT [10] and httperf [3]. Such workload 
generation tools repeatedly send requests from machines 
configured as clients to the intended systems under test. 
Table 1 provides a comparison of few workload genera-
tion tools. Several other tools generate synthetic work-
loads through transformation (eg. permutation) of empir-
ical workload traces [11-13]. The commonly used tech-
niques for workload generation are user emulation and 
aggregate workload generation. In user emulation, each 
user is emulated by a separate thread that mimics the 
actions of a user by alternating between making requests 
and lying idle. The attributes for workload generation in 
the user emulation method include think time, request 
types, inter-request dependencies, etc. User emulation 
allows fine grained control over modeling the behavioral 
aspects of the users interacting with the system under test, 
however, it does not allow controlling the exact time 
instants at which the requests arrive the system [9]. This 
is because in user emulation, a new request is issued only 
after the response to the previous request has been re-
ceived. Thus, due to network delays, heavy loads on sys-
tem under test, etc, the intervals between successive re-
quests increase. Aggregate workload generation is 
another approach that allows specifying the exact time 
instants at which the requests should arrive the system 
under test [14]. However, there is no notion of an indi-
vidual user in aggregate workload generation, therefore, 
it is not possible to use this approach when dependencies 
between requests need to be satisfied. Dependencies can 
be of two types - inter-request and data dependencies. An 
inter-request dependency exists when the current request 
depends on the previous request, whereas a data depen-
dency exists when the current requests requires input 
data which is obtained from the response of the previous 
request. 

3. Motivation 

We now describe the motivation for workload characte-
rization and modeling, workload specification and syn-
thetic workload generation for cloud computing applica-
tions. 

3.1. Workload Modeling 

Workload modeling involves creation of mathematical 
models that can be used for generation of synthetic 

workloads. Workloads of applications are often recorded 
as traces of workload related events such as arrival of 
requests along with the time-stamps, details about the 
users requesting the services, etc. Analysis of such traces 
can provide insights into the workloads characteristics 
which can be used for formulating mathematical models 
for the workloads. 

3.2. Workload Specification 
Since the workload models of each class of cloud compu-
ting applications can have different workload attributes, 
there is a need for standardizing the specification of ap-
plication workloads. A Workload Specification Lan-
guage (WSL) can provide a structured way for specifying 
the workload attributes that are critical to the perfor-
mance of the applications. WSL can be used by synthetic 
workload generators for generating workloads with 
slightly varying the characteristics. This can be used to 
perform sensitivity analysis of the application perfor-
mance to the workload attributes by generating synthetic 
workloads. 

3.3. Synthetic Workload Generation  
An important requirement for a synthetic workload ge-
nerator is that the generated workloads should be repre-
sentative of the real workloads and should preserve the 
important characteristics of real workloads such as in-
ter-session and intra-session intervals, etc. There are two 
approaches to synthetic workload generation: 1) Empiri-
cal approach, in which traces of applications are sampled 
and replayed to generate the synthetic workloads, 2) 
Analytical approach, which uses mathematical models to 
define the workload characteristics that are used by a 
synthetic workload generator. The empirical approach 
lacks flexibility as the real traces obtained from a partic-
ular system are used for workload generation which may 
not well represent the workloads on other systems with 
different configurations, load conditions, etc. On the oth-
er hand, the analytical approach is flexible and allows 
generation of workloads with different characteristics by 
varying the workload model attributes. With the analyti-
cal approach it is possible to modify the workload model 
parameters one at a time and investigate the effect on 
application performance to measure the application sen-
sitivity to different parameters. 

4. Current Challenges & Contributions  
We now describe the shortcomings in the previous ap-
proaches and the contributions in our proposed metho-
dology to address these shortcomings. 

4.1. Accuracy  
The effectiveness of any benchmarking methodology is  
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Table 1. Comparison of published approaches. 

Reference Approach Application Input Output 

httperf [3] 

Has a core HTTP engine that handles 
all communication with the server, a 
workload generation module that is 
responsible for initiating appropriate 
HTTP calls at the appropriate times, 
and a statistics collection module. 

A tool that gene-
rates various 
HTTP workloads 
and for measuring 
server perfor-
mance. 

Request URLs, specifications of the 
request rates, number of connec-
tions, etc. 

Requests generated at the 
specified rate. 

SURGE 
[9] 

Uses an offline trace generation 
engine to create traces of requests. 
Web characteristics such as file 
sizes, request sizes, popularity, tem-
poral locality, etc., are statistically 
modeled. 

Request generation 
for testing network 
and server perfor-
mance. 

Pre-computed data-sets consisting of 
the sequence of requests to be made, 
the number of embedded files in 
each web object to be requested, and 
the sequences of Active and Inactive 
OFF times to be inserted between 
request. 

An output workload that 
agrees with the six distri-
butional models that make 
up the SURGE model (file 
sizes, request sizes, popu-
larity, embedded refer-
ences, temporal locality, 
and OFF times). 

SWAT 
[10] 

Uses a trace generation engine that 
takes sessionlets (a sequence of 
request types from a real system 
user) as input and produces an output 
trace of sessions for stress test. 
SWAT uses httperf for request gen-
eration. 

