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Abstract

We construct optimal k-step, 5- to 10-stage, explicit, strong-stability-preserving Hermite-Birkhoff (SSP HB)
methods of order 12 with nonnegative coefficients by combining linear k-step methods of order 9 with 5- to
10-stage Runge-Kutta (RK) methods of order 4. Since these methods maintain the monotonicity property,
they are well suited for solving hyperbolic PDEs by the method of lines after a spatial discretization. It is
seen that the 8-step 7-stage HB methods have largest effective SSP coefficient among the HB methods of
order 12 on hand. On Burgers’ equations, some of the new HB methods have larger maximum effective CFL
numbers than Huang’s 7-step hybrid method of order 7, thus allowing larger step size.

Keywords: Strong Stability Preserving, Hermite-Birkhoff Method, SSP Coefficient, Time Discretization,

Method of Lines, Comparison with Other SSP Methods

1. Introduction

We are concerned with the numerical solution of initial
value problems

d
=Y, V)=, (1)
where the function f is such that
ly+an|<|y®]. 2)
forall At>0.Here || may be a norm or, more gener-

ally, any convex functional. It is also assumed that f
satisfies the discrete analog of (2),

" yn +Atf (tnl yn )" < "yn " ' At < AtFE ' (3)
for the forward Euler method. Here vy, is a numerical
approximation to y(t, +nAt) . We are interested in
higher-order accurate multistep HB methods that pre-
serve the monotonicity property

[y, | < max

Yoi | @)

for 0 <At <At , =cAt, whenever condition (3) holds.

Here k represents the number of previous steps used
to compute the next solution value and c, called the
SSP coefficient, depends only on the numerical integra-
tion method but not on f . The monotonicity property
(4) is desirable as it mimics property (2) of the true solu-
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tion and prevents growth of errors.

Strong-stability-preserving (SSP) methods have been
developed to satisfy the monotonicity property (4) for
system (1) whenever condition (3) is fulfilled. The
monotonicity property is guaranteed under the maximum
time step At,, =CAt.. . Considerable research effort
has been devoted to find numerical methods with the
largest value ¢ among various classes of methods.

The main application of such monotonicity results are
found in the numerical solution of hyperbolic PDEs, in
particular, of conservation laws. For the one-dimensional
equation

Ye+9(¥), =0, y(x 0)=y,(x), ()
the spatial derivative g(y), can be approximated by a
conservative finite difference or finite element at x;, j
=1, 2,---,N, (see, for example, [1-4]). This spatialsemi-
discretization will lead to system (1) of ODEs.

In this paper, to solve system (1), we construct new
explicit, multistep, multistage, SSP general linear time-
discretization methods of order 12 with nonnegative co-
efficients. These methods, which we call SSP Hermite-
Birkhoff (SSP HB), because their construction involves
HB interpolation polynomials (see Section 2), are com-
binations of linear k -step methods of order 9 and
s -stage RK methods of order 4. The objective of
high-order SSP HB time discretizations is to maintain the
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monotonicity property (4) while achieving higher-order
accuracy in time, perhaps with a modified CFL restric-
tion, measured here with an SSP coefficient, c(HBKks) :

At < c(HBks)At,, , (6)

The SSP coefficient, historically called CFL coeffi-
cient, describes the ratio of the strong-stability- preserv-
ing time step to the strongly-stable forward Euler time
step (see [5]). Since our arguments are based on convex
decompositions of high- order methods in terms the SSP
FE method, such high-order methods preserve SSP in
any norm once FE is shown to be strongly stable.

Several new explicit 6- to 10-stage SSP HB methods
with nonnegative coefficients presented here have been
found by computer search.

On Burgers’ equations, some of the new HB methods
have larger maximum effective CFL numbers than
Huang’s 7-step hybrid method of order 7 [6], thus al-
lowing larger step size.

In particular, no counterparts of k -step HB methods
of order 12 have been found in the literature among hy-
brid and general linear multistep methods. Moreover, the
8-step, 7-stage HB method has largest effective SSP co-
efficient among the 12th-order HB methods on hand.

Section 2 introduces 5- to 10-stage SSP HB methods.
Order conditions are listed in Section 3. Section 4 de-
rives the Shu-Osher representation of k -step 5- to
10-stage HB methods of order 12. New SSP HB methods
are formulated as solutions of optimization problems in
Section 5. Section 6 compares the effective SSP coeffi-
cients of different methods and lists several new SSP HB
methods. Numerical results for several methods applied
to Burgers’ equations are presented in Section 7. Appen-
dix A lists the Shu-Osher representation of some of the
best HBks methods considered in this paper.

2. K-step, S-stage SSP HB Methods of
Order 12

Notation 1: The following notation will be used:

» k denotes the number of steps of a given method,

» s denotes the number of stages of a given method,

» HBks denotes k -step, s -stage SSP Hermite-
Birkhoff methods of order 12,

* HMk denotes k -step SSP hybrid methods of order
7.

All HBks methods considered in this work are SSP
and of order 12 unless specified otherwise. Therefore the
denominations “SSP” and “order 12” will often be omit-
ted in what follows.

Notation 2: The abscissa vector o =[c,,c,,Cy, ",
C, ]T , 0<c; <1, defines the off-step points t, +c;At.

