
Journal of Software Engineering and Applications, 2011, 4, 396-410
doi:10.4236/jsea.2011.47046 Published Online July 2011 (http://www.SciRP.org/journal/jsea)

Copyright © 2011 SciRes. JSEA

Synthetic Workload Generation for Cloud
Computing Applications
Arshdeep Bahga, Vijay Krishna Madisetti

Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.
Email: {arshdeep, vkm}@gatech.edu

Received May 19th, 2011; revised June 18th, 2011; accepted June 26th, 2011.

ABSTRACT
We present techniques for characterization, modeling and generation of workloads for cloud computing applications.
Methods for capturing the workloads of cloud computing applications in two different models - benchmark application
and workload models are described. We give the design and implementation of a synthetic workload generator that
accepts the benchmark and workload model specifications generated by the characterization and modeling of work-
loads of cloud computing applications. We propose the Georgia Tech Cloud Workload Specification Language
(GT-CWSL) that provides a structured way for specification of application workloads. The GT-CWSL combines the
specifications of benchmark and workload models to create workload specifications that are used by a synthetic work-
load generator to generate synthetic workloads for performance evaluation of cloud computing applications.

Keywords: Synthetic Workload, Benchmarking, Analytical Modeling, Cloud Computing, Workload

Specification Language

1. Introduction

Synthetic workload generation techniques are required
for performance evaluation of complex multitier applica-
tions such as e-Commerce, Business-to-Business, Bank-
ing and Financial, Retail and Social Networking applica-
tions deployed in cloud computing environments. Each
class of applications has its own characteristic workloads.
There is a need for automating the process of extraction
of workload characteristics from different applications
and a standard way of specifying the workload characte-
ristics that can be used for synthetic workload generation
for evaluating the performance of applications. The per-
formance of complex multitier systems is an important
factor for their success. Therefore, performance evalua-
tions are critical for such systems. Provisioning and ca-
pacity planning is a challenging task for complex mul-
ti-tier systems as they can experience rapid changes in
their workloads. Over-provisioning in advance for such
systems is not economically feasible. Cloud computing
provides a promising approach of dynamically scaling up
or scaling down the capacity based on the application
workload. For resource management and capacity plan-
ning decisions, it is important to understand the workload
characteristics of such systems and measure the sensitive-

ity of the application performance to the workload
attributes. In this paper we briefly propose, 1) techniques
for extraction of semantic and time behaviors from ap-
plications at both task and operational levels for mul-
ti-tenanted cloud platforms, 2) benchmark and workload
models for complex multi-tier applications that allows
describing different benchmarks in the form of building
blocks, 3) the Georgia Tech Cloud Workload specifica-
tion language (GT-CWSL) that provides a standard way
for defining application workloads in a form that can be
used by synthetic workload generation techniques, and 4)
workload generation techniques based on the workload
specifications of enterprise applications, for generating
synthetic workloads. In this paper we describe a work-
load characterization, modeling and generation approach
that can be used for a wide range of multi-tiered applica-
tions. We evaluate the proposed methodology using the
RUBiS e-commerce benchmark that models an online
auction site (such as ebay.com) and TPC-W benchmark
that models an online book store (such as amazon.com).
We describe the characterization and modeling of the
workloads of RUBiS and TPC-W benchmarks and pro-
vide a comparison of the generated synthetic workloads
and empirical workloads obtained from logged traces.

Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

397

2. Related Work
Several studies on analysis and modeling of web work-
loads have been done [1-3]. Since obtaining real traces
from complex multi-tier systems is difficult, a number of
benchmarks have been developed to model the real sys-
tems [4-8]. There are several workload generation tools
developed to study Web servers such as SPECweb99 [3],
SURGE [9], SWAT [10] and httperf [3]. Such workload
generation tools repeatedly send requests from machines
configured as clients to the intended systems under test.
Table 1 provides a comparison of few workload genera-
tion tools. Several other tools generate synthetic work-
loads through transformation (eg. permutation) of empir-
ical workload traces [11-13]. The commonly used tech-
niques for workload generation are user emulation and
aggregate workload generation. In user emulation, each
user is emulated by a separate thread that mimics the
actions of a user by alternating between making requests
and lying idle. The attributes for workload generation in
the user emulation method include think time, request
types, inter-request dependencies, etc. User emulation
allows fine grained control over modeling the behavioral
aspects of the users interacting with the system under test,
however, it does not allow controlling the exact time
instants at which the requests arrive the system [9]. This
is because in user emulation, a new request is issued only
after the response to the previous request has been re-
ceived. Thus, due to network delays, heavy loads on sys-
tem under test, etc, the intervals between successive re-
quests increase. Aggregate workload generation is
another approach that allows specifying the exact time
instants at which the requests should arrive the system
under test [14]. However, there is no notion of an indi-
vidual user in aggregate workload generation, therefore,
it is not possible to use this approach when dependencies
between requests need to be satisfied. Dependencies can
be of two types - inter-request and data dependencies. An
inter-request dependency exists when the current request
depends on the previous request, whereas a data depen-
dency exists when the current requests requires input
data which is obtained from the response of the previous
request.

3. Motivation

We now describe the motivation for workload characte-
rization and modeling, workload specification and syn-
thetic workload generation for cloud computing applica-
tions.

3.1. Workload Modeling

Workload modeling involves creation of mathematical
models that can be used for generation of synthetic

workloads. Workloads of applications are often recorded
as traces of workload related events such as arrival of
requests along with the time-stamps, details about the
users requesting the services, etc. Analysis of such traces
can provide insights into the workloads characteristics
which can be used for formulating mathematical models
for the workloads.