Stress testing 
session based web 
applications. 

Trace of sessionlets obtained from 
access logs of a live system under 
test, specifications of think time, 
session length, session inter-arrival 
time, etc. 

Trace of sessions for stress 
test. 

 
defined by how accurately it is able to model the perfor-
mance of the application. Accuracy of a benchmarking 
methodology is determined by how closely the generated 
synthetic workloads mimic the realistic workloads. Ag-
gregate workload generation techniques such as the one 
used in Geist [14], can run into difficulties when in-
ter-request or data dependencies exist. Therefore, we 
adopt a user emulation approach where the workload 
characterizations are in the form of the behavior of an 
individual user. By accurately modeling the application 
characteristics, request types, inter-request dependencies, 
data dependencies, transition probabilities, think times, 
intersession intervals and session lengths, by analysis of 
traces of applications, our proposed methodology is able 
to generate workloads that are representative of the real 
workloads. 

4.2. Ease of Use 
The existing tools reviewed in the related work section, 
require a significant amount of hand coding effort for 
writing scripts for workload generation that take into 
account the dependencies between requests, workload 
attributes, etc. For example, TPC-W [7] uses a remote 
browser emulation (RBE) system for generating work-
loads that accepts specifications for workload mix which 
are provided in separate script files. Furthermore, there 
are scripts for requests that are executed such that the 
specified workload mix can be obtained. To add new 
specifications for workload mix and new requests, addi-
tional scripts need to be written. Writing additional 
scripts for new requests may be complex and time con-

suming as inter-request dependencies need to be take 
care of. In our proposed approach, we perform an auto-
mated analysis of the application traces and extract the 
application characteristics using the benchmark and 
workload model generators. Addition of new requests 
can be done by changing the benchmark model specifica-
tion whereas new workload mix can be specified by 
making changes in the workload model specification. 
The GT-CWSL code generator accepts these benchmark 
and workload model specifications and generates the 
benchmark driver file that drives the synthetic workload 
generator.  

4.3. Flexibility  

Our proposed methodology allows fine grained control 
over the workload attributes such as think time, in-
ter-session interval, session length, workload mix, etc. 
By varying the characterizations of the attributes of the 
benchmark and workload models, different workloads 
can be generated to test the system under study and also 
perform a sensitivity analysis of the performance of the 
system to various model attributes. Sensitivity analysis is 
performed by varying one workload characteristic at a 
time while keeping others constant. Such an analysis is 
not possible using an empirical approach as it not possi-
ble to obtain empirical traces with such varying work-
loads.  

4.4. Wide Application Coverage  

Workload modeling and generation techniques have been 
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investigated in the past for different classes of applica-
tions. For each class of application, different workload 
specification and generation approaches have been used. 
Our approach differs from the existing approaches as we 
provide a generic methodology for extraction of workload 
characteristics from different classes of applications, cap-
turing the workload characteristic in benchmark and 
workload models and a synthetic workload generator that 
accepts the workload specifications in the form of our 
proposed cloud workload specification language (GT- 
CWSL). The advantage of using two separate models to 
guide the synthetic workload generation is that the pro-
posed workload generation process becomes independent 
of the application under study. The benchmark model 
captures the different requests types/operations allowed in 
the benchmark application, proportions of different re-
quest types and the dependencies between the requests. 
The workload model captures workload attributes such as 
inter-session interval, think time and session length. Since 
the synthetic workload generator used in our methodology 
is generic in nature and generates workloads based on the 
GT-CWSL specifications, the workload generation 
process becomes independent of the application.  

5. Proposed Methodology 
Figure 1 shows an overview of our proposed approach 
for workload characterization, modeling and generation.  

5.1. Trace Generation and Analysis  

A benchmark application is instrumented to generate 
traces which have information regarding the user, the 
requests submitted by the user and the time-stamps of the 
requests. Typically in the benchmark applications sepa-
rate threads are created for each user, where each thread 
creates an instance of the load driver or the load genera-
tion logic. By instrumenting the load driver of a bench-
mark application we can obtain the access logs. An ex-
ample of a trace generated from a benchmark application 
is shown in Table 2. Each entry in the trace has a 
time-stamp, request type, request parameters and user’s 
IP address. For a benchmark application that uses a syn-
thetic workload generator running on a single machine, 
IP address cannot be used for identifying the users. In 
that case, the thread-ID (where each thread represents a  
separate user) is used. The trace generated from a 
benchmark has all the requests from all users merged into 
a single file. The trace analyzer identifies unique us-
ers/sessions based on the IP address or thread-ID from 
which the request came. The terms user and session can-
not be always used interchangeably because a single user 
can create multiple sessions. Therefore, we use a 
time-threshold to identify a session. All requests that 
come from a single user within that threshold are consi-
dered as a single session. 

 

Figure 1. Proposed methodology for workload characterization, modeling and generation. 
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Table 2. Trace generated from a benchmark application. 