An HBks method requires the following s formu-
lae to perform integration from t, to t. ., where, for
simplicity, ¢, =0 is used in the summations. By con-
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vention, ¢ =1.

Let F;:=f(t, +c;At, Y;) be the jth stage deriva-
tiveandset Y, =y, .

An HB polynomial of degree 2k +i—3 is used as
predictor P, to obtain the ith stage value Y, to order
9,

k-1 i-1 k-1
Yi:Zaijynj+At{Zaiij+Zﬁij fnj}, ;
=0 =1 =1 (7)
i=2 3--,s.

An HB polynomial of degree 2k +s—2 is used as
integration formula to obtain vy, ,, to order 12:

k-1 s k-1
yn+1zzajynj+At|:ijFj+Zﬂj fnj:|' (8)
i=0 j=1 j=1

3. Order Conditions of HBKks

To derive the order conditions for HBks we shall use
the following expressions coming from the backsteps of
the methods:

N S C I S
Bi(J)_;ail i +§’B”(j_1)!' 9)

j:]., 21'”1121

i=2 3,5

As in the construction of RK methods, we impose the
following simplifying conditions on the abscissa vector
o=[e. e e

i-1
¢ =).8+B@®, i=2 3,,s. (10)
j=1

Forcing an expansion of the numerical solution pro-
duced by formulae (7)-(8) to agree with a Taylor expan-
sion of the true solution, we obtain multistep- and
RK-type order conditions that must be satisfied by
HBks. To reduce the large number of RK-type order
conditions, we impose the following simplifying as-
sumptions, as in similar searches for ODE solvers [7]:

i-1
k 1 k+1
a.c: +k!B(k+1)=——-=c",
; ij~] |( ) k+1 i (11)

i=2, 3,---,5, k=1,2,---,8.

Note that (11) with k =0 reduces to (10). There are
seven sets of equations to be solved:

k-1
Sy =1, i=2 35, (12)

i=0

kz_lai =1, (13)

i=0

s 1
bc+k!B(k+)=——, k=0,1,---,11, (14
Zl‘, (Ci i(k+1) i1 (14)
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s i-1 Cig 1
_zb,{ aija+Bi(10)}+B(11):E, (15)
s C, i-1 Cig 1
Zbi—[’ aija+si(10)}+s(12):ﬁ, (16)

ib[i_la 10+B(11)}+ BU2)=— Loy

Sh ﬂiau {Zalk 4B, (10)} B, (11)}

i=2 j=1 , (18)
1
+B(12) = o
where the backstep parts, B(}), are defined by
( )J k-1 |)J—1
B(j)= o — . ,
2 EAGE a9

i=1 2 12.
4. Shu-Osher Representation of HBks

We rewrite HBks in the Shu-Osher representation as-
convex combinations of FE to show that they satisfy SSP
conditions.

Firstly, if we let

i-1
2,20, 3 2y =1 =3 4.5,
= S (20)
andu_ >0, >u, =1
1=1

then formulae (7) and (8) become

i-1 k-1
YI = |:zﬂ’|l :|ai0yn + Zaij yn—j
1=1 j=1

k-1 (21)
+At{2a., J+Zﬂij fnj} i=3 4,5
j=1
S k-1
Ynu = [Zusl :|6¥0yn + Zaj yn—j
N JZl (22)

i-1 k-1
+At{2bij +Z;ﬂj fnj}
1= J=

Replacing the index i by m informula (7), we ex-
press y, asafunctionof Y_,

k-1
Ym - zamj yn—j -
j=1

Yon=—"" )
a, m-1 k-1 (23)
° At[Zamj Fi+> 8, fn_J}

j=1 =1

m:253|'”155
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For i=3 4,---,s and 1=1 2,---,i—-1, we replace
the variable vy, in the terms A %yn in (21) by the
right-hand side of (23) with m= [ Similarly, vy, in the
terms u_ a,y, in (22) is replaced by the right-hand
sides of (23) with m=I.

Secondly, we rewrite (7) with i=2, and (21) with
i=3, 4,---,5 as (24), and (22) as (25) in the Shu-Osher
equivalent form:

k-1 k-1
=| XAV, ALY B,
j=0 j=0

(24)
i-1
|:zeu j +Atzgiijj|, i= 2: 3:"‘,5,
j=1
k-1 k-1
Yoo = {Z Ao +ALY B }
e e (25)

where the coefficients are

i-1
A=a -2 ey, j=01..,k-11i=2 3.5,
1=2
—aj—ée,a,j,jzo, 1., k-1,
i-1
B -3 e By i =0, Lo k=1 i=2, 3005
1=2
=B~ eh 1=0, Lok,

i-1
=a;— ) &a, =34,

I=j+1

yS! J :21 31”'!i_1!

i-1
gj :bj_ Z e|a|ja j:21 3,--,8,

I=j+1
which follow from setting
=i /aJO, j=2, 3,

ij~*i0
&y =Py 1=2, 3,8,

€ =usla0/aj0, j=2, 3,---,8,

b, = B -

Thirdly, the representation (24,25), under the assump-
tions that all coefficients are nonnegative, implies that
the HBkp are SSP. In fact, one finds that the following
functions are convex combinations of forward Euler
steps:

eIn (24) for i=2, 3,--

Jd-11=3 4,---s

,S, the first and second brack-

B.
eted terms are sums of FE steps with step sizes —At,
j
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9

€;

j=0,---,k=1, and At, j=2,3,---,i-1, respec-

tively.
* In (25), the first and second bracketed terms are

. . B, .
sums of FE steps with step sizes XIM , j=0,--- k-1,

9

]
One can easily verify that

k-1 i1 S
Z'Aﬁj+zeij =11=2, 3,5, ZAj+iej =1.
= = j=0 j=2

and At, j=2,3,---,i—1, respectively.