3.2. Workload Specification
Since the workload models of each class of cloud compu-
ting applications can have different workload attributes,
there is a need for standardizing the specification of ap-
plication workloads. A Workload Specification Lan-
guage (WSL) can provide a structured way for specifying
the workload attributes that are critical to the perfor-
mance of the applications. WSL can be used by synthetic
workload generators for generating workloads with
slightly varying the characteristics. This can be used to
perform sensitivity analysis of the application perfor-
mance to the workload attributes by generating synthetic
workloads.

3.3. Synthetic Workload Generation
An important requirement for a synthetic workload ge-
nerator is that the generated workloads should be repre-
sentative of the real workloads and should preserve the
important characteristics of real workloads such as in-
ter-session and intra-session intervals, etc. There are two
approaches to synthetic workload generation: 1) Empiri-
cal approach, in which traces of applications are sampled
and replayed to generate the synthetic workloads, 2)
Analytical approach, which uses mathematical models to
define the workload characteristics that are used by a
synthetic workload generator. The empirical approach
lacks flexibility as the real traces obtained from a partic-
ular system are used for workload generation which may
not well represent the workloads on other systems with
different configurations, load conditions, etc. On the oth-
er hand, the analytical approach is flexible and allows
generation of workloads with different characteristics by
varying the workload model attributes. With the analyti-
cal approach it is possible to modify the workload model
parameters one at a time and investigate the effect on
application performance to measure the application sen-
sitivity to different parameters.

4. Current Challenges & Contributions
We now describe the shortcomings in the previous ap-
proaches and the contributions in our proposed metho-
dology to address these shortcomings.

4.1. Accuracy
The effectiveness of any benchmarking methodology is

Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

398

Table 1. Comparison of published approaches.

Reference Approach Application Input Output

httperf [3]

Has a core HTTP engine that handles
all communication with the server, a
workload generation module that is
responsible for initiating appropriate
HTTP calls at the appropriate times,
and a statistics collection module.

A tool that gene-
rates various
HTTP workloads
and for measuring
server perfor-
mance.

Request URLs, specifications of the
request rates, number of connec-
tions, etc.

Requests generated at the
specified rate.

SURGE
[9]

Uses an offline trace generation
engine to create traces of requests.
Web characteristics such as file
sizes, request sizes, popularity, tem-
poral locality, etc., are statistically
modeled.

Request generation
for testing network
and server perfor-
mance.

Pre-computed data-sets consisting of
the sequence of requests to be made,
the number of embedded files in
each web object to be requested, and
the sequences of Active and Inactive
OFF times to be inserted between
request.

An output workload that
agrees with the six distri-
butional models that make
up the SURGE model (file
sizes, request sizes, popu-
larity, embedded refer-
ences, temporal locality,
and OFF times).

SWAT
[10]

Uses a trace generation engine that
takes sessionlets (a sequence of
request types from a real system
user) as input and produces an output
trace of sessions for stress test.
SWAT uses httperf for request gen-
eration.

Stress testing
session based web
applications.

Trace of sessionlets obtained from
access logs of a live system under
test, specifications of think time,
session length, session inter-arrival
time, etc.

Trace of sessions for stress
test.

defined by how accurately it is able to model the perfor-
mance of the application. Accuracy of a benchmarking
methodology is determined by how closely the generated
synthetic workloads mimic the realistic workloads. Ag-
gregate workload generation techniques such as the one
used in Geist [14], can run into difficulties when in-
ter-request or data dependencies exist. Therefore, we
adopt a user emulation approach where the workload
characterizations are in the form of the behavior of an
individual user. By accurately modeling the application
characteristics, request types, inter-request dependencies,
data dependencies, transition probabilities, think times,
intersession intervals and session lengths, by analysis of
traces of applications, our proposed methodology is able
to generate workloads that are representative of the real
workloads.

4.2. Ease of Use
The existing tools reviewed in the related work section,
require a significant amount of hand coding effort for
writing scripts for workload generation that take into
account the dependencies between requests, workload
attributes, etc. For example, TPC-W [7] uses a remote
browser emulation (RBE) system for generating work-
loads that accepts specifications for workload mix which
are provided in separate script files. Furthermore, there
are scripts for requests that are executed such that the
specified workload mix can be obtained. To add new
specifications for workload mix and new requests, addi-
tional scripts need to be written. Writing additional
scripts for new requests may be complex and time con-

suming as inter-request dependencies need to be take
care of. In our proposed approach, we perform an auto-
mated analysis of the application traces and extract the
application characteristics using the benchmark and
workload model generators. Addition of new requests
can be done by changing the benchmark model specifica-
tion whereas new workload mix can be specified by
making changes in the workload model specification.
The GT-CWSL code generator accepts these benchmark
and workload model specifications and generates the
benchmark driver file that drives the synthetic workload
generator.

4.3. Flexibility

Our proposed methodology allows fine grained control
over the workload attributes such as think time, in-
ter-session interval, session length, workload mix, etc.
By varying the characterizations of the attributes of the
benchmark and workload models, different workloads
can be generated to test the system under study and also
perform a sensitivity analysis of the performance of the
system to various model attributes. Sensitivity analysis is
performed by varying one workload characteristic at a
time while keeping others constant. Such an analysis is
not possible using an empirical approach as it not possi-
ble to obtain empirical traces with such varying work-
loads.

4.4. Wide Application Coverage

Workload modeling and generation techniques have been

Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

399

investigated in the past for different classes of applica-
tions. For each class of application, different workload
specification and generation approaches have been used.
Our approach differs from the existing approaches as we
provide a generic methodology for extraction of workload
characteristics from different classes of applications, cap-
turing the workload characteristic in benchmark and
workload models and a synthetic workload generator that
accepts the workload specifications in the form of our
proposed cloud workload specification language (GT-
CWSL). The advantage of using two separate models to
guide the synthetic workload generation is that the pro-
posed workload generation process becomes independent
of the application under study. The benchmark model
captures the different requests types/operations allowed in
the benchmark application, proportions of different re-
quest types and the dependencies between the requests.
The workload model captures workload attributes such as
inter-session interval, think time and session length. Since
the synthetic workload generator used in our methodology
is generic in nature and generates workloads based on the
GT-CWSL specifications, the workload generation
process becomes independent of the application.