1119844280621 Home ip:192.168.0.2 
1119844280635 Login username:user1 password:pwd1   
              ip:192.168.0.2 
1119844280646 AddEvent eventname:event1  
              date:05062010 venue:room1  
              description:meeting ip:192.168.0.2 
1119844280648 Home ip:192.168.0.3 
1119844280655 ViewEvent eventname:event1  
               ip:192.168.0.2 
1119844280662 Login username:user2 password:pwd2  
               ip:192.168.0.3 
1119844280675 ViewEvent eventname:event2 
               ip:192.168.0.3 

 

5.2. Modeling Workloads  
The trace generated from a benchmark application is 
analyzed by a trace analyzer. Two different models are 
generated from the analysis of the traces, 1) Benchmark 
Model, 2) Workload Model. The attributes of benchmark 
and workload models are shown in Table 3. The charac-
terizations for the attributes of benchmark and workload 
models are obtained by the analysis of empirical traces 
obtained from benchmark applications.  

a) Session: A set of successive requests submitted by a 
user constitute a session.  

b) Inter-Session Interval: Inter-session interval is the 
time interval between successive sessions.  

c) Think Time: In a session, a user submits a series of 
requests in succession. The time interval between two 
successive requests is called think time. Think time is the 
inactive period between subsequent requests in a session. 
It is the time taken by the user to review the response of a 
request and decide what the next request should be.  

d) Session Length: The number of requests submitted 
by a user in a session is called the session length.  

e) Workload Mix: Workload mix defines the transi-
tions between different pages of an application and the 
proportion in which the pages are visited. 

5.3. Benchmark Model 
The benchmark model includes attributes such as opera-
tions, workload mix, inter-request dependencies and data 
dependencies. The benchmark modeling approach in our 
proposed methodology is based on Probabilistic Finite 
State Machine (PFSM) Model [15]. A Probabilistic Fi-
nite State Machine (PFSM) is a non-deterministic finite 
state machine in which every transition has an associated 

 
Table 3. Attributes of benchmark and workload models. 
Model  Attributes 
Benchmark Model Operations, Workload mix, Inter-request 

dependencies, Data dependencies 
Workload Model Inter-session interval, Think time, Session 

length 

output and a probability. A PFSM M is defined by a tuple, 
M = (I, O, S, T, P), where I = {a1, , ap} is the finite 
input alphabet O = {o1, , oq} is the finite output alpha-
bet, S = {s1, , sn} is a finite set of states, T is the set of 
transitions and P is the probability of a transition. Each 
transition t T∈ is defined as a tuple, t = (s, q, a, o) 
where s is the current state, q is next state, a is the input 
symbol and o is the output symbol. For every state s and 
input symbol a, the sum of probabilities of all the transi-
tions out of s on input a is equal to 1. 

( )
,

, , , 1
q o

P s q a o =∑  

A PFSM is represented as a transition graph with n 
nodes, where each node represents a state. Transitions 
are represented by directed edges between the states. A 
directed edge exists between two states s and q only if 
the associated probability of the transition P(s,q,a,o) > 0.  

We now describe the operation of a PFSM. Consider 
the initial state of the machine to be si. When an input ak 
is received the machine makes a transition from si to sj 
with a probability P= (si, sj, ak, ol), and produces the 
output ol.  

For modeling different benchmarks we use PFSM as 
follows. Each state in the PFSM represents a web-page 
of the benchmark. The directed edges between states 
represent the transitions between different pages. Each 
transition has an input, an output and a probability. In-
puts in PFSM represent the operations of the application 
or the requests submitted by the user. Each opera-
tion/request R is defined as a tuple R = (X, D) where X is 
the request-type and D is the data associated with the 
request which is represented as key-value pairs. 

For representing the data associated with each request 
in the benchmark model, we use data substitution tags. 
The data substitution tags are used for generating the 
dynamic URLs during the synthetic workload generation. 
A data substitution tag can have two types of functions, 1) 
data generation, 2) data extraction. Consider the follow-
ing URL generated from the benchmark model specifica-
tion:  

http://Server/App/registerUser.php?name= 
<generateUsername(5,10)>&password=  
<generatePwd()>&email= 
<generateEmail(“@app.com”)>  
The functions used in the data substitution tags such as 

generateUsername(5,10) are the data generation func-
tions, which generate synthetic data. E.g. generateUser-
name(5,10) generates a random user name of length be-
tween 5 to 10 characters. Now consider another URL 
shown below: 

http://Server/App/viewEvent.php?eventname=<extract
EventNameFromHTML()> 
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The function extractEventNameFromHTML() used in 
the data substitution tag is the data extraction function, 
that extracts the value for the request parameter event-
name from the response of the previous HTML page.  

Figure 2, shows the PFSM model for a social event 
calendar application. Table 4 shows the details of the 
transitions in the PSFM model for the social event ca-
lendar application. Outputs in the PFSM model for an 
application represent the return values of the opera-
tions/requests.  

Characterization of Benchmark Model Attributes: Cha- 
racterization of benchmark model attributes involves 
identification of different operations/request types in a 
benchmark application, proportions of different request 
types, i.e. the workload mix, the inter-request and data 
dependencies.  