Provided all the coefficients A;, e;, A;, e are
nonnegative, the following straightforward extension of a
result presented in [6,8] holds.

Theorem 1: If the forward Euler method FE is SSP
under the CFL condition At <At.., then the Kk -step,
s-stage HBks methods (24,25) are SSP provided

At < c(HBks)At, ,

where the SSP coefficient c(HBKks) is the minimum of
the four numbers:

A .
min {—J} min {ﬁ} i=2, 3,5,
j=0, 1,--- k-1 Bj j=0, 1,-- k=1 Bij
) g ) & | .
min <—¢, min <—¢, 1=3, 4,---,5,
j=2, 3,8 gj j=2, 3,1 gij

with the convention that « /0 =+, under the assump-
tion that all coefficients of (24) - (25) are nonnegative.

(26)

5. Construction of Optimal HBKks

Since HBks contain many free parameters when k is
sufficiently large, we use the Matlab Optimization Tool-
box to search for the methods with largest c(HBks) for
different k and s. To optimize HBks, we maximize
c(HBks) of Theorem 1 by solving the nonlinear pro-
gramming problem

max c(HBks), 27

Ay Bij. &j» Gij» Ay By €5, G
where all the numbers in all pairs
(A}, B}, i=0, L k-1,
{Ajjv Bij}! |:2! 31”'151 J:ov ll'“!k_la
{eJ! gj}!jzzv 31'”151
{eijv gij}l i:31 4!“'151 J :21 31”'!i_1|

are nonnegative. Null pairs, {0, 0}, are not included in
the minimization process if they occur. Besides the non-
negativity constraints on all variables, the objective func-
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tion (27) is subject to

« the convex combinations constraints (20),

o the simplifying assumptions (10) and (11) for
HBks ,

* the order conditions (12) to (18) for HBks,

+ the conditions on the abscissa vector: ¢, =0,
0<¢ <1, i=2 3,;,s.

6. Comparing Effective SSP Coefficients

Definition 1: (See [9]) The effective SSP coefficients
of an SSP method M is denoted by

o(M)
|

where | is the number of function evaluations of
method M per time step and c¢(M) is the SSP coeffi-
cientof M.

The SSP coefficients, c¢(HM), of hybrid methods are
defined in [6]. In this paper, I=5, 6,---,10 for HB
methods and 1=2 for hybrid methods. The numbers
cy (HB) and c, (HM) will be used below.

The effective SSP coefficients, c,, , provide a fair
comparison between methods of the same order, al-
though, in practice, starting methods and storage issues
may also be important. Gottlieb [10] pointed out that one
looks for highorder SSP methods M with c¢(M) as
large as possible, taking their computational costs and
orders into account.

We briefly review the developments of SSP methods.
Shu and Osher [11] constructed a series of second- to
fifth-order SSP RK methods, several of which are
downwinded ones. Shu [12] found a class of first-order
SSP RK methods with very large SSP coefficients, as
well as one- to five-step SSP methods of orders two to
five. Gottlieb and Shu [13] derived optimal s -stage SSP
RK methods of order s for s=2, 3, and proved that for
s=4 there is no such SSP method with nonnegative
coefficients. Spiteri and Ruuth [14,15] studied optimal
s-stage SSP RK methods of order p with s> p for
p <4. They proved the nonexistence of fifth order SSP
RK methods with nonnegative coefficients [16] and con-
structed some fifth-order methods of seven to nine stages
with downwind-biased spatial discretization [9]. A 10-
stage method of order 5 was given in [17]. Hunds-dorfer,
Ruuth and Spiteri [18] proved that the implicit Euler me-
thod can unconditionally preserve the strong stability of
the FE method (see also [19]) and studied multistep me-
thods with specific starting procedures.

Ruuth and Hundsdorfer [20] pointed out that linear
multistep methods of order five require at least seven
steps. Huang [6] introduced the 7-step hybrid method
HM7 with ¢(HM7)=0.234 and c, (HM7)=0.117.

Ce (M) = (28)
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Table 1. c, (HBks), for k=7, 8, as aFunction of s.

S c, (HB7s) c,; (HB8s)
5 0.010 0.057

6 0.035 0.091

7 0.060 0.096

8 0.055 0.091

9 0.051 0.083
10 0.047 0.076

In the literature, we have found no general linear
methods of order 12. We now list our best methods.

HBKkS5 . Our best 5-stage SSP HBk5 method has step
number k=8 with c(HB85)=0.288 and c, (HB85)
=0.057.

