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Abstract 

We derive the viscous current in the fully ionized two-fluid plasma to generate the solar magnetic field. The 
global magnetic field of the Sun can be simulated by the viscous current from the differential rotation inside 
the Sun. The field presents a structure with 6-polar. As the viscous current is very weak, the magnetic field 
intensity is only about  G, which could be considered as the background field of the Sun. The theory is 
a start for the generation of solar magnetic field. The local strong magnetic field of the Sun is not considered 
in the paper. 
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1. Introduction 
 
The Sun, being a prototypical star, is 4.7 billion years old 
and plays a unique role in astrophysics. It allows the fun-
damental processes to be explored in detail since its 
proximity. There are various activities in the Sun, such as 
flares, coronal mass ejections, solar wind and magnetic 
storms, which directly impact on satellites, wireless com-
munication and space weather. These activities are mainly 
affected by the solar magnetic field [1], so it is critical 
important for researching on the nature and origin of the 
solar magnetic field [2]. The purpose of solar dynamo 
theories is not only to make clear the correlation and 
variation among various activities, but also to explain the 
origin and characteristics of the magnetic field on the 
Sun. Studying it can promote the research of other celes-
tial bodies [3]. Furthermore, it is important to the devel-
opment of space technology and economy. 

People have researched dynamo theories more than a 
century. In 1919, Larmor proposed that inductive phe-
nomenon of motive fluid may explain the origin of mag-
netic field [4]. It opened the door of solar cycle models. 
Moreover, Larmor’s suggestion was well consistent with 
the Hale’s polarity law. Its main idea was that an anti-axi-
symmetric and equatorial axisymmetric different rotation, 
which pervaded the solar interior, sheared a large-scale 
poloidal magnetic field and produced an equatorial anti- 
axisymmetric toroidal field in the Sun. However, in 1934, 
Cowling placed a major hurdle in Larmor’s path. He 
proved that even the ordinary purely axisymmetric mag-
netic flows could not sustain an axisymmetric magnetic 

field against Ohmic dissipation. Toroidal magnetic field 
and poloidal magnetic field became zero at last [5]. It was 
known as Cowling’s anti-dynamo theorem. From then on, 
a lot of anti-dynamo theories emerged. They ruled out any 
possible case that dynamo could run in many other simpli-
fied conditions. Moreover, Bullard and Gellman found 
that if velocity field only had a differential rotation, there 
was no dynamo solution [6]. Therefore, in a very long time, 
people worried about whether there was still hope to make 
solar dynamo work. 

Until 1955, there was a fundamental breakthrough. 
Parker proposed the spiral movement of small-scale flow 
[7]. This movement was caused by convection in rotating 
object. It could twist parts of toroidal field and make 
convective turbulence to rise. Then a small magnetic 
flow ring was formed in the radial plane. Finally, the net 
effect of many of these non-axisymmetric small-scale 
flow rings produced a large-scale radial field. At this 
point, it not only completed circulation of the solar dy-
namo, but also avoided the Cowling’s anti-dynamo theo-
rem. Ten years later, Steenbeck, Krasuse and Rädler spe-
cifically expressed out this idea using mathematical for-
mulae [8]. It was known as mean field dynamo theory. 
The progress of producing large-scale magnetic field by 
combination of small-scale magnetic field and distur-
bance of velocity was called a-effect. Subsequently, the 
mean field mechanism rapidly became the mainly theo-
retical choice of solar dynamo models. By the late 1970’s, 
it was reached a basic agreement about the fundamental 
attributes of solar dynamo, and the a-effect of mean field 
electrodynamics was at the heart of it. 
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Many early solar dynamo models could reproduce sev-
eral important qualitative properties of the Sun [9]. How-
ever, these models were far from perfection. In the fol-
lowing, we only showed four distinct directions. First, as 
the buoyancy effect, the magnetic field, which was strong 
enough to produce sunspots, could not be stored long 
enough to obtain sufficient amplification [10]. Second, 
numerical simulation of turbulent thermally-driven con-
vection in a thick rotating spherical shell yielded mag-
netic field migration pattern, which appeared nothing like 
the observed on the Sun. Third, the solar internal differ-
ential rotation, which was detected by helioseismology, 
was different from that needed to produce solar-like dy-
namo solutions in the dynamo mechanism. It might be the 
most decisive. Fourth, the powers of a-effect and mag-
netic diffusivity as assumed in mean field mechanism 
were not the same as those which were calculated by 
theoretical calculation and numerical simulation. 