5. Proposed Methodology
Figure 1 shows an overview of our proposed approach
for workload characterization, modeling and generation.

5.1. Trace Generation and Analysis

A benchmark application is instrumented to generate
traces which have information regarding the user, the
requests submitted by the user and the time-stamps of the
requests. Typically in the benchmark applications sepa-
rate threads are created for each user, where each thread
creates an instance of the load driver or the load genera-
tion logic. By instrumenting the load driver of a bench-
mark application we can obtain the access logs. An ex-
ample of a trace generated from a benchmark application
is shown in Table 2. Each entry in the trace has a
time-stamp, request type, request parameters and user’s
IP address. For a benchmark application that uses a syn-
thetic workload generator running on a single machine,
IP address cannot be used for identifying the users. In
that case, the thread-ID (where each thread represents a
separate user) is used. The trace generated from a
benchmark has all the requests from all users merged into
a single file. The trace analyzer identifies unique us-
ers/sessions based on the IP address or thread-ID from
which the request came. The terms user and session can-
not be always used interchangeably because a single user
can create multiple sessions. Therefore, we use a
time-threshold to identify a session. All requests that
come from a single user within that threshold are consi-
dered as a single session.

Figure 1. Proposed methodology for workload characterization, modeling and generation.

Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

400

Table 2. Trace generated from a benchmark application.

1119844280621 Home ip:192.168.0.2
1119844280635 Login username:user1 password:pwd1
 ip:192.168.0.2
1119844280646 AddEvent eventname:event1
 date:05062010 venue:room1
 description:meeting ip:192.168.0.2
1119844280648 Home ip:192.168.0.3
1119844280655 ViewEvent eventname:event1
 ip:192.168.0.2
1119844280662 Login username:user2 password:pwd2
 ip:192.168.0.3
1119844280675 ViewEvent eventname:event2
 ip:192.168.0.3

5.2. Modeling Workloads
The trace generated from a benchmark application is
analyzed by a trace analyzer. Two different models are
generated from the analysis of the traces, 1) Benchmark
Model, 2) Workload Model. The attributes of benchmark
and workload models are shown in Table 3. The charac-
terizations for the attributes of benchmark and workload
models are obtained by the analysis of empirical traces
obtained from benchmark applications.

a) Session: A set of successive requests submitted by a
user constitute a session.

b) Inter-Session Interval: Inter-session interval is the
time interval between successive sessions.

c) Think Time: In a session, a user submits a series of
requests in succession. The time interval between two
successive requests is called think time. Think time is the
inactive period between subsequent requests in a session.
It is the time taken by the user to review the response of a
request and decide what the next request should be.

d) Session Length: The number of requests submitted
by a user in a session is called the session length.

e) Workload Mix: Workload mix defines the transi-
tions between different pages of an application and the
proportion in which the pages are visited.

5.3. Benchmark Model
The benchmark model includes attributes such as opera-
tions, workload mix, inter-request dependencies and data
dependencies. The benchmark modeling approach in our
proposed methodology is based on Probabilistic Finite
State Machine (PFSM) Model [15]. A Probabilistic Fi-
nite State Machine (PFSM) is a non-deterministic finite
state machine in which every transition has an associated

Table 3. Attributes of benchmark and workload models.
Model Attributes
Benchmark Model Operations, Workload mix, Inter-request

dependencies, Data dependencies
Workload Model Inter-session interval, Think time, Session

length

output and a probability. A PFSM M is defined by a tuple,
M = (I, O, S, T, P), where I = {a1, , ap} is the finite
input alphabet O = {o1, , oq} is the finite output alpha-
bet, S = {s1, , sn} is a finite set of states, T is the set of
transitions and P is the probability of a transition. Each
transition t T∈ is defined as a tuple, t = (s, q, a, o)
where s is the current state, q is next state, a is the input
symbol and o is the output symbol. For every state s and
input symbol a, the sum of probabilities of all the transi-
tions out of s on input a is equal to 1.

()
,

, , , 1
q o

P s q a o =∑

A PFSM is represented as a transition graph with n
nodes, where each node represents a state. Transitions
are represented by directed edges between the states. A
directed edge exists between two states s and q only if
the associated probability of the transition P(s,q,a,o) > 0.

We now describe the operation of a PFSM. Consider
the initial state of the machine to be si. When an input ak
is received the machine makes a transition from si to sj
with a probability P= (si, sj, ak, ol), and produces the
output ol.

For modeling different benchmarks we use PFSM as
follows. Each state in the PFSM represents a web-page
of the benchmark. The directed edges between states
represent the transitions between different pages. Each
transition has an input, an output and a probability. In-
puts in PFSM represent the operations of the application
or the requests submitted by the user. Each opera-
tion/request R is defined as a tuple R = (X, D) where X is
the request-type and D is the data associated with the
request which is represented as key-value pairs.

