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Abstract 
 
We have calculated the Zeeman-fine energies of atomic Lithium (Li) by using the varying effective Landé 
g-factor method. We take the principle quantum number in the range; ( 2 1n 0  ). For this range we find 26 
different energy values and 325 wavelengths some of which are the same. The Doppler shift is found to be 

 0.004     . The Doppler shift-corrected wavelengths are in perfect agreement with the observed (NIST) 

values for atomic Li. 
 
Keywords: Hydrogen-Like Atoms, Effective Landé G-Factor, Quantum Entanglement, Zeeman-Fine  
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1. Introduction 
 
The investigation of hydrogen-like atoms with their low 
ionization potential and relative simplicity of their outer 
shell structure, have attracted a lot of attention. During 
the last two decades with the advent of laser cooling [1-4] 
and magnetic trapping [5], as well as spin polarization 
related to quantum entanglement [6], lithium and sodium 
have been the focus of a number of theoretical and ex-
perimental studies. Moreover with the realization of 
Bose Einstein condensation [7,8], they have attracted 
further attention.  

Recently Saglam et al. [9] calculated the Zeeman-fine 
energy expression of hydrogen-like atoms given by:  

 * 2 * *, , 2 4l l cE n m g C n m g      *
c  

corresponding to the eigenstates , , jn l m  . Here the 
constant  is a characteristic for each atom and deter-
mined from the ionization energy, 

C
*
c  is the cyclotron 

angular frequency corresponding to the effective mag-
netic field,  inside the atom and B g  is the effective 
Landé g-factor, which is treated as a varying parameter. 
As was discussed by Saglam et al. [9] the effective 
magnetic field, can be very high so that this leads to 
the spin-flip energies of the order of (eV). For the case of 
atomic Cesium, the spin-flip energy was shown to be 
1.38 eV. Saglam et al. [9] defined a dimensionless func-
tion:  

B

   * * 2, , , ,l jf n m g E n m g C n *
c      

which takes the form:  

   * *, , 2 4l lf n m g m g    

and depends on l  and m g  directly and depends on 
 indirectly as the range of l  is determined by n m
   1 ln m n   1   . They used the plots of 

 , ,lf n m g  (as a function of g ) to study the 

( 2
1

2
ns S ) ( 2

3
2

np P )  ( ' 2
1

2
n s S ) 

transitions in hydrogen-like atoms and showed that the 

entanglements of s  and  states, occur at p 1g  . 

The aim of the present study is to calculate the Zee-
man-fine energies and the spectrum of the atomic Lith-
ium by using the above mentioned varying effective 
Landé g-factor method. The outline of the present study 
is as follows: In Section 2.1 the energy levels of Hydro-
gen-like atoms in the presence of a uniform magnetic 
field is studied. In Section 2.2 we calculate the Zee-
man-fine energies of Li atom. In Section 2.3 we establish 
the connection between the Zeeman-fine energies, effec-
tive Landé-g factors, and the quantum flux of both photon 
and the electronic orbits corresponding to the entangled 
states. Section 2.4 gives the detailed calculation of the 
Zeeman-fine energies of Li atom. The calculation of the 
Doppler shift is given in Section 2.5. Section 3 is the con-
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clusions. 
 
2. Formalism 
 
2.1. Energy Levels of Hydrogen-Like Atoms in 

the Presence of a Uniform Magnetic Field 
 

As was discussed by Saglam et al. [9], when an atom is 
subject to a laser beam, because of the photon’s magnetic 
moment [10] and hence the large intrinsic magnetic field 
along the propagation direction [11], we will have dia-
magnetic and paramagnetic effects which is associated 
with a large magnetic field inside the atom. This field is 
called the effective field, . The Landé-g factor is also 
replaced by the effective value, 

B

g  which is treated as a 
varying parameter [12,13]. With these replacements [9] 
the energy eigenvalues corresponding to the eigenstates 

, , jn l m  reads: 

   *
2

, , , ,l s B l s

CE n m m g B B m g m
n

         (1) 

Here the constant  is the characteristic of each 
atom and determined from the ionization energy. Substi-

tuting the value of 

C

2B 
e

mc
 

 and 
1

2sm    in Equa-

tion (1), we find:  

 
* *

*
2

, , ,
2 4

l c c
l

m gC
E n m B g

n

 
   

      (2) 

where *
c

eB

mc




  is the cyclotron angular frequency  

corresponding to . As was discussed by Saglam et al. 
[9] the effective magnetic field,  inside the atom can 
be very high so that this leads to the spin flip energies at 
the order of a few electron volts (eV). For the case of 
atomic Cesium, the spin flip energy is taken to be 1.38 
eV. To proceed further, following Saglam et al. [9] we 
define a dimensionless function, 