Given a trace of a benchmark application as shown in 
Table 2, the benchmark model generator first identifies 
the unique pages in the application or the request types in 
the trace, which are the states in the PFSM model. Then 
 

 
Figure 2. PFSM model for a social event calendar applica-
tion. 

the transitions between different pages of an application 
and the proportion in which the pages are visited are 
identified. These transitions represent the inter-request 
dependencies. The data associated with each request is 
also identified, which appears in the trace in the form of 
request parameters. Table 4 shows an example of a cha-
racterization of benchmark model attributes for a social 
event calendar application. 

Benchmark Model Specification: The benchmark mod-
el specifications are formulated in as an XML document 
that is input to the GT-CSWL code generator. Table 5 
shows the specifications of the benchmark model for a 
social event calendar application. The benchmark model 
specification contains details on various request types in 
the benchmark application, the request parameters and 
the transition probabilities for the PFSM model of the 
benchmark application. 

5.4. Workload Model 
The workload model includes attributes of the workload 
such as inter-session interval, think time and session 
length. The workload model describes the time behavior 
of the user requests. When multiple users submit requests 
to an application simultaneously the workload model 
attributes such as intersession interval, think time and 
session length are important to study the performance of 
the application. Think time and session length capture the 
client-side behavior in interacting with the application. 
Whereas the inter-session interval is a server-side aggre-
gate, that captures the behavior of a group of users inte-
racting with the application.  

Characterization of Workload Model Attributes: For 
characterizing the workload model attributes, it is neces-
sary to identify independent users/sessions in trace. The 
trace analyzer identifies unique users and sessions from 
the trace of a benchmark application. A statistical analy-
sis of the user requests is then performed to identify the 
right distributions that can be used to model the workload 
model attributes such as inter-session interval, think time 
and session length. The steps involved in characterizing 
workload model attributes are as follows:  

1) Select Candidate Distributions: We consider four 
candidate distributions for the workload model attributes, 
(1) Exponential distribution, (2) Hyper-exponential dis-
tribution, (3) Weibull distribution, and (4) Pareto distri-
bution.  

We now briefly describe the reasons for considering 
them as candidate distributions. Exponential distribution 
can be used for modeling inter-session intervals. Pre-
vious studies have shown that the session arrivals consti-
tute a Poisson process in which the arrivals are indepen-
dent and uniformly distributed. The inter-arrival times of 
a Poisson process are exponentially distributed. Hy- 
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Table 4. Transitions in the PFSM model for a social event calendar application. 

Transition No. Transition Operation/Request Type Data Probability 
1 Start-Home Start Session - 1 
2 Home-Login Login <username, user1>, <password, pwd> 0.6 
3 Home-Register Register User <username, user1>, <password, pwd>, <email, 

user1@app.com> 
0.3 

4 Home-End End Session - 0.1 
5 Login-Home Home - 0.1 
6 Login-AddEvent Add Event <eventname, event1>, <date, 12072010>, <venue, 

room1>, <description, meeting> 
0.4 

7 Login-ViewEvent View Event <eventname, event1> 0.4 
8 Login-End End Session - 0.1 
9 Register-Home Home - 0.1 
10 Register-Login Login <username, user1>, <password, pwd> 0.8 
11 Register-End End Session - 0.1 
12 AddEvent-Home Home - 0.1 
13 AddEvent-ViewEvent View Event <eventname, event3> 0.6 
14 AddEvent-End End Session - 0.3 
15 ViewEvent-Home Home - 0.1 
16 ViewEvent-AddEvent Add Event <eventname, event3>, <date, 05062010>, <venue, 

room3>, <description, meeting> 
0.6 

17 ViewEvent-End End Session - 0.3 
 
per-exponential can be used for modeling think times and 
inter-session intervals. The difference between hyper- 
exponential and exponential distribution is that the hy-
per-exponential distribution has a larger variance with 
respect to the mean, whereas an exponential distribution 
has variance equal to the mean. Pareto distribution is a 
“heavy-tailed” distribution in which very large values 
have non-negligible probability. Pareto distribution can 
be used to model session lengths, where long sessions 
have a non-negligible probability.  

2) Parameter Estimation: Given a set of candidate dis-
tributions for the workload model attributes, the parame-
ter estimation process identifies parameters for the dis-
tributions that best fit the data. We use the Maximum 
Likelihood Estimation (MLE) method for parameter es-
timation. The MLE method produces the parameter val-
ues that maximize the probability of sampling the given 
data values. Consider a distribution defined by a para-
meter θ . The likelihood function to observe a set of 
samples {x1, , xn}is given by,  

( ) ( )1
1

,., ; ;
n

n i
i

L x x f xθ θ
=

=∏  

where ( );if x θ is the distribution for parameter θ . 
Setting,  

( )ln 0L
θ
∂

=
∂

 

We can find the value of the parameter θ  that max-
imizes the likelihood. 

We use the MLE tool [16], which provides a language 
for building and estimating parameters of likelihood 
models. We use the PDF types EXPONENTIAL, HY-
PER2EXP, WEIBULL and PARETO supported in MLE. 

3) Checking the Goodness of fit: To verify the good-

ness of fit of the distributions with the estimated para-
meter values, we perform statistical tests devised by 
Kolmogorov and Smirnov (KS test) [3]. KS test is based 
on calculating the maximum distance between cumula-
tive distribution function of the candidate distribution 
and the empirical distribution. We use an online tool 
available at [17] for performing the KS tests for the ex-
periments. The data sets obtained from the logged and 
estimated distributions for workload model attributes are 
the input to the online tool, which calculates the maxi-
mum distance between the CDFs of the two input data 
sets. 

Workload Model Specification: The workload model 
specifications are formulated in as an XML document 
that is input to the GT-CSWL code generator. Table 6 
shows the specifications of the workload model for a 
social event calendar application. The workload model 
contains specifications for the distributions for the work-
load model attributes such as think time, inter-session 
interval and session length. The GT-CWSL code genera-
tor supports Negative-Exponential, Weibull, Hyper-Ex- 
ponential and Pareto distributions for the workload mod-
el attributes. 

5.5. Performance Policies 
The performance policies specify the service expecta-
tions from the benchmark. The performance requirement 
specifications include a series of service level objectives 
(SLO’s) that define the performance metrics such as the 
response time specification for each request in the appli-
cation. 

5.6. GT-CWSL  
GT-CWSL provides specifications for workload mix, ben- 



Synthetic Workload Generation for Cloud Computing Applications 

Copyright © 2011 SciRes.                                                                               JSEA 

403 

Table 5. Benchmark model specification for a social event 
calendar application. 

<?xml version = ”1.0” encoding=”UTF-8”?> 
<benchmark name = ”SocialEventCalendar”> 
    <requests> 
                <request name=”Home”> 
<path>/home.html</path></request> 
                <request name=”Login”> 
                       <path>/login.php</path> 
                       <param name=”username”> 
                              <data>getUsername()</data> 
                       </param> 
                       <param name=”password”> 
                              <data>getPassword()</data> 
                       </param> 
                </request> 
                <request name=”Register”> 
                      <path>/register.php</path> 
                      <param name=”username”> 
                      <data>generateUsername()</data> 
                      </param> 
                      <param name=”password”> 
                      <data>generatePassword()</data> 
                      </param> 
                      <param name=”email”> 
                      <data>generateEmail()</data> 
                      </param> 
                </request> 
... 
... 
                <request name=”ViewEvent”> 
                      <path>/viewEvent.php</path> 
                      <param name=”eventname”> 
                            <da-
ta>extractStringFromHTML(”eventname”)</data> 
                      </param> 
                </request> 
     </requests> 
     <workloadMix> 
                <request> 
                      <name>Home</name> 
     <r>0</r><r>60</r><r>40</r><r>0</r><r>0</r> 
                </request> 
                <request> 
                      <name>Login</name> 
  <r>20</r><r>0</r><r>0</r><r>40</r><r>40</r> 
                </request> 
                <request> 
                      <name>Register</name> 
<r>20</r><r>10</r><r>0</r><r>60</r><r>10</r> 
                </request> 
                <request> 
                      <name>AddEvent</name> 
<r>40</r><r>0</r><r>0</r><r>0</r><r>60</r> 
                </request> 
                <request> 
                      <name>ViewEvent</name> 
<r>40</r><r>0</r><r>0</r><r>60</r><r>0</r> 
                </request> 
      </workloadMix> 
</benchmark> 
 
chmark requests and workload model attributes such as 
think time, inter-session interval and session length dis-
tribution, using Java annotations. The GTCWSL code 
generator uses the Faban driver framework [18]. Faban  

Table 6. Workload model specification for a social event 
calendar application. 

<?xml version=”1.0” encoding=”UTF-8”?> 
<workload name=“SocialEventCalendar”> 
      <thinkTime> 
            <distribution>NegativeExponential</distribution> 
            <mean>4000</mean> 
            <min>100</min> 
            <max>20000</max> 
            <deviation>2</deviation> 
      </thinkTime> 
      <interSessionInterval> 
            <distribution>NegativeExponential</distribution> 
            <mean>3000</mean> 
            <min>100</min> 
            <max>15000</max> 
            <deviation>2</deviation> 
      </interSessionInterval> 
      <sessionLength> 
            <distribution>NegativeExponential</distribution> 
            <mean>10</mean> 
            <min>5</min> 
            <max>50</max> 
            <deviation>2</deviation> 
      </sessionLength> 
</workload> 

 
provides a framework for developing workloads (called 
the Driver Framework) and a mechanism for run execu-
tion and management (called the Harness). The GT- 
CWSL code generator takes the benchmark model, 
workload model and performance policy specifications 
as input and generates the benchmark driver file that in-
cludes GT-CWSL specifications as Java annotations. 
Table 7 shows a snippet of the generated GT-CWSL 
code which forms a part of the benchmark driver logic. 
The benchmark driver contains the logic defining how to 
interact with the system under test. The requests speci-
fied in the driver are selected for execution in a manner 
such as to obtain the workload mix specified in the 
workload model. The benchmark requests which are an-
notated as @Request define the logic that is used to gen-
erate the load for the system under test. The benchmark 
requests contain implementations for generation of the 
requests for the system under test and the data associated 
with the request. The implementations for the data gen-
eration and the extraction functions which are specified 
in the data substitution tags are provided in the bench-
mark driver.   