For representing the data associated with each request
in the benchmark model, we use data substitution tags.
The data substitution tags are used for generating the
dynamic URLs during the synthetic workload generation.
A data substitution tag can have two types of functions, 1)
data generation, 2) data extraction. Consider the follow-
ing URL generated from the benchmark model specifica-
tion:

http://Server/App/registerUser.php?name=
<generateUsername(5,10)>&password=
<generatePwd()>&email=
<generateEmail(“@app.com”)>
The functions used in the data substitution tags such as

generateUsername(5,10) are the data generation func-
tions, which generate synthetic data. E.g. generateUser-
name(5,10) generates a random user name of length be-
tween 5 to 10 characters. Now consider another URL
shown below:

http://Server/App/viewEvent.php?eventname=<extract
EventNameFromHTML()>

Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

401

The function extractEventNameFromHTML() used in
the data substitution tag is the data extraction function,
that extracts the value for the request parameter event-
name from the response of the previous HTML page.

Figure 2, shows the PFSM model for a social event
calendar application. Table 4 shows the details of the
transitions in the PSFM model for the social event ca-
lendar application. Outputs in the PFSM model for an
application represent the return values of the opera-
tions/requests.

Characterization of Benchmark Model Attributes: Cha-
racterization of benchmark model attributes involves
identification of different operations/request types in a
benchmark application, proportions of different request
types, i.e. the workload mix, the inter-request and data
dependencies.

Given a trace of a benchmark application as shown in
Table 2, the benchmark model generator first identifies
the unique pages in the application or the request types in
the trace, which are the states in the PFSM model. Then

Figure 2. PFSM model for a social event calendar applica-
tion.

the transitions between different pages of an application
and the proportion in which the pages are visited are
identified. These transitions represent the inter-request
dependencies. The data associated with each request is
also identified, which appears in the trace in the form of
request parameters. Table 4 shows an example of a cha-
racterization of benchmark model attributes for a social
event calendar application.

Benchmark Model Specification: The benchmark mod-
el specifications are formulated in as an XML document
that is input to the GT-CSWL code generator. Table 5
shows the specifications of the benchmark model for a
social event calendar application. The benchmark model
specification contains details on various request types in
the benchmark application, the request parameters and
the transition probabilities for the PFSM model of the
benchmark application.

5.4. Workload Model
The workload model includes attributes of the workload
such as inter-session interval, think time and session
length. The workload model describes the time behavior
of the user requests. When multiple users submit requests
to an application simultaneously the workload model
attributes such as intersession interval, think time and
session length are important to study the performance of
the application. Think time and session length capture the
client-side behavior in interacting with the application.
Whereas the inter-session interval is a server-side aggre-
gate, that captures the behavior of a group of users inte-
racting with the application.

Characterization of Workload Model Attributes: For
characterizing the workload model attributes, it is neces-
sary to identify independent users/sessions in trace. The
trace analyzer identifies unique users and sessions from
the trace of a benchmark application. A statistical analy-
sis of the user requests is then performed to identify the
right distributions that can be used to model the workload
model attributes such as inter-session interval, think time
and session length. The steps involved in characterizing
workload model attributes are as follows:

1) Select Candidate Distributions: We consider four
candidate distributions for the workload model attributes,
(1) Exponential distribution, (2) Hyper-exponential dis-
tribution, (3) Weibull distribution, and (4) Pareto distri-
bution.

We now briefly describe the reasons for considering
them as candidate distributions. Exponential distribution
can be used for modeling inter-session intervals. Pre-
vious studies have shown that the session arrivals consti-
tute a Poisson process in which the arrivals are indepen-
dent and uniformly distributed. The inter-arrival times of
a Poisson process are exponentially distributed. Hy-

Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

402

Table 4. Transitions in the PFSM model for a social event calendar application.

Transition No. Transition Operation/Request Type Data Probability
1 Start-Home Start Session - 1
2 Home-Login Login <username, user1>, <password, pwd> 0.6
3 Home-Register Register User <username, user1>, <password, pwd>, <email,

user1@app.com>
0.3

4 Home-End End Session - 0.1
5 Login-Home Home - 0.1
6 Login-AddEvent Add Event <eventname, event1>, <date, 12072010>, <venue,

room1>, <description, meeting>
0.4

7 Login-ViewEvent View Event <eventname, event1> 0.4
8 Login-End End Session - 0.1
9 Register-Home Home - 0.1
10 Register-Login Login <username, user1>, <password, pwd> 0.8
11 Register-End End Session - 0.1
12 AddEvent-Home Home - 0.1
13 AddEvent-ViewEvent View Event <eventname, event3> 0.6
14 AddEvent-End End Session - 0.3
15 ViewEvent-Home Home - 0.1
16 ViewEvent-AddEvent Add Event <eventname, event3>, <date, 05062010>, <venue,

room3>, <description, meeting>
0.6

17 ViewEvent-End End Session - 0.3

per-exponential can be used for modeling think times and
inter-session intervals. The difference between hyper-
exponential and exponential distribution is that the hy-
per-exponential distribution has a larger variance with
respect to the mean, whereas an exponential distribution
has variance equal to the mean. Pareto distribution is a
“heavy-tailed” distribution in which very large values
have non-negligible probability. Pareto distribution can
be used to model session lengths, where long sessions
have a non-negligible probability.

2) Parameter Estimation: Given a set of candidate dis-
tributions for the workload model attributes, the parame-
ter estimation process identifies parameters for the dis-
tributions that best fit the data. We use the Maximum
Likelihood Estimation (MLE) method for parameter es-
timation. The MLE method produces the parameter val-
ues that maximize the probability of sampling the given
data values. Consider a distribution defined by a para-
meter θ . The likelihood function to observe a set of
samples {x1, , xn}is given by,

() ()1
1

,., ; ;
n

n i
i

L x x f xθ θ
=

=∏

where ();if x θ is the distribution for parameter θ .
Setting,

()ln 0L
θ
∂

=
∂

We can find the value of the parameter θ that max-
imizes the likelihood.

We use the MLE tool [16], which provides a language
for building and estimating parameters of likelihood
models. We use the PDF types EXPONENTIAL, HY-
PER2EXP, WEIBULL and PARETO supported in MLE.