B

B

 , ,l f n m g  which is 
given by the relation:  

   * * 2, , , ,l jf n m g E n m g C n *
c  

    (3a) 

or  

 *, , 2 4l lf n m g m g   *          (3b) 

which depends on l  and m g  directly and depends on 
 indirectly as the range of l  is determined by 

 . The plot of these 
n m

  1 ln m    n 1   , ,lf n m g  
functions with respect to g gives us the possible g  
values in the energy expression given by (1). At the first 
glance we see that the crossing of these lines correspond 
to integer values of g such as: . How-
ever in the following section we will see that for Li atom 
the allowed values of 

0,1, 2,3,g

g  are restricted only with the 

three odd integers. These are: . In the present 
study we will consider only  values up to 10. We will 
see that in the range of (

1,3,5g 

10
n

2 n  ) we get 26 different 
energy values which produce 325 wavelengths some of 
which are the same. For each   value we also calculate 
the Doppler shift and find that it is equal to: 

0.004    . The Doppler shift-corrected wavelengths 
are in perfect agreement with the observed (NIST) values 
[14] for atomic Li.  
 

2.2. Calculation of the Effective Landé G-Factors 
of the Zeeman-Fine Energies of Li Atom  

 
In Li atom we have 3 electrons altogether. Therefore it 
will be easy to study  , ,lf n m g  as a function of g . 
The plots for 1n   and  are given in (Figure 
1(a)) and (Figure 2(a)) respectively; For 

2n
1n we have 

0l   and hence l 0m  , so from Equation (3) we get 
two lines crossing at 0g  . Therefore the first two 
electrons occupy the entangled state, with the energy 
corresponding to the crossing energies of 1s   and 
1s   states, which is the s s  entanglement at 0g   
(Figure 1(a)). For 2n   we have l  and hence 0,  1

0,  1lm   , so from Equation (3), the plots of 
 2, ,lf m g  gives us the diamond shaped parallelogram 

whose corners correspond to s s  entanglement at 
0g  , s p  and p s  entanglements at 1g   

and p p  entanglement at  (Figure 2(a)). 
Therefore the third electron (the so called 2s electron) 
occupies the entangled state at crossing of 2

2g 

s   and 
 states [(2 p  s p ) entanglements at 1g  ] which 

corresponds to the lowest energy, the ground state energy, 
for 2n  . The plots of energy expression (2) for 1n   
and 2n   are given in Figure 1(b) and Figure 2(b) 
respectively. In order to find the excited states we go to 
the higher values of . The plots of n  , ,lf n m g  
and  , ,lE n m g  for 3n   and  are given in 
Figure 3 and Figure 4 respectively. We see that al-
though the crossings of these lines occur at the integer 
values of 

4n 

g such as: , however, as far 
as the photonic transitions are concerned, in the follow-
ing section we will see that for Li atom the allowed val-
ues of 

0,1, 2,3,g 

g  are restricted only with the three odd integers. 
These are: . The reason for this is that: First, 
The energy values given by (2) are limited to the range: 

1,3,

0

5g

5.3917 eV E   . Secondly, the value of the spin-flip 
energy which is equal to  for Li atom and 
finally, the photonic transitions occur between the points 
satisfying the condition: (

1.848



328 eV

g  even integer). In passing 
we note that for a given n , although the maximum 
value of g  is equal to ( ), any energy 
value corresponding to 5  can be ob-
tained by the  

22*
max  n

2g n  
g

2
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(a) 

 

 
(b) 

Figure 1. (a) (1, , )lf m g as a function g ; (b) (1, , )lE m g as 
a function of g  
 
values in the range:  as well. Therefore the 1,3,5g 
g  values in this reduced zone ( ) will give us 
all the possible energy values. 

1,3,5g 

 
2.3. Flux Quantization Argument 
 
Let us assume that the ground state electron [the electron 
occupying the ( s p



) entangled state at ] is ex-
cited to a higher level by the absorption of a single pho-
ton. Now we ask: What is quantum flux difference be-
tween the final and initial states? Recently Saglam and 
Sahin [10,11] showed that, depending on its helicity 
photon carries an intrinsic magnetic moment and hence  
a quantum flux of  where 

1g 

0  e

 
(a) 

 
(b) 

Figure 2. (a) (2, , )lf m g as a fuction of g ; (b) 
(2, , )lE m g  as a function g . 