5.7. Run Configuration 
In addition to the specifications for benchmark and 
workload models and the performance policies, a run 
configuration file is required to provide the input para-
meters that control the benchmark run on the system un-
der test. The run configuration contains specifications of 
the ramp up, steady state and ramp down times, the 
number of users, output directory, etc. 
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Table 7. Sample GT-CWSL code. 

5.8. Test Harness Code 
To automate the running of benchmarks and queue mul-
tiple benchmark runs we use the Faban Harness infra-
structure [18]. The Faban Harness provides a web inter-
face to launch and queue benchmark runs and visualize 
the results. In order to hook the benchmark driver to the 
Faban Harness a test harness code is required. Although 
the logic for driving the workload is specified in the 
benchmark driver file, a mechanism is needed to connect 
the driver logic to the Faban Harness. This mechanism is 

provided using the test harness code. The test harness 
code defines the process of running the benchmark and 
the logic for customizing and controlling the behavior of 
the benchmark. The test harness code includes methods 
for starting and stopping a run, validation of configura-
tion file, configuring the benchmark before a run, pre- 
processing and post-processing that may be required for 
a run. 

5.9. Synthetic Workload Generation 

Figure 3 shows the block diagram for the synthetic 
workload generator used in our proposed methodology. 
This workload generator is built using the Faban run ex-
ecution and management infrastructure [18], which is an 
open source facility for deploying and running bench-
marks. We have extended the Faban Harness to accept 
GT-CWSL specifications that are generated by the 
GT-CWSL code generator using the benchmark and 
workload models. This synthetic workload generator 
allows generating workloads for multi-tier benchmark 
applications that are deployed across several nodes in a 
cloud. 

Figure 3 shows the Faban Master agent that controls 
the Driver agents that run on one or more machines and 
the system under test (SUT) that can have one or more 
machines. The different components of Faban are as fol-
lows:  

1) Master: The Faban master contains a web-server 
that runs the Faban harness which provides a web inter-
face to launch and queue benchmark runs and visualize 
the results. Multiple benchmark runs can be submitted to 
the system under test.  

2) RunQueue: Run Queue manages the benchmark 
runs which are run in a first in first out (FIFO) manner.  

3) LogServer: Log Server collects pseudo real time 
logs from the systems under test.  

4) Agent: Agent is the mechanism that drives the load. 
Agents are deployed on both the driver systems and the 
systems under test. These agents control the benchmark 
runs and collect the system statistics and metrics which 
are used for performance evaluation.  

5) Agent Thread: Multiple agent threads are created by 
an agent, where each thread simulates a single user.  

6) Registry: Registry registers all the agents with the 
Master so that the master can submit the load driving 
tasks to the agents.  

7) Driver: Driver is a class supplied by the developer 
that defines the logic for workload generation, workload 
characteristics, benchmark operations and the logic for 
generating requests and the associated data for each of 
the benchmark operations. 

@WorkloadDefinition ( 
    name = "SocialEventCalendar" 
) 
@ThinkTime ( 
    distType = DistributionType.NEGEXP, 
    distMin = 100, 
    distMean = 3000,  
    distMax = 15000,  
    distDeviation = 2  
) 
@InterSessionInterval ( 
    distType = DistributionType.NEGEXP, 
    distMin = 100, 
    distMean = 4000,  
    distMax = 20000,  
    distDeviation = 2  
) 
@SessionLength ( 
    distType = DistributionType.NEGEXP, 
    distMin = 5, 
    distMean = 10,  
    distMax = 50,  
    distDeviation = 2 
) 
@CommonPolicies( 
    maxUsers = 100000, 
    metric       = "req/s", 
    unit           = TimeUnit.MILLISECONDS 
) 
@WorkloadMix ( 
requests = {"Home", "Login", "Register", "AddEvent", "ViewEvent"}, 
mix = {  @Row ({ 0, 60, 40, 0, 0}), 
  @Row ({ 20, 0, 0, 40, 40}), 
  @Row ({ 20, 10, 0, 60, 10}), 
  @Row ({ 40, 0, 0, 0, 60}), 
  @Row ({ 40, 0, 0, 60, 0}) 
      }, 
      deviation = 2 
) 
@Request ( 
        name    = "Home", 
        path    = "/home.html", 
        max90th = 50 
    ) 
... 
@Request ( 
        name    = "Login", 
        path    = "/login.php", 
        data    = "?user-
name=<generateUserName()>&password=<generatePassword()>", 
        max90th = 100 
      ) 
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Figure 3. Synthetic workload generation. 

 
5.10. Master Controller 
The Master Controller is responsible for controlling the 
benchmark runs on the system under test. The Master 
Controller starts and stops the benchmark runs based on 
the specifications in the run configuration file. In addi-
tion to controlling the runs, the Master Controller also 
collects the runtime metrics from the system under test. 
Currently in our proposed framework, the Faban Master 
performs the tasks of the Master Controller.  

5.11. Deployment Tools 
Our proposed framework uses a number of deployment 
tools. For deploying the benchmark driver, a benchmark 
deploy image (jar file) is created from the benchmark 

driver file. The Faban Harness provides a utility for dep-
loying the benchmark deploy image on the systems under 
test.  