3) Checking the Goodness of fit: To verify the good-

ness of fit of the distributions with the estimated para-
meter values, we perform statistical tests devised by
Kolmogorov and Smirnov (KS test) [3]. KS test is based
on calculating the maximum distance between cumula-
tive distribution function of the candidate distribution
and the empirical distribution. We use an online tool
available at [17] for performing the KS tests for the ex-
periments. The data sets obtained from the logged and
estimated distributions for workload model attributes are
the input to the online tool, which calculates the maxi-
mum distance between the CDFs of the two input data
sets.

Workload Model Specification: The workload model
specifications are formulated in as an XML document
that is input to the GT-CSWL code generator. Table 6
shows the specifications of the workload model for a
social event calendar application. The workload model
contains specifications for the distributions for the work-
load model attributes such as think time, inter-session
interval and session length. The GT-CWSL code genera-
tor supports Negative-Exponential, Weibull, Hyper-Ex-
ponential and Pareto distributions for the workload mod-
el attributes.

5.5. Performance Policies
The performance policies specify the service expecta-
tions from the benchmark. The performance requirement
specifications include a series of service level objectives
(SLO’s) that define the performance metrics such as the
response time specification for each request in the appli-
cation.

5.6. GT-CWSL
GT-CWSL provides specifications for workload mix, ben-

Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

403

Table 5. Benchmark model specification for a social event
calendar application.

<?xml version = ”1.0” encoding=”UTF-8”?>
<benchmark name = ”SocialEventCalendar”>
 <requests>
 <request name=”Home”>
<path>/home.html</path></request>
 <request name=”Login”>
 <path>/login.php</path>
 <param name=”username”>
 <data>getUsername()</data>
 </param>
 <param name=”password”>
 <data>getPassword()</data>
 </param>
 </request>
 <request name=”Register”>
 <path>/register.php</path>
 <param name=”username”>
 <data>generateUsername()</data>
 </param>
 <param name=”password”>
 <data>generatePassword()</data>
 </param>
 <param name=”email”>
 <data>generateEmail()</data>
 </param>
 </request>
...
...
 <request name=”ViewEvent”>
 <path>/viewEvent.php</path>
 <param name=”eventname”>
 <da-
ta>extractStringFromHTML(”eventname”)</data>
 </param>
 </request>
 </requests>
 <workloadMix>
 <request>
 <name>Home</name>
 <r>0</r><r>60</r><r>40</r><r>0</r><r>0</r>
 </request>
 <request>
 <name>Login</name>
 <r>20</r><r>0</r><r>0</r><r>40</r><r>40</r>
 </request>
 <request>
 <name>Register</name>
<r>20</r><r>10</r><r>0</r><r>60</r><r>10</r>
 </request>
 <request>
 <name>AddEvent</name>
<r>40</r><r>0</r><r>0</r><r>0</r><r>60</r>
 </request>
 <request>
 <name>ViewEvent</name>
<r>40</r><r>0</r><r>0</r><r>60</r><r>0</r>
 </request>
 </workloadMix>
</benchmark>

chmark requests and workload model attributes such as
think time, inter-session interval and session length dis-
tribution, using Java annotations. The GTCWSL code
generator uses the Faban driver framework [18]. Faban

Table 6. Workload model specification for a social event
calendar application.

<?xml version=”1.0” encoding=”UTF-8”?>
<workload name=“SocialEventCalendar”>
 <thinkTime>
 <distribution>NegativeExponential</distribution>
 <mean>4000</mean>
 <min>100</min>
 <max>20000</max>
 <deviation>2</deviation>
 </thinkTime>
 <interSessionInterval>
 <distribution>NegativeExponential</distribution>
 <mean>3000</mean>
 <min>100</min>
 <max>15000</max>
 <deviation>2</deviation>
 </interSessionInterval>
 <sessionLength>
 <distribution>NegativeExponential</distribution>
 <mean>10</mean>
 <min>5</min>
 <max>50</max>
 <deviation>2</deviation>
 </sessionLength>
</workload>

provides a framework for developing workloads (called
the Driver Framework) and a mechanism for run execu-
tion and management (called the Harness). The GT-
CWSL code generator takes the benchmark model,
workload model and performance policy specifications
as input and generates the benchmark driver file that in-
cludes GT-CWSL specifications as Java annotations.
Table 7 shows a snippet of the generated GT-CWSL
code which forms a part of the benchmark driver logic.
The benchmark driver contains the logic defining how to
interact with the system under test. The requests speci-
fied in the driver are selected for execution in a manner
such as to obtain the workload mix specified in the
workload model. The benchmark requests which are an-
notated as @Request define the logic that is used to gen-
erate the load for the system under test. The benchmark
requests contain implementations for generation of the
requests for the system under test and the data associated
with the request. The implementations for the data gen-
eration and the extraction functions which are specified
in the data substitution tags are provided in the bench-
mark driver.

5.7. Run Configuration
In addition to the specifications for benchmark and
workload models and the performance policies, a run
configuration file is required to provide the input para-
meters that control the benchmark run on the system un-
der test. The run configuration contains specifications of
the ramp up, steady state and ramp down times, the
number of users, output directory, etc.

404 Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

Table 7. Sample GT-CWSL code.

5.8. Test Harness Code
To automate the running of benchmarks and queue mul-
tiple benchmark runs we use the Faban Harness infra-
structure [18]. The Faban Harness provides a web inter-
face to launch and queue benchmark runs and visualize
the results. In order to hook the benchmark driver to the
Faban Harness a test harness code is required. Although
the logic for driving the workload is specified in the
benchmark driver file, a mechanism is needed to connect
the driver logic to the Faban Harness. This mechanism is

provided using the test harness code. The test harness
code defines the process of running the benchmark and
the logic for customizing and controlling the behavior of
the benchmark. The test harness code includes methods
for starting and stopping a run, validation of configura-
tion file, configuring the benchmark before a run, pre-
processing and post-processing that may be required for
a run.