HBK6 . Our best 6-stage HBk6 has k=8 with

c(HB86) =0.544 and c, (HB86)=0.091.
HBKk7 . Our best 7-stage HBk7 have k=7, 8. Our
HB87 has largest effective SSP coefficient among the
12th-order HB methods on hand. The coefficients
c(HB87) =0.669 and c, (HB87)=0.096 are listed in
boldface in Table 1.

According to our search, it seems that c. (HB87)
cannot be improved up to 10 stages and 8 steps.

The formulae of some of our best new HBks are
listed in Appendix A with their c(HBks), c. (HBKs)
and abscissa vector o .

Table 1 lists c, (HBks) as a function of s for
k=7, 8. We note that, for a given k, c, (HBks) first
increases with s and then decreases. We see that
Cyr (HB87) =0.096 is largest for the values of k and
s on hand.

Definition 2: The percentage efficiency gain (PEG)
of the SSP coefficients c, (M2) of method 2 over
Cer (M1) of method 1 is

Ceff (M 2) — Cett (Ml)

PEG(Cuy (M2), 0 (MD) = === 1= (29)
eff

7. Numerical Results

From now on, we use the total variation semi-norm,
v (yn) :Z yn,j+l_yn,j ' (30)
]

and say that a method is total variation diminishing
(TVD) if

TV (Yo) STVAY,) - (31)
We compare our new methods numerically with
HM7 of Huang.
7.1. Starting Procedure

To maintain the TVD property (31), the necessary
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starting values for HBkp were obtained by RK54 with
small initial step size, h =1.0e—0.4 (approximatively).

7.2. Comparing HBks with HM7 with a Unit
Downstep Initial Condition

As a first comparison of HBks of order 12 with
Huang’s 7-step HM7 of order 7 [6], we consider Bur-
gers’ equation in Problem 1.

Problem 1: Burgers’ equation with a unit downstep
initial condition:

0 o1 2|
au(x, t)+5[5u(x, t) }—0,

1, -1<x<0,
uix. 0) {0, 0<x<l. 32
and boundary condition u(-1, t)=1 for t>0.

We discretize the spatial derivative of the flux func-
tion f(u)=u(x, t)>/2 by the weighted essentially
nonoscillatory finite difference scheme of order 5
(WENOS) of Jiang and Shu [21] with spatial stepsize
Ax =1/150. This leads to the semi-discrete system

1

%Uj v = _E[ fj+(l/2) - fj—(llZ)j| ) (33)
where u; ~u(x;, t) with x; = jAx, j=-149,.-,-1
0, 1,150, and f, ., is the numerical flux, which
typically is a Lipschitz continuous function of several
neighboring values u;(t) (see [21] for details). A time

discretization can then be applied to (33).
We consider the total variation norm of the numerical

solution at t;,, =1.8. For this purpose, we let n, be
the largest effective CFL number defined as
Atl
Ny = mgX {El—} ) (34)

such that the TV error in the numerical solution satisfies
the inequality

|TV(u(x, to)) =TV (u(x, 0)|s5.0e—02, (35)
and we let maxAt,,, =l Axng be the maximum nu-

num

merical step size. Here | is the number of function

evaluations per time step. We note that Inequality (35) is
used because tg, is small.

Finally, we let maxAt,., of HBks for Problem 1

be taken as
max Aty,.,, = C(HBKs)At., (36)
where the SSP coefficients c(HBks) of some of the
HBks are listed in Appendix A.
The numerical results for Problem 1 show that the
forward Euler method, FE, has TVD property (31)
with error (35) under the time step restriction
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At < At =0.325Ax . 37)

It was also observed numerically that the TVD prop-
erty (31) holds with error (35) for the methods listed in
Table 1 with At <maxAt,,, . This confirms the result of
Theorem 1 that HBks are also TVD with At <max
At,,, when combined with the WENOS space discreti-
zation since HBks are convex combinations of FE.
The same situation holds for Problem 2 below.

Definition 3: The n, percentage efficiency gain of
method 2 over method 1 is

N (method 2) —ny, (method 1)

PEG(n, )= . (38
() n, (method 1) (38)

Table 2 lists PEG(ng (HBks)) , ng(HM7) for
HBks and ng(HM7)=0.127 for Problem 1. It is
seen that

a) ng (HB8s)>ny (HM7) forall HB8s on hand,

b) quite remarkably, even though c (HB8S) < Cy
(HM7), in this example, HB8s methods allow a larger
step size since n (HB8s) > n (HM7),

c) PEG(ng (HBS8s)), ng(HM7)>0 and increases
as s increases,

d) the ratios R,, of HBks are clearly higher than
the ratio of HM7 . For example, R, (HB85)=7.310>
334=R ,(HM7).

The ny (HBks), for k=7, 8, as a function of s for
Problem 1 are listed in Table 3.

7.3. Comparing HBks and HM7 witha
Square-Wave Initial Condition

As a second comparison, we consider Burgers’ equation
with a square-wave initial value in Problem 2, which is
test case 4 of Laney’s five test problems [22, p.312].

Problem 2: Burgers’ equation with a square wave ini-
tial condition:

0 o1 2|
au(x, t)+a[5u(x, t) }_O,

X 1L (39)

1,
u(x, 0) 0 1
3
and boundary condition u(-1, t)=0 for t>0.