Faban Harness also provides a utility for deplying ser-
vices such as Apache2HttpdService, MySQLService, etc. 
The services which are configured in the run configura-
tion are started by the Faban Harness before the bench-
mark run starts and stopped after the run completes.  

The Faban framework allows deployment of pluggable 
tools for collecting information from specific server 
software. For example, tool for gathering the statistics 
from a MySQL instance using the MySQL query inter-
face, tool for looking into the Oracle database, etc. Tools 
get configured before the run starts and they actually 
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collect information from specific server software during 
the steady state.  

For deploying the benchmark application on the sys-
tem under test we developed a deployment utility that 
transfers the benchmark application files to the web 
server. The details of the web server on which the 
benchmark application is deployed (such as the hostname, 
host port, etc) are specified in a deployment configura-
tion file. 

6. Experiment Setup 
To demonstrate the proposed workload characterization, 
modeling and generation approach we created benchmark 
and workload models for the Rice University Bidding 
System [5] benchmark. RUBiS is an auction site proto-
type which has been modeled after the internet auction 
website eBay. To study the effect the different workload 
attributes on the response times, we performed a series of 
experiments by varying the workload attributes such as 
think time, inter-session interval, session length and 
number of users. The experiments were performed on a 
machine with Intel Core i5 3.2 GHz processor, 4 GB 
memory and 1TB disk space. We used a PHP implemen-
tation of the RUBiS benchmark for all the experiments. 
The benchmark was executed on an Apache-2.2.14 web 
server and MySQL 5.1.41 database server. We used Sys-
tat utility for measuring the system metrics. The perfor-
mance metric used for comparison of different runs is the 
90th percentile of the response time. To validate that the 
proposed approach works for a wide range of benchmarks 
we repeated the above experiments for the TPC-W 
benchmark [7] that models an online bookstore. We used 
a Java Servlets version of TPC-W benchmark that works 
with MySQL database. 

7. Performance Evaluation 
We instrumented the PHP implementation of the RUBiS 
benchmark and obtained the traces of the user requests, 
similar to the trace shown in Table 2. From the analysis 
of the logged traces the benchmark and workload models 
were generated. We considered a subset of the request 
types of RUBiS benchmark for the benchmark model. 
The distributions for the workload model attributes were 
estimated using the MLE approach described in Section 
V. Table 8 shows the KS test results for goodness of fit 
of the estimated distributions for the workload model 
attributes. The implementations of the data generation 
and data extraction functions are provided in the bench-
mark driver. From the KS test results it is observed that 
exponential distributions best fit the logged think time 
and inter-session attributes, whereas a Weibull distribu-
tion best fits the logged session length.  

Figures 4 - 6 show the comparisons of the cumulative  

Table 8. KS test results for workload model attributes. 

Attribute Exponential Hyper- 
exponential Weibull Pareto 

Think time 0.0561 0.132 0.1085 0.587 
Inter-session interval 0.0704 0.19 0.0754 0.453 

Session length 0.405 0.178 0.055 0.679 
 

 
Figure 4. Comparison of logged and estimated think time 
distributions for RUBiS benchmark application. 
 

 
Figure 5. Comparison of logged and estimated inter-session 
interval distributions for RUBiS benchmark application. 
 
distribution functions (CDFs) of the logged and esti-
mated distributions for think time, inter-session interval 
and session length respectively for the RUBiS bench-
mark application. Figures 7 - 9 show the comparisons of 
the CDFs of the distributions of think time, inter-session 
interval and session length respectively, of the logged 
and the generated synthetic workloads for the RUBiS 
benchmark application. From these plots it is observed 
that the distributions for the workload attributes for the 
logged and generated synthetic workloads for RUBiS 
benchmark application are very close to each other, which 



Synthetic Workload Generation for Cloud Computing Applications 

Copyright © 2011 SciRes.                                                                               JSEA 

407 

 
Figure 6. Comparison of logged and estimated session 
length distributions for RUBiS benchmark application. 

 
Figure 7. Comparison of logged and synthetic think time 
distributions for RUBiS benchmark application. 

 
Figure 8. Comparison of logged and synthetic inter-session 
interval distributions for RUBiS benchmark application. 

 
Figure 9. Comparison of logged and synthetic session length 
distributions for RUBiS benchmark application. 
 
validates that the our proposed approach for workload 
modeling and generation closely simulates the real 
workloads.  