5.9. Synthetic Workload Generation

Figure 3 shows the block diagram for the synthetic
workload generator used in our proposed methodology.
This workload generator is built using the Faban run ex-
ecution and management infrastructure [18], which is an
open source facility for deploying and running bench-
marks. We have extended the Faban Harness to accept
GT-CWSL specifications that are generated by the
GT-CWSL code generator using the benchmark and
workload models. This synthetic workload generator
allows generating workloads for multi-tier benchmark
applications that are deployed across several nodes in a
cloud.

Figure 3 shows the Faban Master agent that controls
the Driver agents that run on one or more machines and
the system under test (SUT) that can have one or more
machines. The different components of Faban are as fol-
lows:

1) Master: The Faban master contains a web-server
that runs the Faban harness which provides a web inter-
face to launch and queue benchmark runs and visualize
the results. Multiple benchmark runs can be submitted to
the system under test.

2) RunQueue: Run Queue manages the benchmark
runs which are run in a first in first out (FIFO) manner.

3) LogServer: Log Server collects pseudo real time
logs from the systems under test.

4) Agent: Agent is the mechanism that drives the load.
Agents are deployed on both the driver systems and the
systems under test. These agents control the benchmark
runs and collect the system statistics and metrics which
are used for performance evaluation.

5) Agent Thread: Multiple agent threads are created by
an agent, where each thread simulates a single user.

6) Registry: Registry registers all the agents with the
Master so that the master can submit the load driving
tasks to the agents.

7) Driver: Driver is a class supplied by the developer
that defines the logic for workload generation, workload
characteristics, benchmark operations and the logic for
generating requests and the associated data for each of
the benchmark operations.

@WorkloadDefinition (
 name = "SocialEventCalendar"
)
@ThinkTime (
 distType = DistributionType.NEGEXP,
 distMin = 100,
 distMean = 3000,
 distMax = 15000,
 distDeviation = 2
)
@InterSessionInterval (
 distType = DistributionType.NEGEXP,
 distMin = 100,
 distMean = 4000,
 distMax = 20000,
 distDeviation = 2
)
@SessionLength (
 distType = DistributionType.NEGEXP,
 distMin = 5,
 distMean = 10,
 distMax = 50,
 distDeviation = 2
)
@CommonPolicies(
 maxUsers = 100000,
 metric = "req/s",
 unit = TimeUnit.MILLISECONDS
)
@WorkloadMix (
requests = {"Home", "Login", "Register", "AddEvent", "ViewEvent"},
mix = { @Row ({ 0, 60, 40, 0, 0}),
 @Row ({ 20, 0, 0, 40, 40}),
 @Row ({ 20, 10, 0, 60, 10}),
 @Row ({ 40, 0, 0, 0, 60}),
 @Row ({ 40, 0, 0, 60, 0})
 },
 deviation = 2
)
@Request (
 name = "Home",
 path = "/home.html",
 max90th = 50
)
...
@Request (
 name = "Login",
 path = "/login.php",
 data = "?user-
name=<generateUserName()>&password=<generatePassword()>",
 max90th = 100
)

Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

405

Figure 3. Synthetic workload generation.

5.10. Master Controller
The Master Controller is responsible for controlling the
benchmark runs on the system under test. The Master
Controller starts and stops the benchmark runs based on
the specifications in the run configuration file. In addi-
tion to controlling the runs, the Master Controller also
collects the runtime metrics from the system under test.
Currently in our proposed framework, the Faban Master
performs the tasks of the Master Controller.

5.11. Deployment Tools
Our proposed framework uses a number of deployment
tools. For deploying the benchmark driver, a benchmark
deploy image (jar file) is created from the benchmark

driver file. The Faban Harness provides a utility for dep-
loying the benchmark deploy image on the systems under
test.

Faban Harness also provides a utility for deplying ser-
vices such as Apache2HttpdService, MySQLService, etc.
The services which are configured in the run configura-
tion are started by the Faban Harness before the bench-
mark run starts and stopped after the run completes.

The Faban framework allows deployment of pluggable
tools for collecting information from specific server
software. For example, tool for gathering the statistics
from a MySQL instance using the MySQL query inter-
face, tool for looking into the Oracle database, etc. Tools
get configured before the run starts and they actually

406 Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

collect information from specific server software during
the steady state.

For deploying the benchmark application on the sys-
tem under test we developed a deployment utility that
transfers the benchmark application files to the web
server. The details of the web server on which the
benchmark application is deployed (such as the hostname,
host port, etc) are specified in a deployment configura-
tion file.

6. Experiment Setup
To demonstrate the proposed workload characterization,
modeling and generation approach we created benchmark
and workload models for the Rice University Bidding
System [5] benchmark. RUBiS is an auction site proto-
type which has been modeled after the internet auction
website eBay. To study the effect the different workload
attributes on the response times, we performed a series of
experiments by varying the workload attributes such as
think time, inter-session interval, session length and
number of users. The experiments were performed on a
machine with Intel Core i5 3.2 GHz processor, 4 GB
memory and 1TB disk space. We used a PHP implemen-
tation of the RUBiS benchmark for all the experiments.
The benchmark was executed on an Apache-2.2.14 web
server and MySQL 5.1.41 database server. We used Sys-
tat utility for measuring the system metrics. The perfor-
mance metric used for comparison of different runs is the
90th percentile of the response time. To validate that the
proposed approach works for a wide range of benchmarks
we repeated the above experiments for the TPC-W
benchmark [7] that models an online bookstore. We used
a Java Servlets version of TPC-W benchmark that works
with MySQL database.