We discretize the spatial derivative of Problem 2 by
WENOS5 and compute the total variation of the numerical
solution as a function of the effective CFL number,
At/ (1Ax), at tg, =0.6. In this case, ng =0.325 in
the time step restriction (37) is replaced by n, =0.183.

Table 4 lists PEG(ny (HBks), ng (HM7))  for
HBks where ng (HM7)=0.122 for Problem 2. It is
seen that the results for Problem 2 listed in Table 4 con-

s|x|s1.
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Table 2. PEG(n, (HBks), n,(HM7)) for HBks and
HM?7, and ratio R, =maxAt,, /maxAt,  for Problem
1. Here n,(HM7)=0.127 and R, ,(HM7)=3.340.

HBks n,, (HB) R, PEG

HB85 0.137 7.310 8%

HB86 0.170 5.772 34%

HB77 0.145 7.402 14%

HB87 0.210 6.756 65%

Table 3. n, (HBks), for HBks HBks applied to Problem 1.

S n, (HB7s) n,, (HB8s)
5 0.075 0.137
6 0.084 0.170
7 0.145 0.210

Table 4. PEG(n, (HBks), n,(HM7)) for HBks and

HM7, and ratio R, =maxAt,, /maxAt,, for Problem
2.Here n,(HM7)=0.122 and R, (HM7)=5.689.

HBks N (HB) R PEG

HB85 0.137 12.999 12%

HB86 0.158 9.541 30%

HB77 0.138 12.536 14%

HB87 0.203 11.608 67%

Table 5. n,(HBks), for HBks applied to Problem 2.

S n, (HB7s) n,, (HB8s)
5 0.075 0.137
6 0.083 0.158
7 0.138 0.20

firm the observations (a-d) obtained for Problem 1 as
listed in Table 2.

We observe that, as with hybrid methods, the ratio
max At,,,, / max At,,,, of HBks for Problems 1 and 2
are greater than 1. The theoretical strong-stability bounds
of HBks are thus verified in the numerical comparison
of the maximum time steps for Problem 1 and confirmed
again with Problem 2.

Table 5 lists n, (HBks) for k=7, 8 as a function
s for Problem 2.

8. Conclusions

New optimal explicit k -step, s-stage (s=5, 6,...,10)
SSP Hermite-Birkhoff methods, HBks, of orders 12
with nonnegative coefficients are constructed by combin-
ing linear Kk -step methods of order 9 with 5- to 10-stage
Runge-Kutta methods of order 4. No counterparts of
HBks of order 12 have been found in the literature
among hybrid and general linear multistep methods.
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Moreover, the 8-step 7-stage HB87 has largest effec-
tive SSP coefficient among the 12th-order HB meth-
ods on hand. It is found that some of new HBks have
larger effective SSP coefficients and larger maximum
effective CFL numbers than Huang’s 7-step hybrid
method of order 7 on Burgers’ equations.
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Appendix +5.2321449943060860 e —1hf ,
+7.3043453131041394 € - 2Y,
+2.5389742479104255 e —1hF,
Y, =1.9031575432429105¢ - 2y ,
+9.4390087983054396 e — 3y
+4.9434657715702020 e -3y
+1.6566124692029068 € — 2y _,
+1.1104031717607358 e — 2y _,
+2.6842037578605454 ¢ — 2y ,
+1.8775366097652471e -2y,
+7.5605047579112805 e —1y
+5.4836011749628891 ¢ — 3hf
+3.2809785459763291 e — 2hf
+1.7183377498495377 e — 2hf
+5.7583482403654469 ¢ — 2hf
+3.8597368238337690 & — 2hf _,
+0.3302327932468482 e — 2hf ,
+6.5262756583411866 & — 2hf

This appendix lists the Shu-Osher representation of some
of the best HBks methods considered in this paper with
large c(HBks), c. (HBks) and abscissa vector o =
[c., c,,..]. For concision, y,=y,, and f,=f .,
etc., that is, the n is omitted.
HB85. ¢=0.288, c, =0.0575, and
o =[0, 0.26168792578970829, 0.57645868591351512,
0.64259830897152903, 0.84768581516148367]".
Y,=2.5088663215922309e -3y,
+1.7925867066588250e -1y
+8.3882346204594546e -2y
+5.3490887614261351e -2y ,
+1.5355696110214626e -1y ,
+1.0519373621484439e -1y,
+2.4588790492868035e -1y ,
+1.7622062694799823e -1y ,

+6.0965642854921308 e — 2hf
+2.91573176976848 e —1hf .
+1.8593314024575333 e —1hf ,
+5.3376059470557180 e —1hf ,
+3.6565109649432631 e —1hf ,
+8.5470090983589497 e —1hf ,
+6.1253899506765896 e —1hf

Y, =2.6128898286558854 e -4y ,

+1.6160083267835362e -1y ,
+9.4862179832725935e -2y
+5.6365573282506388e -3y ,
+2.0977946829698155e -1y ,
+1.4916019106552419e -2y ,
+3.0292902279685230e -1y ,
+9.0823471553059566 e — 4hf ,
+3.7634075368106784 e — 2hf
+3.2973883540780097 e —1hf .
+1.9592548393933151 e - 2hf ,
+7.2918878409381671e—1hf ,
+5.1847751946960174 e — 2hf ,
+1.0529745717881731 e —Ohf ,
+2.1001463097741810e -1Y,