Solar dynamo has not yet recovered from the influence 
of these four ways. Like all scientific crises, this situation 
not only provided a redesign of existing models based on 
the mean field mechanism, but also stimulated the explo-
ration of new physical mechanisms of magnetic field gen-
eration. It also recovered the previous mechanisms which 
had been ignored in the influence of the a-effect. Most 
notably, Babcock-Leighton (BL) mechanism was firstly 
proposed in 1961 [11]. In late 1980’s, it obtained a new 
development with the development of helioseismoligy. 
However, BL was a semi-empirical model, rather than a 
strict kinetic description, and it could not be self-exciting. 

With both the solar different rotation inverting by heli-
oseismology and strong magnetic field appeared in the 
bottom of the convective zone, the standpoint that solar 
dynamo was located beneath of the convective zone was 
further strengthened. In 1993, Parker proposed interface 
dynamo [12]. In this model, the two effects of the dynamo 
were separated in space. a-effect was located in the con-
vective zone, while Ω-effect was located in the tacholine 
zone. The success of this dynamo was that the two regions 
were communication by diffusive transmission of flux. 
Because diffusive rate was increased by turbulence, the 
diffusive coefficient in the tacholine zone was smaller than 
that in the convective zone. This model could produce 
strong toroidal field in the tacholine layer. It was very ef-
fective to create a magnetic field. Moreover, this region 
was separated from the region which produced a-effect. 
Thus, this model solved the problem of a quenching effect. 
However, interface dynamo was very sensitive to some 
parameters, such as time step, spatial resolution and other 
numerical parameters. Slight change in these parameters 
might have a great impact on the result. From the model 
point of view, the interface dynamo was lack of robust. 

Choudhuri introduced a meridional circulation to the 
BL model [13]. First, meridional circulation transported 

the magnetic flux to the polar region. Then, the magnetic 
flux was taken to the tacholine zone beneath of the con-
vective zone. Third, Shearing of the poloidal magnetic 
field produced toroidal field by the Sun’s differential ro-
tation [14]. This was a simple BL flux transport dynamo 
model with meridional circulation acted as a conveyor 
belt [15]. Nevertheless, only the surface part of the me-
ridional circulation was observed, the part located in the 
deep solar interior had not observational data. It was con-
structed based on the law of conservation of mass [16]. 
Flux transport dynamo also could not account for the de-
tailed formative progress of cross-equatorial ring. 

Solar dynamos of our discussed above were axisym-
metric, but observations showed that some solar activi-
ties were non-axisymmetric. For example, magnetic ac-
tivities repeated emergence at certain longitude in a time 
longer than one solar magnetic activity cycle. Stix pro-
posed the first non-axisymmetric solar dynamo model 
[17]. Bigazzi and Ruzmaikin studied the mean field dy-
namo by using non-axisymmetric a-effect for the first 
time [18]. But it was so difficult to solve the equations 
that its development was not perfect. At present, people 
can only explain a few observed features of non-axisym- 
metry. 

Large-scale solar magnetic activities were most likely 
explained by the magnetohydrodynamics (MHD). The 
main idea of the MHD was that conductive fluid cut 
magnetic field lines, so it produced inductive current. 
Then inductive current generated magnetic field. These 
progresses resisted energy dissipation of magnetic field 
caused by fluid resistance. If inductive progress was 
more strongly than dissipation progress, the MHD dy-
namo could run continuously. Some complex physical 
processes could be described by a set of differential 
equations in the MHD dynamo. Therefore, it was possi-
ble to research the nature of large-scale of solar various 
aspects by simulating the MHD dynamo. This approach 
had been used successfully in the earth dynamo [19]. As 
solar large-scale and extreme parameter regions, it will 
be a long process for us to simulate the entire solar mag-
netic field. However, with the development of computer 
technology, more and more scientists believed that the 
prospect of MHD dynamo is optimistic [20,21]. 

At the beginning of this paper, we outline the devel-
opment of solar dynamos. The problem of Ohm’s law in 
fully ionized two-fluid is analyzed in Section 2. In Sec-
tion 3, the viscous current is derived in detail in the fully 
ionized two-fluid plasma, and we obtain the magnetic 
field vector and magnetic field lines maps. Section 4 is 
the discussion of the results and outlook. 
 
2. Problem of Generalized Ohm’s Law 
 
Magnetic field is produced by highly ionized plasma on 
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

the Sun. Traditionally, conductive fluid V cuts magnetic 
field B to produce inductive electric field V × B, and there 
will be generated current from generalized Ohm’s law 

E  J V B                (1) 

The current will produce magnetic field based on Am-
pere’s law 0 B J , then the magnetic field can pro-
duce current in accordance with Faraday’s law. Lorentz 
force is J × B, which is caused by the interaction of mag-
netic field and current, resists against the force of exciting 
movement. Thus the interaction of these progresses can 
maintain a self-generation field. Using Maxwell’s equa-
tions [22], we can obtain magnetic inductive equation 

  2

t


    

B

V B B             (2) 

where η is magnetic diffusivity. 
Many dynamo models depend on mean field mecha-

nism [23]. For simplicity, the idea of mean field mecha-
nism is to separate the magnetic field B and the velocity 
V into mean and fluctuant components, then use suitable 
average procedure, so that 

,   B B b V V v               (3) 

Where B  is the mean magnetic field component. b 
is the fluctuant component and the average value of b is 

0b . V  is the mean velocity and 0V . Then 
the average inductive equation takes the form 

 
t

  
      


B V B B B    (4) 

where    
0

1
d

3
t t t


    v v t , and 

1

3
    

   
0

dv t v t t t


    [24]. Comparison of Equations (2) 

and (4), we can see that there are two changes. First, dif-
fusion coefficient is increased by β, another more impor-
tant change is adding the item  B , which is a guar-
antee that mean field B  constraints from the anti- 
dynamo theorem. Usually, the key item of  B  in 
mean field inductive Equation (4) is called α-effect. We 
expect that   , though molecular diffusion is none 
the less an essential part of the dynamo process. In fact, 
the α-effect depends on the presence of ‘gyrotropic’ tur-
bulence with a net kinetic helicity .H  v v  in the 
small-scale motion. 

The mean field inductive Equation (4) is the starting 
point for most researchers of solar dynamo theories. It is 
also used by the scholars, who study the Earth or stars 
dynamos. But we must remember that this set of ap-
proximations can only be justified if there is indeed a 
separation of scales or either the magnetic Reynolds 
number  or 1mR  /l u  . Neither of the latter con-

ditions is valid in the Sun. 
From Equations (2) and (4), we can see that both the 

first items of right side of these equations came from the 
generalized Ohm’s law, which is Equation (1). The law 
is right for a single species of charged particles, but it is 
not suitable for fully ionized two-fluid plasma. 

When a charged particle runs in the static electromag-
netic field, we can easily obtain its dynamic equation. A 
particle with charge  will run in the following dy-
namic equation in the electromagnetic field 

q

d

d
m q q

t
  

V
E V B               (5) 

The particle will run in helical line. If E is perpen- 

dicular to B, we can obtain a drift velocity 
2d B




E B
V  

[25].  
We can divide the electric field into two parts.  is 

parallel to the magnetic field and  is perpendicular to 
the magnetic field. The particle runs freely in the direction 
of magnetic field. While the particle runs in sinusoid and 
its average motion is zero in the direction of electric field 

E‖
E

E . The particle not only has Larmor motion, but also has 
a drift velocity d , which is perpendicular to both electric 
field and magnetic field. If there are only electrons and 
ions in the neutral fully ionized plasma, there are not con-
sidered collisions between electrons and ions and the ac-
tions of external forces. The drift velocity is independent 
of mass and charge of particle, so both the electrons and 
ions have the same drift velocity in the same direction and 
it will not produce current in the drift direction, which is 
perpendicular to both electric field E and magnetic field B. 
As we know, 

V

V B  is always perpendicular to magnetic 
field, so the current from  is zero. The current only 
appears in the direction of magnetic field without other 
interaction. Therefore, Equation (1) is not suitable for the 
particle in the above condition and we also think it is not 
suitable for deriving the dynamo models. 

V B

 
3. Magnetic Field Outside the Sun Using 

Viscous Current 
 
Astrophysicists try to explain the magnetic field of various 
objects using dynamo theories. Unfortunately, dynamo 
theories can not completely explain all the phenomena. 
Particles current, which can generate magnetic field, plays 
a very important role in the study of dynamo theories. If 
we ignore the impact on the magnetic field of particles, it 
will prevent us from better understanding some important 
aspects of plasma physics properties in universe. 
 
3.1. Two-Fluid Model of Plasma 
 
The single fluid theory of MHD is the simplest way to  
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describe plasma [26]. The complete model may be the 
full particle simulation. To understand the physical proc-
ess, MHD gives a good description of some waves in 
plasma. However, it is not perfect enough. The one-fluid 
MHD model always treats the plasma as a whole and not 
considers the interior particles respectively, which are 
accepted in the treatment of a few phenomena. Moreover, 
based on this model we can not understand the physical 
process of current generation. There are still a number of 
phenomena that can not be solved in this way, such as 
transferring energy from one region to another, formation 
of double layers and the occurrence of explosive events. 
Therefore, we need to consider from another aspect, 
which is not from the field but from the particle aspect. It 
is obvious that the velocity difference between particles 
can arouse the generation of current. Here we call it the 
two-fluid model. In the following, we will assume the 
plasma only consist of ions and electrons. 

The plasma fluid equations with viscous current are 
given by [27] 

  0
n

n
t


 


  


V               (6) 

 
2

d 1

d

q

t m c

P

n m n m

 
   



  

   





      
 

 
 

V
E V B V V

V
   (7) 

where V  and V  are the velocities of ions or elec-
trons,   is the collision frequency between ions and 

electrons, P

n






 is the viscous coefficient of ions or elec- 

trons. The charge of ion is assumed  and that of 
electron is assumed e  in the ions and electrons 
plasma. Here, e is a positive unit charge constant. 

q e 
q  e

n  is 
the plasma density, m  is the mass of ions or electrons 
and P  is the pressure of ions and electrons. The ion 
momentum transfer equation 

 
2

1d

d
i

i ie i
i

i i i

i i i i

e

t m c

P

n m n m





      
 

 
 

V
eE V B V V

V
    (8) 

and the electron momentum transfer equation 

 
2

d 1

d
e

e ei e
e

e e e

e e e e

e

t m c

P

n m n m





       
 

 
 

V

In the peusi-neutral plasma, i e , where i  
and e  are the densities of ions and electrons respec-
tively. n is the plasma density. We use 

n n n  n
n

 eVi in e j V  
as the current density. 

Since the mass of ion is much larger than that of elec-
tron, and all quantities in the differential of time are sup-
posed to be ignored in the steady case, we can get the 
following equation from Equations (8) and (9) 

   
2

2 2

1 1 1

4

1

i e

e
i i e e

i

c
P

c nec ne

m

nem ne



 

     

  






j V B j B

V V

   (10) 

where 
2

4

c


  is the resistivity, 
2

e ei

ne

m



  is the 

conductivity. The first term 1
ic
V B  is the inductive 

current with plasma moved in magnetic field, the second 

term 1

nec
 j B  is the Hall current, the third term 

1
eP

ne
  is the Bierman’s battery and the last two items 

2 1e
i i e e

i

m

nem ne
 

 

 

  V 2 V  are the current due to the 

viscosity of ions and electrons. 
The Hall current and Bierman’s battery are commonly 

accepted and studied in laboratory plasma physics. 
However, the current from viscosity of ions and electrons 
is not mentioned in many literatures. 

In physics, external force F acting on charged particle 
with charge Q could be equivalent to an electrical force. 
The equivalent electrical field is /E F Q  for charged 
fluid (ions or electrons). The charge density is ne and the 
force in unit volume is f, then we can get the electric 
field / neE f . If the fluid has electrical resistivit  , 

we can get the electrical current 
2 2

4 4

c c

ne 
 

 
f

j E .  

Therefore, viscous current of ions and electrons is 

2
2 1

4
e

i i e e
i

mc

nem ne
 


 

     
  

j V 2V      (11) 

The viscous coefficients of ions and electrons have the 
following forms respectively [28-30] 


5/2 1/2

15 1 12.21 10 g cm s
ln

i i
i

T A
    


        (12) 

iE V B V V

V
   (9) and 


5/2 1/2

15 1 12.21 10 g cm s
ln

e e
e

T A
    


        (13) 
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where iA  and eA  are the atomic weight of ions and 
electrons, i  and . i  and e  are 
the temperatures of ions and electrons in the unit of K, 

1A  1/1836eA  T T

0/D r   [25],  is an impact parameter and 0r D  is 

the largest impact parameter. 
Substituting the electrical resistivity with the collision 

frequency between ions and electrons, we can get 

2i e
i

i ei e ei

e e

m m

 
 

    j V 2
eV

V

             (14) 

If the ions and electrons have the same second-order 
differential velocities , V is the pla- 
sma velocity, and the temperature of electrons is higher 
than or equal to that of ions in general case. Viscous 
current of ions can be ignored, so 

2 2 2
i e    V V

2e

e ei

e

m




 j V                  (15) 

where the collision frequency  1
3/21.52ei

e

n
s

T
 


,  

then we get 


8 4

21.37 10
A cm ,

ln
eT

n




  


j V 2        (16) 

where n is the plasma density in the unit of 3cm  and V 
is the plasma velocity in the unit of . 1cms

From Equation (16), we can see the viscous current 
depends strongly on the temperature of electrons, as well 
as the plasma density and the second-order differential 
velocity. 
 
3.2. Differential Rotation 
 
The differential rotation is commonly found in most astro-
physical objects with the advent of helioseismology. Solar 
different rotation inverting by helioseismology has shown 
that the strongest shear is associated with the so-called ta-
chocline [31,32], the rotation shear layer located immedi-
ately beneath the core-envelope interface. The result can be 
used to calculate the viscous current inside the Sun. 

The differential rotation  can be expressed as fol-
lowing [33,34], 



  
1

21
1

2
c

c s

r r
erf

d

           
    

c

4

    (17) 

where 2
2 4cos coss eq a a     

2 62.69 Hza n 
c sR 0.05

 is the surface lati-
tude differential rotation and erf(x) is the error function. 
The other parametric values are set as Ωc / 2π = 432.8nHz, 
Ωeq / 2π = 460.7nHz, , 4 , 

 and 1

67.13 Hza   n
0.7r  sd R . This describes a solar-like 

differential rotation profile. Moreover, it has purely latitu-
dinal differential rotation s

d

cr

 with equatorial acceleration 
in the “envelope” and smoothes matching across a “tacho-
line” of thickness 1  on a “core” rotating rigidly at a rate 

.  is the central radius of the tachocline, where the 

radial shear is confined. The differential rotation profile 
resembles rather closely that derived from fully two-di-
mensional helioseismic inversion [35,36]. 

c

sR

e

 is the solar 
radius and is set to be 7 × 1010 cm. 

The electron temperature is about T K  
around 

62 10 
0.75 sR , and electron density is  245 expe An N

 4 / sr R 310.5 .cm   is an Avogadro’s number [37, 
38]. 

AN

 
3.3. Viscous Current 
 
If we want to obtain the viscous current j, we must cal-
culate  from Equation (16) at first. Because the 
Sun is a sphere, we expand it in the spherical coordinate 

2 V

2 2
2

 2 1

sin 
cotr r r

VV
V V θV

r


 
 

            
V e  


2

2 2 2 2

2 cos

2 sin sin
r

VVV
V

r r





  

 
    


  

   
e  




2
2 2 2

2 1 cos

insin 2sin s
r

V VV
V

r
 

  


 

 
      

   
e  


(18) 

The direction of   is along the rotation axis, r is 
point to outside and velocity is , thus its direc-
tion is 

 V r

e . That is to say V only has the e  component. 
Equation (18) can be simplified 

2 2
2 2sin

V
V

r


 
 
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 

V e          (19) 

There is an item 2
 V  in the Equation (19) and then 

we expand it in the spherical coordinate. We obtain its 
form as following 

2 2
2 2

2

2 2 2

1 1
sin

sin

1

sin

V V
V r

r rr r

V

r

 




 

 

   
    

     





 

  (20) 

Since V  is symmetric about e , it means 0
V







.  

So 2V  can be written as 

2 2
2 2

1 1
sin

sin

V V
V r

r rr r
 

  
   

    
     

 



 (21) 

Substituting Equation (21) into Equation (19), we can 
obtain 

2 2
2 2

2 2

1 1
sin

sin

sin

V V
r

r rr r

V

r

 




 



    
           


 



V

e

 



 (22) 
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r

From Equation (22), we can see that if we want to ob-
tain the value of , we must calculate the three items 
on the right of the equation. Substituting  into 
Equation (22), the first item can be expressed  

2 V
·V  

 

   2

2
2

1 1

1 1
2

1 8

c s c

x

V
r

r r rr

rx r
erf x e

d d






  
        

       
    





       (23) 

where 
 

1

2 cr r
x

d


 . The second item can be written 

 

 

2 2
22

2 2
2 4

1
sin 2 sin 1 6cos

sin

4cos 2 cos

V A
a

rr

a a

  
 

 

       
  

 (24) 

and the third item can be expressed 

2 2 2sin sin

V

r r


 


                 (25)    

where 
 

1

21
1

2
cr r

A erf
d

       
    

. 

Now, we have calculated the , which is the func-
tion of r and 

2 V
 . We substitute it into the Equation (16). 

Then we will obtain the distribution of viscous current in 
the Sun. 
 
3.4. Magnetic Field outside the Sun 
 
We have obtained the viscous current and then we begin 
to calculate the outside magnetic field of the Sun. The 
distant formula from inner to exterior of the Sun is 

     2 2        z zr r x x y y
2

    (26) 

Then we use Biot-Savart law to compute external 
magnetic field of the Sun 

     
3

1
dv v

c


  



 J r r r

B r
r r

       (27) 

where c is a proportional coefficient, its value is 3 × 1010. 
 is the inner radius of the Sun, r is the external radius, 

 is the inner differential volume element and 
r

dv v  is the 
entire volume inside the Sun. In order to obtain the value of 

, we divide it into  and  B r    ,B x B y  B z  com-
ponents in Cartesian coordinate. Therefore, we have three 
components of solar magnetic field 

  0

3

1
dy

v

J z
B x v

c r r
 


              (28) 

  0
3

1
dx

v

J z
B y v

c r

 




r
             (29) 

  0 0

3

1
dx y

v

J y J x
B z v

c r r






            (30) 

Now, we have derived the formulae of magnetic field 
outside the Sun. Using Equations (28), (29) and (30), we 
can obtain any point value of magnetic field outside the 
Sun. 
 
3.5. Magnetic Field Maps 
 
Figure 1 is the magnetic field vector map outside the 
Sun. It describes the directional change of magnetic field. 
We integrate the magnetic field B from sR  to 3 . S

Figure 2 is a map of magnetic field lines outside the 
Sun. It is very apparent that some of the magnetic field 
lines are open, and the others are closed. The north and 
south poles are negative and positive respectively. We can 
see that the magnetic field outside the Sun is symmetric 
about the solar axis and anti-axisymmetric about the 
equator. We find that there are six closed areas of mag-
netic field lines outside the Sun. Moreover, there are some 
cross-equatorial rings through the equator. The two small 
butterfly-shaped magnetic field lines above point to the 
north pole. However, the change happens approximately at 
the latitude 20˚, which magnetic field lines extend outward 
directly. When the latitude is more than 20˚, magnetic 
field lines extend outward and gradually point to the north 
pole. While the latitude is less than 20˚, magnetic field 
lines extend toward the equator. With the extension of the 
magnetic field lines, they don’t stop at the equator, but 
across the equator and continue to extend to the southern 
hemisphere, until they reach the points, the absolute values 
of which are the same as they started points. These mag-
netic field lines, crossed the equator, are called as 
cross-equatorial rings. The two areas of magnetic field 
lines below the Sun come out from South Pole. Some of 
them also become open, and the others return to the Sun’s 
surface after extending out some distance. 

R

The magnetic field of Figure 1 and Figure 2 is gener-
ated by viscous current in Equation (16). But the viscous 
current is very weak, thus the magnetic field B derived 
from it is very weak. The magnitude of the magnetic 
field strength is only about  G. It could be the 
background magnetic field of the Sun. 

2010

 
4. Conclusions 
 
People have constructed a variety of solar dynamos to 
explain the cycle activities of the Sun, the origin and gen-
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eration of the magnetic field. However, these dynamos 
have their own shortcomings, and can not explain fully all 
aspects of the Sun. 

Ions and electrons velocities are identical in fully ion-
ized two-fluid plasma without considering the effect of 
collisions and external forces, so there is no current in 
the plane which is perpendicular to the magnetic field. 
The current only appears in the direction which is paral-
lel to the magnetic field. Thus generalized Ohm’s law 
does not fit in this condition. 
 

 

Figure 1. It is the magnetic field vector figure outside the 
Sun. The integral scale is form sR  to 3 sR . 

 

 

Figure 2. It is a figure of magnetic field lines outside the 
Sun. Some of the magnetic field lines are open, and the oth-
ers are closed. The north pole is negative polarity and the 
south pole is positive polarity. There are six closed magnetic 
field lines areas outside the Sun. Furthermore, there are 
some cross-equatorial rings through the equator. 

In fully ionized two-fluid plasma, viscous current 
strongly depends on the electron temperature, plasma den-
sity and second-order differential velocity. The viscous 
current may be an important component in solar chro-
mosphere and corona since high electron temperature. 

We can obtain the specific viscous current formula 
using differential rotation. Based on Biot-Savart law, we 
can calculate any point value of magnetic field outside 
the Sun through the viscous current. Then we get the 
figures of solar vector magnetic and magnetic field lines. 
We plot the magnetic field of the Sun based on the dif-
ferential motion and the parameters of solar model. The 
magnetic field of the Sun is axis-symmetric. It could be 
the background magnetic field of the Sun. As viscous 
current is very weak, the magnetic field is also very weak. 
It is on the order of 2010  G. So far, people have ob-
served the local magnetic field of the Sun. Because the 
whole magnetic field of the Sun is very weak, it is very 
different from observation. It is also our future work. 
Since the viscosity of the electrons depends sensitively 
on the temperature of the electrons, we expect a reason-
able electron temperature from observation or theoretical 
model. Although the magnetic field is very weak, this is 
the first time we tentatively calculate the magnetic field 
outside the Sun with viscous current. Most importantly, 
we obtain the maps of vector magnetic field and mag-
netic field lines outside the Sun. 

In the near future, we will gradually consider external 
forces, partial ionized plasma and three-fluid, which 
contribute to the outside magnetic field of the Sun. It 
would be a very interesting exploration [39]. 
 
5. References 
 
[1] M. Ossendrijver, “The Solar Dynamo,” The Astronomy 

and Astrophysics Review, Vol. 11, No. 4, 2003, pp. 
287-367. doi:10.1007/s00159-003-0019-3 

[2] P. Charbonneau, “Dynamo Models of the Solar Cycle,” 
2005. http://www.livingreviews.org/lrsp-2010-3 

[3] S. M. Tobias, “The Solar Dynamo,” Philosophical Trans-
actions of the Royal Society A, Vol. 360, No. 1801, 2002, 
pp. 2741-2756. doi:10.1098/rsta.2002.1090 

[4] S. J. Larmor, “The Relativity of the Forces of Nature II,” 
Monthly Notices of the Royal Astronomical Society, Vol. 
80, No. 1, 1919, pp. 118-138.  

[5] T. G. Cowling, “The Stability of Gaseous Stars,” Monthly 
Notices of the Royal Astronomical Society, Vol. 94, 1934, 
pp. 768-782. 

[6] E. Bullard and H. Gellman, “Homogeneous Dynamos and 
Terrestrial Magnetism,” Philosophical Transactions of 
the Royal Society A, Vol. 247, No. 928, 1954, pp. 213- 
278. doi:10.1098/rsta.1954.0018 

[7] E. N. Parker, “The Formation of Sunspots from the Solar 
Toroidal Field,” Astrophysical Journal, Vol. 121, 1955, 
pp. 491-507. doi:10.1086/146010 

Copyright © 2011 SciRes.                                                                                 IJAA 

http://wapedia.mobi/en/Digital_object_identifier
http://dx.doi.org/10.1007%2Fs00159-003-0019-3
http://dx.doi.org/10.1098/rsta.2002.1090
http://dx.doi.org/10.1098/rsta.1954.0018
http://dx.doi.org/10.1086/146010


J. Q. WU  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                 IJAA 

97

[8] M. Steenbeck, K. Krause and K. H. Rädler, “A Calcula-
tion of the Mean Electromotive Force in an Electrically 
Conducting Fluid in Turbulent Motion, under the Influ-
ence of Coriolis Forces,” Zeitschrift Naturforschung Teil 
A, Vol. 21, 1966, pp. 369-375.  

[9] M. Stix, “Differential Rotation and the Solar Dynamo,” 
Astronomy & Astrophysics, Vol. 47, No. 2, 1976, pp. 
243-254. 

[10] E. N. Parker, “Cosmical Magnetic Fields: Their Origin 
and Their Activity,” Oxford University Press, New York, 
1979, pp. 40-90. 

[11] H. W. Babcock, “The Topology of the Sun’s Magnetic 
Field and the 22-Year Cycle,” Astrophysical Journal, Vol. 
133, 1961, pp. 572-587. doi:10.1086/147060 

[12] E. N. Parker, “A Solar Dynamo Surface Wave at the In-
terface between Convection and Nonuniform Rotation,” 
Astrophysical Journal, Vol. 408, No. 2, 1993, pp. 707- 
719. doi:10.1086/172631 

[13] A. R. Choudhuri, M. Schüssler and M. Dikpati, “The So- 
lar Dynamo with Meridional Circulation,” Astronomy & 
Astrophysics, Vol. 303, No. 2, 1995, pp. 29-32. 

[14] M. Dikpati and G. Giloman, “Global Solar Dynamo 
Models: Simulations and Predictions,” Journal of Astro-
physics and Astronomy, Vol. 29, No. 1-2, 2008, pp. 29-39.  
doi:10.1007/s12036-008-0004-3 

[15] M. Dikpati and P. A. Gilman, “Flux-Transport Solar Dy-
namos,” Space Science Reviews, Vol. 144, No. 1-4, 2009, 
pp. 67-75. doi:10.1007/s11214-008-9484-3 

[16] D. Nandy and A. R. Choudhuri, “Explaining the Latitu-
dinal Distribution of Sunspots with Deep Meridional 
Flow,” Science, Vol. 296, No. 5573, 2002, pp. 1671-1673.  
doi:10.1126/science.1070955 

[17] M. Stix, “A Non-Axisymmetric α-Effect Dynamo,” As-
tronomy & Astrophysics, Vol. 13, 1971, pp. 203-208. 

[18] A. Bigazzi and A. Ruzmaikin, “The Sun’s Preferred Lon-
gitudes and the Coupling of Magnetic Dynamo Modes,” 
Astronomical Journal, Vol. 604, No. 2, 2004, pp. 944- 
959. 

[19] G. A. Glatzmaier and P. H. Roberts, “A Three-Dimen-
sional Self-Consistent Computer Simulation of a Geo-
magnetic Field Reversal,” Nature, Vol. 377, 1995, pp. 
203-209. doi:10.1038/377203a0 

[20] V. Archontis, K.Tsinganos and C. Gontikakis, “Recurrent 
Solar Jets Active Regions,” Astronomy & Astrophysics, 
Vol. 512, 2010, pp. 1-4. doi:10.1038/377203a0 

[21] M. S. Miesch, A. S. Brun, M. Derosa and J. Toomre, 
“Structure and Evolution of Giant Cells in Global Models 
of Solar Convection,” Astrophysical Journal, Vol. 673, 
No. 1, 2008, pp. 557-575. doi:10.1086/523838 

[22] H. K. Moffatt, “Magnetic Field Generation in Electrically 
Conducting Fluids,” Cambridge University Press, Cam-
bridge, 1978. 