We now provide the results of sensitivity analysis. We 
performed a number of experiments by varying the 
workload attributes one at a time to measure the sensitiv-
ity of the performance of the system under test to the 
workload attributes. Figure 10 shows the effect of think 
time on the 90th percentile of the response time (R90). For 
this experiment we performed a run with a steady state 
time of 5 minutes and the same number of users, average 
inter-session interval, average session length and work-
load mix. From Figure 10 it is observed that as the think 
time increases R90 decreases. The reason for this is that as 
the think time increases while keeping other workload 
attributes fixed, the mean request arrival rate decreases. 
Since fewer requests are serviced per second with an 
increasing think time, R90 decreases. Figure 11 shows the 
effect of inter-session interval on R90. We performed a 
run with a steady state time of 5 minutes while keeping 
the other workload attributes such as number of users, 
think time, average session length and workload mix the 
same. From Figure 11 it is observed that as the in-
ter-session interval increases, R90 decreases. This is be-
cause with an increasing inter-session interval, the mean 
request arrival rate decreases, thus fewer requests are 
serviced per second, which decreases R90. Figure 12 
shows the effect of session length on R90. We performed 
a run with a steady state time of 5 minutes, and the same 
number of users, average think time, average intersession 
interval and workload mix. From Figure 12 it is ob-
served that by increasing the session length, R90 increases. 
This is because for larger session lengths, the number of 
concurrent sessions and thus the mean request arrival rate 
increases.    
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Figure 10. Effect of think time for RUBiS benchmark ap-
plication. 
 

 
Figure 11. Effect of inter-session interval for RUBiS 
benchmark application. 
 

 
Figure 12. Effect of session length for RUBiS benchmark 
application. 
 

Existing approaches such as SURGE [9] and SWAT 
[10] have used offline trace generation and request gen-
eration approach where a trace is first generated that 
meets the desired workload characteristics and then a 
request generation engine is used to submit the requests 

from the generated trace. The advantage of offline trace 
generation is that it separates the complex process of 
computing request parameters and workload attributes 
from the request submission step. In the request submis-
sion process the requests are read from the trace and 
submitted to the system under test. However, for per-
forming rapid sensitivity analysis where only one work-
load attribute is changed at a time while keeping others 
constant, an online trace generation approach is preferred. 
In the online trace generation and request submission 
approach, the threads that emulate the users generate and 
submit the requests to the system under test. Our pro-
posed approach differs from the existing approaches as it 
provides both offline and online traces generation capa-
bility, and can be used to perform a rapid sensitivity ana- 
lysis as shown in Figures 10 - 12. 

In order to validate that the proposed approach for 
workload characterization, modeling and generation 
works for a wide range of benchmarks we repeated the 
above experiments for the TPC-W benchmark applica-
tion. Figures 13 - 15 show the comparisons of the cu-
mulative distribution functions (CDFs) of the logged and 
estimated distributions for think time, inter-session in-
terval and session length respectively for TPC-W 
benchmark application. Figures 16 - 18 show the com-
parisons of the CDFs of the distributions of think time, 
inter-session interval and session length respectively, of 
the logged and the generated synthetic workloads for 
TPC-W benchmark application. From these plots it is 
observed that the distributions for the workload attributes 
for the logged and generated synthetic workloads for 
TPC-W benchmark are very close to each other, which 
validates that the our proposed approach for workload 
 

 
Figure 13. Comparison of logged and estimated think time 
distributions for TPC-W benchmark application. 
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Figure 14. Comparison of logged and estimated inter-session 
interval distributions for TPC-W benchmark application. 

 
Figure 15. Comparison of logged and estimated session 
length distributions for TPC-W benchmark application. 

 
Figure 16. Comparison of logged and synthetic think time 
distributions for TPC-W benchmark application. 

 
Figure 17. Comparison of logged and synthetic inter-session 
interval distributions for TPC-W benchmark application. 
 

 
Figure 18. Comparison of logged and synthetic session 
length distributions for TPC-W benchmark application. 
 
modeling and generation closely simulates the real wor- 
kloads. 

8. Conclusions & Future Work 
Traditional approaches for workload modeling and gen-
eration have been application specific. There are a num-
ber of benchmarks available for complex multitier appli-
cations, which have their own specific workload genera-
tors. There is a lack of a standard approach for specifica-
tion of the workload attributes for different application 
benchmarks. In this paper we proposed a methodology 
for characterization, modeling and generation of work-
loads for complex multitier enterprise applications that 
are deployed in cloud computing environments. The 
proposed approach automates the process of extraction of 
workload characteristics from different applications. We 
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used an analytical modeling approach to represent the 
behavior of applications and their workload characteris-
tics. A methodology for creation of benchmark and 
workload models was proposed that can be used for 
modeling different cloud application benchmarks. To 
specify the benchmark and workload models in a stan-
dard way that can be used for synthetic workload genera-
tion we briefly proposed the Georgia Tech Cloud Work-
load Specification Language (GT-CWSL). A GTCWSL 
code generator was developed that generates the specifi-
cations that are input to a synthetic workload generator. 
We demonstrated the effectiveness of the proposed me-
thodology by modeling the RUBiS auction site and 
TPC-W online book store benchmarks. Results showed 
that the generated synthetic workloads closely match the 
real workloads. With a synthetic workload generator that 
accepts GT-CWSL specifications it is possible to per-
form a sensitivity analysis of the performance of the sys-
tem under test to different workload attributes. Future 
work will focus on adding new attributes to the bench-
mark and workload models such as temporal locality, file 
size, request size, file popularity, etc and performing stu-
dies on the effects of these attributes on the performance 
of different multi-tier applications. Furthermore, we will 
incorporate a cost model for specifying the cost of the 
cloud computing services, and incorporate additional 
performance metrics such as cost per month, maximum 
number of users that can be served for a fixed cost, 
cost/request, etc. 
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