+3.5880557446886407 e —1hf
+1.3724791412067294 e 1Y,
+4.7707070872820062 e —1hF
y,., =3.6675474446860911 ¢ — 4y
+1.8187060855967201 e — 2y
+8.3994945677018339 e 3y
+4.9736412857637512e —3y
+1.8712919442613503 e - 2y
+1.6346596041633132 e — 6y ,
+5.0971099921212137 e -1y ,
+1.6214093549108249 e —1y ,
+6.5806701062719308 e —3hf
+2.9196457024832888 ¢ — 2hf
+1.7288266917287534 ¢ — 2hf
+6.5045693394014711 e — 2hf _,
+5.6820405678545405 ¢ — 6hf
+3.2159785087110521 e —1hf ,
+5.6359829950182783 & —1hf
+1.4048847659544447 e 1Y,
+1.1567333760542281 e —1hF,
+9.4775175249781230 e —11Y,
+4.2595421684290258 ¢ — 2Y,

+7.3000620436093744 e —1hF; ,
Y, =4.2596681035936669 e -3y ,
+5.4580922815710267 e -2y ,
+1.2619581254827076e -2y .
+4.6309759376721930e -2y ,
+8.5864031653139994 e -2y ,
+2.5760590697067362e -2y ,
+6.9756199296789845e -1y

+1.4806074206442218 e — 1hF,
+9.4422661366167060 € — 2Y,
+3.2821107895566276 & —1hF, .
HB86. c=0.544, c,, =0.091,

o =[0, 0.21131780320298513, 0.44627527172505960,
0.60194043865046165, 0.68474825481971757,
0.88846370798458207] " .
Y,=1.2056356845857071 e — 4y ,

+3.3666866480073193 e — 2hf
+4.3865384852407319 e — 2hf .
+1.6097169759141286 e —1hf ,
+2.9846147169135057 e —1hf ,
+8.9543242531916173 e - 2hf ,
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+2.5194380079479200e -2y ,
+3.2952118982459200e -2y .
+1.1957054109007751e -2y ,
+9.9102593302822214e -2y ,
+6.2284629866456040e -2y ,
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+2.3317040497514951e -1y ,
+5.3521825511616750e -1y ,
+2.2172094474490973 e — 4hf
+5.2718806244896688 e — 3hf
+6.0600188311846041 e — 2hf .
+2.1989473000097962 e — 2hf ,
+1.8225340287039474 e —1hf ,
+1.1454378095836737 e —1hf ,
+4.2880915967088845 e —1hf ,
+4.1727467824309650 e —1hf ,
Y, =2.1266363269138659¢e - 2y ,
+1.5771836376798177e -2y ,
+4.3926172811566480e -2y .
+1.7082987843641939e -1y ,
+3.2188412399962563 e -2y ,
+3.7020209932015796 e -1y ,
+1.1154991421676907 e -1y ,
+7.0377902093498815e - 3hf ,
+2.9005001316193480 e — 2hf
+8.0781886761716257 e — 2hf .
+3.1416258262624769 e —1hf ,
+5.9195703133247138e - 2hf ,
+6.8081560837360267 e —1hf ,
+2.0514449499605397 e —1hf
+2.3426532316918772 e —1Y,
+4.3082275548183158 e —1hF, ,

Y,=5.3099276098768008 e -5y ,

+5.4961729571656546e -4y
+1.1637244430341524e -3y .
+2.3085416780083620e -3y ,
+3.9189061446081950e -3y ,
+8.0147132511805186e -1y ,
+4.2610525709387915e - 5hf ,
+2.1401330951890396 e — 3hf
+4.2454951224084048 e — 3hf ,
+7.2070160485316233 e - 3Nf ,
+1.7712502856993173 e —1hf
+1.9053478604448212 e 1Y,
+3.5040065011901728 e —1hF,

Y, =3.0086399419988188 e -3y ,

+ 2.4458859933043708e -2y
+3.1107392915270225e -3y .
+6.4942530365104847e -2y ,
+1.4504001607980657 e -1y ,
+1.1483597667779880e -1y ,
+5.0132225682684406e -1y ,
+1.9839224302573101 e - 2hf
+5.7207667572438340e - 3hf
+1.1943176011436660 e —1hf ,
+2.6673405409431139e—1hf ,
+2.1118768766748411 e —1hf ,
+5.6014248925231536 e —1hf
+1.4328098088387603 e -1V,
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+2.6349912209563475 e —1hF,

Y, =3.8364653662411327 e — 4y ,

+1.9538912222846316e -2y ,
+4.6039554350891257 e -2y .
+1.2188103769706057 e -1y ,
+5.3347382574306705e -2y ,
+2.4574345904392714e -1y ,
+2.6965321938536446e -1y ,
+7.0554043510781647 e — 4hf
+2.6945695396165658 e — 4hf
+7.1279472038856595 e — 2hf .
+2.2414382031142641 e —1hf ,
+9.8107846468628329 e — 2hf ,
+4.5193147980540027 e —1hf ,
+4.9590242989675859 e —1hf
+2.4341278818897943 e —1Y,
+4.4764528829286226 e —1hF,

y,., =3.0057309944696390 e — 4y ,

+1.8418416885802473e -2y ,
+1.8025732157544459e -2y .
+1.8990404477105753e -2y ,
+5.3350392235820249e - 2y ,
+5.6588063024340191e -2y ,
+2.8208800017277152e -1y ,
+2.1570341210469796e -1y ,
+6.3394334033130204 e — 3hf
+3.3150000574699620 e — 2hf .
+3.4924069315339902 e — 2hf ,
+9.8113381349543630e — 2hf ,
+1.0406757991202498 e —1hf ,
+3.3081996436653333 e —1hf ,
+3.9668670169619830 e —1hf ,
+9.1404198485699903 e — 2Y
+1.6809576475720123 e —1hF
+1.2805484845172674 e —1Y,
+2.3549769089357700 e —1hF,
+1.1707595890504358 e —1Y,
+2.1530709937689432 e —1hF; .

HB87. ¢=0.669, c, =0.096, and
o =[0, 0.24630671392471543, 0.34372959589592622,
0.46965773869833194, 0.60188693905557489,
0.74797892054340487, 0.88945490483914114] " .

Y,=3.7974982255302016 ¢ — 3y ,
+4.5089590734417921 e - 2y
+1.3429764576528219 e 1y ,
+5.6617416306819886 & — 2y ,
+4.0351426372574184 € 1y |
+3.5668358524220800 € —1y
+1.6821020062433984 ¢ — 3hf
+4.1148530730146071 e — 2hf
+2.0060641782382357 e —1hf
+8.4571974490169566 ¢ — 2hf _,
+5.5717589231755449 e —1hf
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+5.3279427144280755e —-1hf ,
Y, =2.9172400973803583 e -5y ,
+1.5457113291505844 e -5y
+1.1177286333803951e -4y .
+2.8614723012174159e -4y ,
+5.4885374083531169e -4y ,
+8.5268194936899200e -1y ,
+1.1450336076905814 e — 5hf ,
+2.3088983501061465 e —5hf
+1.6696013989213592 e — 4hf .
+4.2743095366881700 e — 4hf
+8.1984745325029522 ¢ — 4hf
+9.0476868364274501 e — 2hf
+1.4632664728244774e 1Y,
+2.1857467698879354 e —1hF, ,

Y,=3.8475518352648985¢e -5y ,

+8.7276046172694814 e -5y
+3.9160153529198250 e — 4y
+8.4698793426668008 ¢ — 4y ,
+1.9159825166593124 ¢ — 3y,
+8.0838239885846730e 1y ,
+2.0756050912562519 € — 5hf
+5.8495277978687062 ¢ — 4hf
+1.2651838717277304 e —3hf
+2.8619890325691857 ¢ — 3hf
+1.2798384206338995 e —1hf
+1.8833727759078944 e 1Y,
+2.8132783999960803 e —1hF,
Y, =3.945885121420493 e — 4y ,
+3.0224741261588189 e -3y ,
+2.7859199581055545 ¢ — 5y
+1.1690557783204216 e — 2y,
+3.2441888015861495¢ — 2y ,
+2.6344135585813794 ¢ — 2y
+7.2046178550821049 e —1y
+2.5773136196436813 ¢ — 3hf
+4.1614536126434194 & —5hf
+3.9351417073771384 & — 2hf |
+2.4931199806475163 e —1hf
+2.0561671126902800 ¢ —1Y,
+3.0713890520825726 ¢ — 1hF,

Y, =1.1157847037721505e -3y ,

+8.2716022628498732e -3y ,
+3.1541447869261996e -2y ,
+1.9317942446706354e -3y ,
+8.3536788648073387e -2y,
+8.3768231333280554e -2y ,
+5.5087874866806642e -1y ,
+7.1766023733280809 e — 3hf
+4.7114875573382890 e — 2hf ,
+2.8856077199845985 e — 3hf ,
+1.2478264850959904 e —1hf ,
+1.2512836483058420 e —1hf ,
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n+l

+3.9923163881741003 e —1hf ,
+2.2995560227002496 e —1Y,
+3.4349499849412118 e —1hF,

Y, =7.0665184156984342¢e -5y ,

+1.1357098866877038e -2y
+1.9489725260200538e -2y .
+1.1371636634757204e -2y ,
+7.0530362148945702e -2y ,
+6.7156684867183417e -2y ,
+2.2796040165854331e -1y ,
+2.5634355593341113e -1y ,

+1.0555575548486729 e — 4hf

+2.3467533365446628 e — 3hf

+2.9112676894221846 e — 2hf .
+1.6986323751942745e - 2hf ,

+1.0535436580359381 e —1hf ,
+1.0031495271089685e —1hf ,
+3.8291186859596027 e —1hf
+1.2182135533209280 e —1Y,
+1.8197002314043459 e —1hF,
+2.1389851411383179e —-1Y,
+3.1950980562391240 e —1hF,

+1.1489248786967506e - 2y
+1.4564465260880323e -2y .
+1.9394836900481112e -2y ,
+5.2821409707040239e -2y ,
+7.9212845840518423e -2y ,
+1.9373980081939868e -1y ,
+2.7692442403851641e -1y ,

+3.9204470975736996 e — 3hf
+ 2.1755595095175002 e — 2hf
+2.8970937894792437 e — 2hf ,
+7.8901709150237184 e — 2hf ,

+1.1832378117387013e—1hf ,
+2.8939783129338997 e —1hf ,
+4.1365443450426853 e —1hf
+5.2243622611154630e - 2Y,
+7.8038642646651585 e — 2hF,
+1.3856684832443625 e —1Y,
+2.0698351719496980 e —1hF,
+1.6085976174957770e -1Y,

+2.4028344199700516 e —1hF, .