[23] N. O. Weiss and M. J. Thompson, “The Solar Dynamo,” 
Space Science Reviews, Vol. 144, No. 1-4, 2009, pp. 
53-66. doi:10.1007/s11214-008-9435-z 

[24] M. Stix, “The Sun,” Springer-Verlag, Berlin, 1989. 

[25] F. F. Chen, “Introduction to Plasma Physics,” Plenum 
Press, New York, 1974. 

[26] J. D. Huba and J. A. Fedder, “Self-Generation of Mag-
netic Fields by Sheared Flows in Weakly Ionized Plas-
mas,” Physics of Fluids B, Vol. 5, No. 10, 1993, pp. 
3779-3788. doi:10.1063/1.860848 

[27] S. I. Braginskii, “In Reviews of Plasma Physics,” Con-
sultants Bureau, New York, 1965. 

[28] L. Spitzer Jr., “Physics of Fully Ionized Gases,” Inter-
science Publishers ING, New York, 1962. 

[29] M. S. Wheatland and D. B. Melrose, “Alfvénic Fronts and 
the Turning-off of the Energy Release in Solar Flares,” 
Proceedings of the Astronnomical Society of Australia, 
Vol. 11, 1994, pp. 25-27. 

[30] E. N. Parker, “Comment on ‘Current Paths in the Corona 
and Energy Release in Solar Flares’,” Astrophysical Jour-
nal, Vol. 471, No. 1, 1996, pp. 489-496.  
doi:10.1086/177984 

[31] T. M. Brown, J. Christensen-Dalsgarrd, W. A. Dziem-
bowski, et al., “Inferring the Sun’s Internal Angular Ve-
locity from Observed p-Mode Frequency Splittings,” As-
trophysical Journal, Vol. 343, 1989, pp. 526-546.  
doi:10.1086/167727 

[32] P. R. Goode, W. A. Dziembowski, S. G. Korzennik and E. 
J. Rhodes Jr., “What We Know about the Sun’s Internal 
Rotation from Solar Oscillations,” Astrophysical Journal, 
Vol. 367, 1991, pp. 649-657. doi:10.1086/169660 

[33] M. Dikpati and P. Charbonneau, “A Babcock-Leighton 
Flux Transport Dynamo with Solar-Like Differential Ro-
tation,” Astrophysical Journal, Vol. 518, No. 1, 1999, pp. 
508-520. doi:10.1086/307269 

[34] J. G. Beck, “A Comparison of Differential Rotation 
Measurements,” Solar Physics, Vol. 191, No. 1, 1999, pp. 
47-70. doi:10.1023/A:1005226402796 

[35] S. Tomczyk, J. Schou and M. J. Thompson, “Measure-
ment of the Rotation Rate in the Deep Solar Interior,” 
Astrophysical Journal, Vol. 448, 1995, pp. 57-60. 

[36] P. Charbonneau and K. B. Macgregor, “On the Genera-
tion of Equipartition-Strength Magentic Fields by Turbu-
lent Hydromagnetic Dynamos,” Astrophysical Journal, 
Vol. 473, No. 1, 1996, pp. 59-62. doi:10.1086/310387 

[37] J. N. Bahcall, M. H. Pinsonneault and S. Basu, “Solar 
Models: Current Epoch and Time Dependences, Neutri-
nos and Helioseismological Properties,” Astrophysical 
Journal, Vol. 555, No. 2, 2001, pp. 990-1012.  
doi:10.1086/321493 

[38] J. N. Bahcall and R. K. Ulrich, “Solar Models, Neutrino 
Experiments and Helioseismology,” Reviews of Modern 
Physics, Vol. 60, No. 2, 1988, pp. 297-372.  
doi:10.1103/RevModPhys.60.297 

[39] A. G. Kosovichev, “Solar Dynamo and Magnetic Self- 
Organization,” The Astronomy and Astrophysics Decadal 
Survey, Science White Papers, Vol. 160, 2010, pp. 1-8.

 

http://dx.doi.org/10.1086/147060
http://dx.doi.org/10.1086/172631
http://dx.doi.org/10.1007/s12036-008-0004-3
http://dx.doi.org/10.1007/s11214-008-9484-3
http://dx.doi.org/10.1126/science.1070955
http://dx.doi.org/10.1038/377203a0
http://dx.doi.org/10.1038/377203a0
http://dx.doi.org/10.1086/523838
http://dx.doi.org/10.1007/s11214-008-9435-z
http://dx.doi.org/10.1063/1.860848
http://dx.doi.org/10.1086/177984
http://dx.doi.org/10.1086/167727
http://dx.doi.org/10.1086/169660
http://dx.doi.org/10.1086/307269
http://dx.doi.org/10.1023/A:1005226402796
http://dx.doi.org/10.1086/310387
http://dx.doi.org/10.1086/321493
http://dx.doi.org/10.1103/RevModPhys.60.297