7. Performance Evaluation
We instrumented the PHP implementation of the RUBiS
benchmark and obtained the traces of the user requests,
similar to the trace shown in Table 2. From the analysis
of the logged traces the benchmark and workload models
were generated. We considered a subset of the request
types of RUBiS benchmark for the benchmark model.
The distributions for the workload model attributes were
estimated using the MLE approach described in Section
V. Table 8 shows the KS test results for goodness of fit
of the estimated distributions for the workload model
attributes. The implementations of the data generation
and data extraction functions are provided in the bench-
mark driver. From the KS test results it is observed that
exponential distributions best fit the logged think time
and inter-session attributes, whereas a Weibull distribu-
tion best fits the logged session length.

Figures 4 - 6 show the comparisons of the cumulative

Table 8. KS test results for workload model attributes.

Attribute Exponential Hyper-
exponential Weibull Pareto

Think time 0.0561 0.132 0.1085 0.587
Inter-session interval 0.0704 0.19 0.0754 0.453

Session length 0.405 0.178 0.055 0.679

Figure 4. Comparison of logged and estimated think time
distributions for RUBiS benchmark application.

Figure 5. Comparison of logged and estimated inter-session
interval distributions for RUBiS benchmark application.

distribution functions (CDFs) of the logged and esti-
mated distributions for think time, inter-session interval
and session length respectively for the RUBiS bench-
mark application. Figures 7 - 9 show the comparisons of
the CDFs of the distributions of think time, inter-session
interval and session length respectively, of the logged
and the generated synthetic workloads for the RUBiS
benchmark application. From these plots it is observed
that the distributions for the workload attributes for the
logged and generated synthetic workloads for RUBiS
benchmark application are very close to each other, which

Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

407

Figure 6. Comparison of logged and estimated session
length distributions for RUBiS benchmark application.

Figure 7. Comparison of logged and synthetic think time
distributions for RUBiS benchmark application.

Figure 8. Comparison of logged and synthetic inter-session
interval distributions for RUBiS benchmark application.

Figure 9. Comparison of logged and synthetic session length
distributions for RUBiS benchmark application.

validates that the our proposed approach for workload
modeling and generation closely simulates the real
workloads.

We now provide the results of sensitivity analysis. We
performed a number of experiments by varying the
workload attributes one at a time to measure the sensitiv-
ity of the performance of the system under test to the
workload attributes. Figure 10 shows the effect of think
time on the 90th percentile of the response time (R90). For
this experiment we performed a run with a steady state
time of 5 minutes and the same number of users, average
inter-session interval, average session length and work-
load mix. From Figure 10 it is observed that as the think
time increases R90 decreases. The reason for this is that as
the think time increases while keeping other workload
attributes fixed, the mean request arrival rate decreases.
Since fewer requests are serviced per second with an
increasing think time, R90 decreases. Figure 11 shows the
effect of inter-session interval on R90. We performed a
run with a steady state time of 5 minutes while keeping
the other workload attributes such as number of users,
think time, average session length and workload mix the
same. From Figure 11 it is observed that as the in-
ter-session interval increases, R90 decreases. This is be-
cause with an increasing inter-session interval, the mean
request arrival rate decreases, thus fewer requests are
serviced per second, which decreases R90. Figure 12
shows the effect of session length on R90. We performed
a run with a steady state time of 5 minutes, and the same
number of users, average think time, average intersession
interval and workload mix. From Figure 12 it is ob-
served that by increasing the session length, R90 increases.
This is because for larger session lengths, the number of
concurrent sessions and thus the mean request arrival rate
increases.

408 Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

Figure 10. Effect of think time for RUBiS benchmark ap-
plication.

Figure 11. Effect of inter-session interval for RUBiS
benchmark application.

Figure 12. Effect of session length for RUBiS benchmark
application.

Existing approaches such as SURGE [9] and SWAT
[10] have used offline trace generation and request gen-
eration approach where a trace is first generated that
meets the desired workload characteristics and then a
request generation engine is used to submit the requests

from the generated trace. The advantage of offline trace
generation is that it separates the complex process of
computing request parameters and workload attributes
from the request submission step. In the request submis-
sion process the requests are read from the trace and
submitted to the system under test. However, for per-
forming rapid sensitivity analysis where only one work-
load attribute is changed at a time while keeping others
constant, an online trace generation approach is preferred.
In the online trace generation and request submission
approach, the threads that emulate the users generate and
submit the requests to the system under test. Our pro-
posed approach differs from the existing approaches as it
provides both offline and online traces generation capa-
bility, and can be used to perform a rapid sensitivity ana-
lysis as shown in Figures 10 - 12.

In order to validate that the proposed approach for
workload characterization, modeling and generation
works for a wide range of benchmarks we repeated the
above experiments for the TPC-W benchmark applica-
tion. Figures 13 - 15 show the comparisons of the cu-
mulative distribution functions (CDFs) of the logged and
estimated distributions for think time, inter-session in-
terval and session length respectively for TPC-W
benchmark application. Figures 16 - 18 show the com-
parisons of the CDFs of the distributions of think time,
inter-session interval and session length respectively, of
the logged and the generated synthetic workloads for
TPC-W benchmark application. From these plots it is
observed that the distributions for the workload attributes
for the logged and generated synthetic workloads for
TPC-W benchmark are very close to each other, which
validates that the our proposed approach for workload

Figure 13. Comparison of logged and estimated think time
distributions for TPC-W benchmark application.

Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

409

Figure 14. Comparison of logged and estimated inter-session
interval distributions for TPC-W benchmark application.