HB77. ¢=0.422, c,, =0.060,
o =[0, 0.24553329633115092, 0.34381434970186381,
0.46996349805312904, 0.59741148855197324,
0.74861321481234733, 0.93726371152609467] .

Y, =7.3010787905497990e - 2y ,

+5.8928786071653340e -2y .
+3.2361722721541197e -2y ,
+1.4144020818838035e -1y ,
+9.4746286693606921e -2y ,
+2.8032846082374741e -1y ,

=1.8273596102868513e -4y,
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+3.1918374759557272e 1y, +6.5792844833798811e -2y
+2.0216798040263967 ¢ — 2hf +4.3448235545907821 e - 2y,
+1.3966929029116232 e —1hf +5.0430317113692086 & — 2y _,
+7.6701713142726322 e — 2hf , +9.0475494963689174 ¢ -2y ,
+3.3523265645222677 e —1hf +1.3063404640238935 e —1y
+2.2456167015095949 e —1hf , +4.6491915432714381e -1y
+6.6441682888323905 e —1hf +2.5214268095918969 € — 2hf
+5.4103154682409460 e —1hf +1.0297826627077401 e —1hf
Y,=2.1115317946545937 e — 4y +1.1952675542752805 & —1hf ,
+1.5683574504977375e — 4y +2.1443930908325182 e —1hf ,
+1.4918080498094698 ¢ — 4y , +3.0962057366495105 e —1hf
+2.4632407047148717 e — 4y +4.9881872517581938 e —1hf
+6.2170015127662251 e — 4y +1.5271151632415950 e 1Y,
+9.0363491063395274 e —1y +3.6194719976664513 e —1hF,
+6.1209542801914530 € — 5hf Y, =5.0565957696390162 ¢ —3y ,
+5.8382176857588175 e — 4hf _, +4.2353916242658107 e —3y
+1.4735144687543986 ¢ — 3hf +9.0603416352126546 & —3y ,
+9.7164614733266222 & — 2hf +1.8723784992724177e -2y
+9.4979895414803089 ¢ — 2Y, +4.9888911059116470 e —1y
+2.2511535480103231 e —1hF, , +2.7778379949012472 1y
Y,=4.2291768720718013e - 7y, +1.3708345905699068 e — 3f
+1.2580709591111811e -3y +1.0038457971067822 & — 2hf
+1.0608502734091687 ¢ — 3y, +5.6604476160364535 & — 3hf ,
+3.9605051502427150 e — 4y , +4.4377933703203629 ¢ — 2hf _,
+2.9582053774373411e -3y, +2.7937851702809663 e —1hf ,
+8.7179307769714254e 1y, +6.5838563316055287 e —1hf
+1.0023728157574881 e — 6hf +1.8625097589686893 € 1Y,
+2.5143603774916003 € —3hf , +4.4144031047782634 e —1hF
+9.3869393959055553 & — 4hf , y,., =1.0109380023947052 ¢ — 5y
+7.0113517203593250 € — 3hf +3.1517394957498736 e —3y
+1.4425410174792175 e —1hf +2.7187605964756889 e — 3y ,
+1.2253332226018823 ¢ — 1Y, +1.2707234915443108 e 1y ,
+2.9042074846559973 e —1hF, +7.5811479542621490 e - 2y |
Y, =5.3214622874936398 ¢ — 5y + 4.8361832605624699 e 1y ,
+1.0124744704382351 e — 4y +8.7898513623300566 ¢ — 4hf
+6.7489031345744424¢ -3y, + 6.4438348096906980 ¢ — 3nf
+6.2012840133771428e -3y , +6.2026529973672723 & — 2hf ,
+1.2292552008659938 ¢ — 3y, + 1.7968358504392049 e —1hf
+1.5676690480087496 & 1y +3.1560924195242474 e —1hf
+6.9948617940629676 e —1y +1.4774510818353372 e — 3Y,
+2.3997031018436723 & — 4hf . 5 +3.5017613257625627 e — 3hF,
+1.5377805444918592 e — 3hf _, + 1.6820128003980495 ¢ — 1Y,
+1.4697892062279427 e — 2 , +3.9866006030837425 e —1hF
+2.9135031100574705 ¢ — 3hf +6.5351056468600191 ¢ — 2Y,
+1.2941301137409206 € - 1Y, +7.2587448184210451 e - 2Y,
+3.0672655348921618 ¢ — 1F, +1.7204218935729979 e —1hF, .

Y, =1.5883904892195118 e -3y ,
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