 
quantum. Therefore in the end of a one photon absorp-
tion process the quantum flux difference between the 
final and initial quantum states of electron must be equal 
to the intrinsic quantum flux of the absorbed photon 
which is equal to 0 . On the other hand Saglam et al. 
[15] also calculated the quantized magnetic flux through 
the electronic orbits of Dirac hydrogen atom corre-
sponding to the , , jn l m  . It is shown that the quantum 
flux is given by:     0, , jn l m n l mj    

*
lm g

. For the 
present case we have the entangled states with the ener-
gies given by (1) where we have ( s ) which 
stands for 

m

jm . Therefore for the present case the quan- 
0 hc   is the flux  

Copyright © 2011 SciRes.                                                                              JMP 
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(a) 

 
(b) 

Figure 3. (a) (3, , )lf m g  as a function g ; (b) (3, , )lE m g  
as a function g . 
 
tum flux through the orbits corresponding to the entan-
gled states in hydrogen-like atoms will be given by: 

    0, , *j ln l m n l m g m     s       (4) 

We have stated that when the ground state electron is 
excited to a higher level with an absorption of one pho- 

 
(a) 

 
(b) 

Figure 4. (a) (4, , )lf m g  as a function g ; (b) (4, , )lE m g   
as a function g . 
 
ton (or more photons) the flux difference between two 
quantum orbits must be equal to integer multiples of 
( 0 ). Therefore the difference of the flux in (4) must 
be equal to integer multiples of ( 0 ). In (4), since we 
have 


 1 2sm   , the above requirement is possible 

only when the change of g  between two states is equal 
to an even integer number:  

Copyright © 2011 SciRes.                                                                              JMP 
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Table 1. Zeeman-fine Energies and related  values for g

10,9,8,7,6,5,4,3,2n . (Here  states are 
denoted by s,p,d,f,g,h,… respectively.) 

,...5,4,3,2,1,0l
0, 2,4,..g  .              (5) 

We have said that in Li atom the ground state electron 
(2s electron) occupies the entangled state of 2s   and 

 at  . Therefore a photonic transition occurs 
either to the entangled states with  or 
2 p  1g 

3g  5g  . In 
the present study we will consider only  values up to 
10. We will see that in this range ( 2 ) we get 26 
different energy values which produce 325 wavelengths 
some of which are the same.  

n
n 10

n  
* *

2
/ eV

2 4
l c cm gC

n

  
   
 

   

−1.10286544   (10s-10p)g*=1 

−2.95119344   (10s-10f)g*=3 10 

−4.79952144   (10s-10h)g*=5 

−1.14478310   (9s-9p)g*=1 

−2.99311100   (9s-9f)g*=3 9 

−4.84143910   (9s-9h)g*=5 

−1.20338500   (8s-8p)g*=1 

−3.05171300   (8s-8f)g*=3 8  

−4.90004100   (8s-8h)g*=5 

−1.28886082   (7s-7p)g*=1 

−3.13718882   (7s-7f)g*=3 7 

−4.98551682   (7s-7h)g*=5 

−1.42055689   (6s-6p)g*=1 

−3.26888489   (6s-6f)g*=3 6 

−5.11721289   (6s-6h)g*=5 

−1.63896976   (5s-5p)g*=1 

−3.48729776   (5s-5f)g*=3 5 

−5.33562576   (5s-5h)g*=5 

−0.19272000   (4s-4p)g*=1 

−2.04104800   (4s-4f)g*=3 4 

−3.88937600   (4s-4h)g*=5 

−1.06140760   (3p-3s)g*=1 

−2.90973560   (3s-3p)g*=1 3 

−4.75806360   (3s-3f)g*=3 

−3.54337200   (2p-2s)g*=1 
2 

−5.39170000   (2s-2p)g*=1 






2.4. Detailed Calculation of the Zeeman-Fine  

Energies of Li Atom  


From the (NIST) values, the ionization energy of Li atom 
is , while the smallest amount of energy that 
allows a transition from the ground state to the nearest  

5.3917 eV





excited state ( 2

1 22s S  2
3 22 p P ) is equal to 

which corresponds to 1.848328 eV 6707.91 oA . In this 

transition the initial and the final value of g is the same 

and equal to unity: . Therefore we can write 

 Therefore from (2) the ener-

gies of the initial and final states are: 

1

s

g 

lm m*
j lm m g  sm 













 
*

2
2, 1/ 2, 5.3917

42
c

j

C
E n m B

      


   (6) 


and  



 
* *

2
2, 3 / 2, 3.5434

2 42
c c

j

C
E n m B

        
 

 

(7) 
respectively. The solutions of (6) and (7) gives us that 

and 17.870144 eVC   * 2 1.848328 eVc  . Sub-
stitution of these values in (2) gives the Zeeman-fine en-
ergies of Li atom: 






 

  2

, , *

17.840144
1.848328 0.924164

l

l

E n m B

m g
n

 



  
   (8) 





In the present study we will take  values in the 
range ( 2 ). For each value of  substituting the 
values of l  and taking  we get 26 differ-
ent energy values which are given in Table 1. These 26 
different energy values give us 325 wavelengths some of 
which are the same. The Doppler shift-corrected wave-
lengths are in perfect agreement with the observed (NIST) 
values [14] for atomic Li (Figure 5). In Table 2, we give 
the comparison between the observed values and the 
corresponding calculated values which have Doppler 
shift-correction as well. The Doppler shift-corrected 
wavelengths are in perfect agreement with the observed 
(NIST) values for atomic Li.  

n
n10n 

m 1,3,5g 


 
2.5. Calculation of the DopplerShift for Li Atom 

The above calculations are based on the assumption that 
the center of mass of the Li atom is at rest, but only the 
outermost electron is moving. But since the experimental 
results are taken from the moving Li atom, there will be 
a small difference coming from the Doppler shift. To 
calculate the Doppler shift we take two different repeated 
wavelengths from the (NIST) database. For example if 
we 1 5271.00 oA  and 2 4971.75 oA 

 1 52
. The corre-

sponding calculated values are 
cal

92.78 oA   and 
  4995.78 o

cal2 A   respectively. Now we can calculate  
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 11000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. A comparison between Doppler-shift corrected wavelengths ( oA ) and observed values. 
 
Table 2. Comparision between the observed and Doppler 
shift-corrected calculated wavelengths. 

calculated
oA


  observed

oA


 

2384.78 ± 9.58 2394.39 
2410.78 ± 9.64 2410.84 
2517.70 ± 10.07 2518.00 
2863.18 ± 11.47 2868.00 
2890.86 ± 11.58 2895.00 
2960.24 ± 11.87 2968.00 
3159.55 ± 12.58 3144.00 
3228.14 ± 12.93 3232.66 
3229.90 ± 12.93 3232.66 
3487.92 ± 13.95 3488.00 
3489.98 ± 13.95 3488.00 
3573.5 ± 14.32 3579.80 
3624.33 ± 14.47 3618.00 
3669.30 ± 14.65 3662.00 
3714.88 ± 14.88 3718.70 
3801.95 ± 15.18 3794.72 
3922.87 ± 15.66 3915.35 
3975.01 ± 15.94 3985.48 
4210.75 ± 16.78 4196.00 
4616.00 ± 18.41 4602.83 
4767.68 ± 19.04 4760.00 
4995.00 ± 19.89 4971.66 
4995.41 ± 19.99 4971.75 
5292.48 ± 21.08 5271.00 
5292.78 ± 21.08 5271.00 

5298.00 ± 21.26 5315.00 
5298.50 ± 21.26 5315.00 
5428.59 ± 21.76 5440.00 
5428.59 ± 21.76 5440.00 
6094.62 ± 24.41 6103.54 
6094.62 ± 24.42 6103.65 
6707.9 ± 26.83 6707.76 
6707.91 ± 26.83 6707.91 

 
the average Doppler shift by using the above values: 

004.0)(
2

1

2

2

1

1 

















         (9) 

So the magnitude of the Doppler shift is found to be 

0.004   .               (10) 

3. Conclusions 
 
We have calculated the effective Landé g-factors, g , 
related to the Zeeman-fine energies and the spectrum of 
the atomic Lithium (Li) by using the varying effective 
Landé g-factor method. It is shown the allowed values of 
g  are restricted only with three odd integers 
( ) and this result is independent of the limit of 
the principle quantum number, . In the present study 

1,3,5g

n
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9000
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W
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en
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10
we take the principle quantum number in the range; 
( 2 ). For this range we find 26 different energy 
values and 325 wavelengths some of which are the same. 
The present calculations are based on the assumption that 
the center of mass of the Li atom is at rest, but only the 
outermost electron is moving. But since the experimental 
results are taken from the moving Li atom, there will be 
a small difference coming from the Doppler shift. The 
Doppler shift is found to be 

n 

0.004    . The Dop-
pler shift-corrected wavelengths are in perfect agreement 
with the observed (NIST) values for atomic Li. The pre-
sent results suggest new wavelengths such as 

3301.62  13.21 oA , 3166.85  12.67 oA
  13.42 o

 and 

3353.96 A  

should be observed. Applications of the above treatment 
can give access to the production of new laser lights 
from atomic Lithium as well. Extending the range of  
to ( ) will allow us to calculate all the observed 
wavelengths for Li atom. A more detailed study will be 
presented in the future. 

n
2 n  32
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