Figure 15. Comparison of logged and estimated session
length distributions for TPC-W benchmark application.

Figure 16. Comparison of logged and synthetic think time
distributions for TPC-W benchmark application.

Figure 17. Comparison of logged and synthetic inter-session
interval distributions for TPC-W benchmark application.

Figure 18. Comparison of logged and synthetic session
length distributions for TPC-W benchmark application.

modeling and generation closely simulates the real wor-
kloads.

8. Conclusions & Future Work
Traditional approaches for workload modeling and gen-
eration have been application specific. There are a num-
ber of benchmarks available for complex multitier appli-
cations, which have their own specific workload genera-
tors. There is a lack of a standard approach for specifica-
tion of the workload attributes for different application
benchmarks. In this paper we proposed a methodology
for characterization, modeling and generation of work-
loads for complex multitier enterprise applications that
are deployed in cloud computing environments. The
proposed approach automates the process of extraction of
workload characteristics from different applications. We

410 Synthetic Workload Generation for Cloud Computing Applications

Copyright © 2011 SciRes. JSEA

used an analytical modeling approach to represent the
behavior of applications and their workload characteris-
tics. A methodology for creation of benchmark and
workload models was proposed that can be used for
modeling different cloud application benchmarks. To
specify the benchmark and workload models in a stan-
dard way that can be used for synthetic workload genera-
tion we briefly proposed the Georgia Tech Cloud Work-
load Specification Language (GT-CWSL). A GTCWSL
code generator was developed that generates the specifi-
cations that are input to a synthetic workload generator.
We demonstrated the effectiveness of the proposed me-
thodology by modeling the RUBiS auction site and
TPC-W online book store benchmarks. Results showed
that the generated synthetic workloads closely match the
real workloads. With a synthetic workload generator that
accepts GT-CWSL specifications it is possible to per-
form a sensitivity analysis of the performance of the sys-
tem under test to different workload attributes. Future
work will focus on adding new attributes to the bench-
mark and workload models such as temporal locality, file
size, request size, file popularity, etc and performing stu-
dies on the effects of these attributes on the performance
of different multi-tier applications. Furthermore, we will
incorporate a cost model for specifying the cost of the
cloud computing services, and incorporate additional
performance metrics such as cost per month, maximum
number of users that can be served for a fixed cost,
cost/request, etc.

REFERENCES
[1] G. Abdulla, “Analysis and Modeling of World Wide Web

Traffic,” Ph.D. Thesis, Virginia Polytechnic Institute and
State University, Blacksburg, 1998.

[2] M. Crovella and A. Bestavros, “Self-Similarity in World
Wide Web Traffic: Evidence and Possible Causes,”
IEEE/ACM Transactions on Networking, Vol. 5, No. 6,
1997, pp. 835-846. doi:10.1109/90.650143

[3] D. Mosberger and T. Jin, “Httperf: A Tool for Measuring
Web Server Performance,” ACM Performance Evaluation
Review, Vol. 26, No. 3, 1998, pp. 31-37.
doi:10.1145/306225.306235

[4] D. Garcia and J. Garcia, “TPC-W E-Commerce Bench-
mark Evaluation,” IEEE Computer, Vol. 36, No. 2, 2003,
pp. 42-48.

[5] RUBiS, 2010. http://rubis.ow2.org
[6] SPECweb99, 2010. http://www.spec.org/osg/web99
[7] TPC-W, 2010. http://jmob.ow2.org/tpcw.html
[8] WebBench, 2010.

http://www.zdnet.com/zdbop/webbench/webbench.html
[9] P. Barford and M. E. Crovella, “Generating Representa-

tive Web Workloads for Network and Server Perfor-
mance Evaluation,” Proceedings of the 1998 ACM SIG-
METRICS International Conference on Measurement and
Modeling of Computer Systems, Madison, 22-26 June
1998, pp. 151-160.

[10] D. Krishnamurthy, J. Rolia and S. Majumdar, “A Syn-
thetic Workload Generation Technique for Stress Testing
Session-Based Systems,” IEEE Transactions on Software
Engineering, Vol. 32, No. 11, 2006, pp. 868-882.

[11] A. Mahanti, C. Williamson and D. Eager, “Traffic Analy-
sis of a Web Proxy Caching Hierarchy,” IEEE Network,
Vol. 14, No. 3, 2000, pp. 16-23. doi:10.1109/65.844496

[12] S. Manley, M. Seltzer and M. Courage, “A Self-Scaling
and Self-Configuring Benchmark for Web Servers,” Pro-
ceedings of the ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer
Systems, Madison, June 1998, pp. 270-271.

[13] Webjamma, 2010.
http://www.cs.vt.edu/chitra/webjamma.html

[14] K. Kant, V. Tewari and R. Iyer, “Geist: A Generator for
E-Commerce & Internet Server Traffic,” IEEE Interna-
tional Symposium on Performance Analysis of Systems
and Software, Tucson, 4-5 November 2001, pp. 49-56.

[15] E. Vidal, F. Thollard, C. Higuera, F. Casacuberta and R.
C. Carrasco, “Probabilistic Finite-State Machines Part I,”
IEEE Transactions of Pattern Analysis and Machine In-
telligence, Vol. 27, No. 7, 2005, pp. 1013-1025.

[16] MLE Tool, 2010.
http://faculty.washington.edu/djholman/mle/index.html

[17] Kolmogorov-Smirnov Test, 2010.
http://www.physics.csbsju.edu/stats/KStest.html

[18] Faban, 2010. http://faban.sunsource.net

http://dx.doi.org/10.1109/90.650143�
http://dx.doi.org/10.1145/306225.306235�
http://dx.doi.org/10.1109/65.844496�

