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Abstract 

This paper contains novel model using feedback neural networks for a work piece temperature prediction. 
The heat and mass transfer in a porous metal workpiece which is heated by a fire gun is studied. The heat 
flux distribution is determined by thermocouple connected on the workpiece at definite distances. The gun 
work piece distance were also change and the temperature distribution and heat flux were determined. The 
permeability’s were in range of 0.01 - 0.15. The ANN model parameters of the result output were simulated 
using the ANN parameters the simulation was done using MATLAB 6.0® Neural Network Toolbox. 

Keywords: Neyral Network, Porous Media, Prous Passages  

1. Introduction 

The heat and mass transfer in a porous metal workpiece 
which is heated by a fire gun is studied. The heat flux 
distribution in a workpiece due to effect of thermal spray 
nozzle (uniform external heat source) causing high radia- 
tion conduction and convection transfer in the workpiece. 
The flame gun was kept at various distance and the effect 
of the source studied for the radiation and convection. 
This work mainly deals with the studies on heat flux and 
temperature prediction in a metal workpiece subjected to 
firing gun (fired using mixture of oxygen and acetylene 
gas) generally used for gas cutting and welding opera- 
tions 

Studies on Flow and transport at interface between a 
porous medium and clear fluid have been studied widely. 
Fauchius, Vandelle and others [1] studied the mecha- 
nisms and models for Thermal spraying. Sampath and 
Jiang [2] discussed the procedures for computing design 
parameters in Substrate temperature spray coatings. Pop 
[3] did studies on modeling of heat flow in a porous cav- 
ity. Lai [4] studied the effect of Non-Darcy Convection 
in the free surface of a porous media. In this paper a 
gener- alized treatment of convection force and the effect 
of free surface hydrodynamics on the heat transfer is 
dealt with. A novel model incorporating computation of 

local and average heat flux has been discussed. Ras [5,6] 
did studies on the free surface convection while others 
including Lai [4] studied the Forced convection on the 
surface of porous layer. Pop and Postelnicu [7] discussed 
on the effect of heat generation effect on the layers in 
porous media. 

Flow and transport at interface between a porous me- 
dium and clear fluid is of importance in heat transfer in 
porous enclosures and extended surfaces. The mecha- 
nisms that contribute to the enhanced heat transfer in- 
clude heat conduction in the metal foam matrix (whose 
conductivity is always higher by several orders of mag- 
nitude .The well known Darcy’s law is based on a bal- 
ance between the present gradient and the viscous forces 
and breaks down for high velocities when inertia terms 
are no longer negligible. Here we present numerical and 
experimental results for buoyancy induced flow in a high 
porosity metal foam 

The Associative Neural network (ASNN) is an 
extension of the ANN that goes beyond a simple/ 
weighted average of different models. Associative 
Neural network represents a combination of an ensemble 
of feed-forward neural networks and the k -nearest nei- 
ghbor technique. It uses the correlation between ensem- 
ble responses as a measure of distance amid the analyzed 
cases for the ANN. This corrects the bias of the neural 
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network ensemble. An associative neural network has a 
memory that can coincide with the training set. If new 
data becomes available, the network instantly improves 
its predictive ability and provides data approximation 
(self-learn the data) without a need to retrain the en- 
semble. Another important feature of ASNN is the 
possibility to interpret neural network results by analysis 
of correlations between data cases in the space of models. 
BAM (binary associative memory) is the recurrent 
memory achieved by the exemplar on being trained by 
standard inputs prior to its deployment for modeling and 
simulation applications 

2. Experimental Methods: 

The heat flux distribution is determined by thermocouple 
connected on the workpiece at definite distances. The 
gun work piece distance were also changed and the tem-
perature distribution and heat flux were determined. 
Cu-Ni Thermocouples were attached on the surface of 
the workpiece. The flame was generated by acetylene 
and oxygen gasses as in gas welding process, the flame 
was kept at distances from 5 cm to 20 cm and the heat 
flux distribution studied.  

During a typical experimental run the powers were 
varied to achieve different base late temperature and 
hence Rayleigh numbers. Due to temperature constraints 
the parameters of the heat input were restricted to maxi-
mum base plate temperature of 80*c a metal foam sam-
ple heated from above . 

The foam sample is saturated with & surrounded by a 
fluid, which extends a distance 1s  in x  direction and 

2s  in y direction. 
The steady two dimensional equations for the fluid 

saturated porous medium & for the clear fluid region 
outside the metal foam are written separately as shown 
below. 

The Flow in a Square Pore cavity is modeled using the 
continuity and energy equations using a square computa- 
tional grid with velocity and temperature boundaries. 

The continuity and energy equations are given by 
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where volumetric heat sources  ,  ,  r y z  represents the 
contribution of frictional heating. The parameters pC  
& ek  may depend on y  & z  but remain independ- 
ent of r . More importantly the contribution of axial 
conduction deferred to the subsequent is neglected, 
hence Equation (4) reduces 
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where the Heat generation number dQ  is given by 
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The governing equations are scaled on basis of fluid 
Raleigh number as in the case of viscous fluid (inde- 
pendent of permeability) instead of modified Raleigh’s 
number. The scaling is introduced to study the effective 
change in values of individual matrix & fluid parameters 
(6). Finite element method is used for prediction of pa-
rameters. A suitable grid scheme with iso-parametric, 
quadrilateral elements is used for stability of numerical 
solution, all the elements are containing 8 nodes, one at 
each corner and one at midpoint of each of the sides. All 
nodes are given velocity & temperature boundaries and 
corners of the grid pressure boundaries. This is an ac-
cepted practice given by Taylor (2). For depicting the 
variation in pressure by the shape function iM  of one 
order less than shape function iN  defined for velocities 
and temperature. 

2.1. Direct Problem: 
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2.2. Sensitivity Problem 
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2.3. Adjoint Problem 

      2
, , ;ms ms msJ q r T r z t q Y t       (9) 

where ( ,  ,  ,  )ms msT r z t q  is the temperature calculated at 
the measuring points (rms) through the direct problem 
Equations 5 & (5a)-(c), Yms(t) is measured temperature 
and the subscript ms denotes the thermocouple number. 

The adjoint problem is obtained by introducing the 
Lagrange multiplier  ,  ,  r z t  into the direct problem 
equations and by integrating over the spatial and then 
over the temporal domain as follows. 

For the region (0,  )r R , (0,  )z H  
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where     is the Dirac delta function. It is required 
for solving the adjoint equations with the end condition 
at time ft t , one should first proceed with variable 
change ft t   , The adjoint problem becomes an ini- 
tial value problem in   via the transformation. 

Step size and Gradient  
The iterative equation for determining  ,  ,  q r z t  can 
be given by 
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where the superscript n  denotes the iteration number 
and n  is the search stepsize defined by 
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and the descending direction nP  is estimated by 
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Where 1n  , 1 0  . General definition of   is 
given by 
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where   represents the norm and (.,.) the scalar prod- 
uct. 

Time stepsize and algorithm stop criterion 
The stopping criterion is satisfied when the Fourier 

Table 1. Properties of workpiece (Cu). 

Thermal conductivity k =396w/m·c 

pC 389J/kg·c 

Density = 8900kg/m3 

Table 1a. Artificial Neural Network (ANN) variable de-
scription. 

Category Parameter 
Lower 
limit 

Upper 
limit 

Neuron 
number

D gun workpiece dis-
tance 

30 100 1 

t -preheating time s  0 10 1 

1Y Firstthermocouple 

temperature 

10 60 3 

2Y secondthermocouple 

temperature 
10 65 2 

3Y thirdthermocouple 

temperature 
10 60 5 

Input pat-
tern 

radial position mm 0 50 4 
Output 
pattern 

q -heat flux Mw/sqm 0 1.2 1 

 
number ( oF ) satisfies the condition 

0.05o
p tp

k t
F

C H


             (17) 

where 0.028oF  ,   is the time step, and tpH  is the  

location of thermocouples to the surface in front of the 
flame ,according to parameters listed in Table 1. 

Since the Fourier number satisfies Equation (17),the 
increase of measuring errors is weak and few obvious 
noisy signals can be captured. In this study, 0.5 st   
has been considered for the time step according to the 
limit of data acquisition system. If the problem contains 
no noisy signals, the general stopping criterion condition 
is expressed by 

 J q                     (18) 

Where   is specified stopping criterion. But the 
measurement precision of data   acquisition is about 
10-3. Hence it should not be reasonable to expect the 
functional Equation (9) to be equal to zero. A small value 
of 0.002   is chosen for above criterion  

Algorithm for CGM method 
The algorithm for Conjugate gradient method (CGM) is 
given below. 

1) Select an initial guess  ,  nq r t . generally equal to 
zero. 

2) Calculate the direct problem, Equations (1)-(4), ob- 
tain the solution  ,  , ;  n

ms msT r z t q . 
3) Decide if the stopping criterion Equation (18) is 

satisfied. If yes go to step (6), otherwise continue. 
4) Solve the adjoint problem. Equations (10)-(12) 

[note: 1=(t )t   in place of t], calculate the conjugate  
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Table 2. ANN output results of parameters. 

Time t  secs ry  py  t;E  klI  D  m 1Y  m 2Y  m 3Y  m Radial posn heat flux q  MW/sqm

8 0.87 0.54 0.05 0.51 0.056 0.028 0.039 0.06 20 0.7 
9 0.92 0.63 0.07 0.73 0.082 0.035 0.054 0.064 22 0.81 

10 1.01 0.78 0.095 0.81 0.093 0.055 0.07 0.073 26 0.98 
12 1.21 0.91 0.11 0.96 0.098 0.07 0.085 0.082 29 1.03 

Table 3. Computation of flux parameters using CGM. 

Time t secs . n (cm)  nP r, z, t .  n+1q r, t  
fT  T  f= T T t

oE    . q  oF  
dQ  

2 1.83 0.628 340 280 60 0.15 1.5 2.43 0.185 0.003 

4 1.84 0.651 347 284 63 0.173 1.48 2.45 0.21 0.0034 2 

6 1.91 0.731 378 293 68 0.18 1.54 2.63 0.27 0.0041 

2 1.41 0.78 390 297 72 0.21 1.64 2.71 0.32 0.0046 

4 1.63 0.82 410 302 78 0.28 1.81 2.91 0.45 0.0047 4 

6 1.73 0.87 412 308 81 0.32 1.92 3.12 0.51 0.0049 

2 1.45 0.81 402 304 74 0.23 1.71 2.8 0.41 0.005 

4 1.71 0.92 408 307 76.3 0.28 1.81 2.9 0.43 0.0051 6 

6 1.81 1.02 415 308 77.4 0.41 1.93 3.2 0.48 0.0053 

2 1.84 1.08 418 312 79 0.48 2.01 3.43 0.52 0.0054 

4 1.86 1.13 421 315 81 0.51 2.11 3.51 0.58 0.0056 8 

6 1.91 1.31 428 321 85 0.61 2.33 3.81 0.7 0.0058 

 
coefficient n , Equation (19) and the direction of de- 
scendent np  Equation (18). 

5) Solve the sensitivity problem Equations (5)-(8), 
calculate the stepsize n  from the nth to the ( 1n  )st 
iteration, Equation (17) and calculate a new vector 1nq  . 
Go to step 2. 

6) The iteration is terminated. 

3. A Neural Computational Procedure 

The heat flux calculated by solving the inverse problem 
was correlated to the workpiece temperature and other 
parameters with the aid of an artificial neural network 
(ANN). Such a structure considers three main categories. 

1) The processing and the experiment design parame- 
ters with aid of an artificial neural network (ANN). Such 
a structure considers following types. 

2) The processing and experiment design parameter as 
an input (1) pattern. These were the gun workpiece dis- 
tance, the preheating time, the thermocouple tempera- 
tures and radial position. 

3) The heat flux as an output (O) unit calculated using 
CGM. 

4) An intermediate structure called hidden layers, en- 
coding the correlations between I/O patterns. 

Each of the ANN types is defined by a set of neurons 
playing role of simple processing elements as in Table 

1a. A neuron has ability to receive a sum of numbers 
from other neurons and to emit a signal number toward 
other neurons according to 

1 1k ijk ijI W O                         (19) 

where 1kI  is input of neuron l from layer k , ijO  is 
output of neuron j from layer; 1ijkW  is called the weight 
relating neuron j and neuron 1 and this corresponds to 
neuron strength  
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from (4a) we have 
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A Neural Network Model Formulation  
The CGM solution is validated by comparing the tem- 
peratures at measuring points recorded by data acquisi- 
tion unit with those of one step direct problem resolution 
with the convergent solution regarded as the known 
boundary conditions. The heat flux profiles were com- 
pared with simulated and experimental Values. For the 
ANN simulation computation was done using Conjugate 
Gradient Method (CGM). 

Different iteration levels were considered from 103 to 
2.5×105. The best compromise was obtained for 1500 
cyclessince over-fitting is avoided .The best compromise 
was at 8×20 Different ANN configurations with the ANN 
convergence property was validated as the ratio of clas- 
sification was equal to 100% at tend of iterative process. 
Different ANN configurations were examined introduc- 
ing neuron penalty “permitting to add or remove neurons 
depending on the training or the test error evolutions. 
The optimization procedure permitted us to obtain a two 
layer structure as in Figure. The first hidden layer con- 
tained 13 neurons and the second one contained 8 neu-  

 

Figure 1. Metal foam sample experiments experimental 
setup of gas welding. 

 

Figure 2. Map of two layer BAM neural network for the 
problem model. 

rons. Such structures are known to be sufficient to en- 
code nonlinear correlations. At the end of iterative proc- 
ess the average and maximum training errors were 
7×10-3 and 2.5×10-2 respectively. Figure shows the in- 
stantaneous heat flux profiles determined by the CGM 
and the ANN for the gun workpiece distance 30mm. 
Along the radial direction the flux strength decreases 
rapidly. In the proximity of z  axis the flux distribution 
appears singular because of unavailability of temperature 
information between 0r   and 20r   mm.The same 
phenomena can also be found between 20r   and 40 mm 
for gun workpiece distance of 60 mm.There is an inflex-
ion point away from which axis; this means that the flux 
becomes more and more concentrated i.e decrease of 
effective preheating. Moreever the maximal flux heat for 
30 mm reaches 1.1 MW/m2 which is four times larger 
than 90 mm. 

The maximum of heat flux calculated corresponds to 
the heat flux experienced by the workpiece at the Z  
position corresponding to the geometric axis of the flame 
gun. Thus this value is expected to be the largest one at 
the surface of the workpiece at the Z  position corre- 
sponding to geometric axis of the flame gun. 

A Two layer BAM (Binary Associative memory) 
Hopfield network for the flame gun temperature & flux 
estimation. 

It can also be observed that the heat flux profiles esti- 
mated by the ANN are very similar to those of the CGM.  

 

Figure 3. Predicted temperature profiles. 

 

Figure 4. Temperature prediction at different points. 
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The peak values at the Z  axis for workpiece distances 
30, 60 and 90 mm are about 1.1.0.8 and 0.3 Mw/sqm for 
the two solutions. 

To compare the -q r  profiles calculated by CGM and 
ANN methodologies an average error o the preheating 
time was considered. Table 3 shows the errors obtained 
for different gun workpiece distances. It appears that the 
average error depends on mesh density is not high 
enough to allow the ANN structure to finally describe the 
exponential decay of the heat flux mechanism  

ANN has the ability to predict property evolution for 
intermediate and limiting parameter values. Two exam- 
ples for such properties are presented through the con- 
sideration of optimized ANN structure where the -q r  
curves were built for the gun workpiece distances of 
45 mm and 75 m. These two distances belong to the pa- 
rameter space defined for the ANN structure. As at the 
ANN input, thermocouple temperatures are needed to 
build the -q r  curve;these were calculated using the 
following linear relationship 

30 60
45

60 90
75

2

   1..5;   =1..7
2

mst mst
mst

mst mst
mst

Y Y
Y

Y Y
Y ms t

 



  

  

where the subscripts ms  and t  are relative to the th-  

 

Figure 5. Heat flux profiles workpiece dist 60 mm. 

 

Figure 6. Heat flux profile (workpiece distance 90 mm) 

Table 4. Artificial Neural Network (ANN)variable descrip-
tion. 

Category Parameter 
Lower 
limit 

Upper 
limit 

Neuron 
number

D gun workpiece dis-
tance 

30 100 1 

t -preheating time s  0 10 1 

1Y Firstthermocouple 

temperature 

10 60  

2Y secondthermocouple 

temperature 
10 65  

3Y thirdthermocouple 

temperature 
10 60 5 

Input pat-
tern 

radial position mm 0 50 1 
Output 
pattern 

q -heat flux Mw/sqm 0 1.2 1 

 
ermocouple position and the preheating time, and the 
superscript is relative to gun workpiece distance. 

Interpolation of thermocouple temperatures are intro- 
duced in order to predict realistic behavior related to in- 
termediate workpiece distances. Indeed as the ANN 
structure learns from the database, any set of thermocou- 
ple temperatures can be introduced as input parameter. 
The calculated heat-flux profiles represent actual in- 
termediate evolutions when comparing maximum 
strengths ( 0r  ). Whatever the gun workpiece distance 
the heat flux was found to increase with the preheating  

 

Figure 7. Experimental values of heat flux profile using 
model equations. 

 

Figure 8. Predicted temperature profiles. 
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time for a given radial position ad to decrease with in- 
crease of radial distance for a given preheating Time. 
The inflection point for the intermediate gun- work-piece 
distance 45 mm is located at 30 m which is the interme- 
diate value between the cases of gun work- piece dis- 
tances of 30 m and 60 mm. 

4. Results and Discussion 

Figure 2 shows the  map of Two layer BAM neural 
network for the problem model which was used for our 
computation The Figure 3 shows the plot of predicted 
temperature profiles at 3.5 kj·sqcm. Next the Figure 4. 
depicts the temperature prediction at different points at a 
input value of the heat flux being 6 kJ/cmsq. The tem- 
peratures gradually decreased form the heated end of the 
workpiece. The Figure 5 shows the heat flux profile (at a 
workpiece distance 60 mm/, The heat flux is initially 
steady and decreases over the middle of the workpiece, 
This is attributed to the accelerated heat dissipation on 
the surface of the porous metal workpiece, Finally Fig- 
ure 6 shows the heat flux profile. Here the workpiece 
distance was kept at 90 mm from the laser gun used for 
heating it. Figure 7 gives the depiction of Experimental 
values of heat flux profile using model equations .These 
data correlated with the results of the neural network 
model whose results are given in Figures 3-6 and Tables 
4-6. Figure 8 shows the .predicted temperature profiles 
in the workpiece computed using the CGM method. Ta-
ble 1 gives the .Properties of workpiece (Cu). Table 2 
gives the ANN model parameters of the result output 
simulated using the ANN parameters the simulation was 
done using MATLAB 6.0® Neural Network Toolbox. 
Table 6 Computation of flux parameters using CGM. 
Table 5 deicts. ANN output results of parameters. Table 
4 Artificial Neural Network (ANN) variable description. 
Table 1a gives the description of parameters of an Arti-
ficial Neural Network (ANN) variable.  

When Heat transport by Free convection occurs in a 
porous medium with a closed cavity the viscous dissipa- 
tion is neglected. Aluminum foam samples of different 
pore sizes (5-60PPI) and porosities (0.8-0.99) were used 
to illustrate the effects of metal foam geometry on heat 
transfer (3). 

5. Conclusions and Suggestions 

This paper contains a novel model using feedback neural 

networks for a workpiece temperature prediction. The 
ANN model parameters of the result output were simu- 
lated using the ANN parameters The simulation was 
done using MATLAB 6.0® Neural Network Tool- 
box .The article aimed at presenting a calculation prince- 
ple based on statistical (ANN) and deterministic (CGM) 
models to evaluate the heat flux distribution generated by 
the flame gun in cylindrical workpiece. These models 
were complementary to each other, as the first one inte- 
grated the process variables that are not handled in the 
physical problem and the second one described by -q r  
profiles required to predict the system response. The heat 
flux profiles exhibit a universal exponential decay char- 
acterized by increasing stability at a given radial position 
when increasing the preheating time. The ANN optimi- 
zation revealed a two hidden layer structure which 
learned adequately the correlations (generalization prop- 
erty) encoded by the physical problem: the increase of 
heat flux with decrease of radial distance and with in- 
crease of preheating time. In addition, the ANN structure 
computed the heat flux decrease with increase of gun- 
workpiece distance 
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