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The present article concentrates on the propagation of generalized surface acoustic waves in a composite struc- 
ture consisting of piezoelectric and non-piezoelectric semiconductor media. The mathematical model of the 
problem is depicted by a set of partial differential equations of motion, Gauss equation in piezoelectric and elec- 
tron diffusion equation in semiconductor along with boundary conditions to be satisfied at the interface. The 
secular equation that governs the propagation of surface waves has been derived in compact form after obtaining 
the formal solution. The analytic expressions for displacements, stresses, piezoelectric potential and electron 
concentration during the surface wave propagation at the interface have also been obtained. The numerical solu- 
tion of the secular equation is carried out for the cadmium selenide and silicon composite by employing fixed 
point functional iteration numerical method along with irreducible Cardano method. The computer simulated 
results with the help of MATLAB software in respect of dispersion curves, attenuation coefficient, displace- 
ments, stresses, carrier concentration and piezoelectric potential are presented graphically. This work may be 
useful in surface acoustic wave (SAW) devices and electronic industry. 
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Introduction 

The piezoelectric effect in certain noncentro-symmetric 
crystalline materials was discovered by Curie and Curie (1880). 
Parmenter (1953) regarded the appearance of DC electric field 
along the direction of propagation of a acoustic wave in a me- 
dium containing mobile charges as acoustoelectric effect. 
Weinreich et al. (1959) termed acoustoelectric effect as wave 
particle drag phenomenon. Hutson and White (1962) found that 
the field produced along the traveling acoustic wave produces 
current and space charges which results in acoustic dispersion 
and loss. According to White (1962) an acoustic wave traveling 
in a piezoelectric semiconductor can be amplified or attenuated 
by the application of a DC electric field. Collins et al. (1968) 
found the strong interaction between the wave on the surface of 
piezoelectric crystal and the wave on the drifting carriers in a 
nearby semiconductor. Bluestein (1968) and Gulyaev (1969) 
studied surface acoustic waves in piezoelectric materials. Fis- 
chler (1970) proposed that acoustoelectric amplification can be 
better obtained in composite structure of semiconductor and 
piezoelectric materials. Dietz et al. (1988) explored that the 
acoustoelectric amplification of acoustic waves can also be 
achieved through composite of a piezoelectric dielectric and 
non-piezoelectric semiconductor.  

de Lorenzi and Tierten (1975), and Maugin and Dehar (1986) 
developed nonlinear theories for deformable semiconductors. 
Ingebrigtsen (1970) studied linear and non-linear attenuation of 
acoustic surface waves in a piezoelectric coated with a semi- 
conductor film. Tien (1968) presented the nonlinear theory of 
ultrasonic amplification and current saturation in piezoelectric 
semiconductors. Kagan (1997) investigated the surface wave 

propagation in a piezoelectric crystal underlying a two dimen- 
sional conducting layer. Jin et al. (2002) studied the Lamb 
wave propagation in a metallic semi-infinite medium covered 
with piezoelectric layer. Wang (2002) investigated wave 
propagation in the piezoelectric solid medium. Yang and Zhou 
(2005) investigated amplification of acoustic waves in piezo-
electric semiconductor plates. Yang and Zhou (2005) also stud-
ied the propagation and amplification of gap waves between a 
piezoelectric halfspace and a semiconductor film. Maruszewski 
(1989) considered the interactions between elastic, thermal and 
charge carrier’s fields in semiconductors and predicted the ex- 
istence of two kinds of waves namely, polarized and dispersive 
waves. Kleinert et al. (2005) studied the surface-acoustic-wave- 
induced space-charge waves in electron-hole systems.  

Sharma and Pal (2004) investigated the propagation of Lamb 
waves in homogeneous, transversely isotropic, piezothermoe- 
lastic plate. Sharma et al. (2005) studied the propagation cha- 
racteristics of Rayleigh waves in transversely isotropic pie- 
zothermoelastic materials. The phase velocity profiles are found 
to be dispersive at small values of wave number and these be- 
come asymptotically linear at higher values of wave numbers. 
Sharma and Walia (2007) carried out further investigations on 
the propagation of Rayleigh waves in a homogeneous, trans- 
versely isotropic, piezothermoelastic semi-space. Sharma and 
Thakur (2006) studied the plane harmonic elasto-thermodiffu- 
sive waves in semiconductor materials. Sharma et al. (2007, 
2009) also investigated the characteristics of elasto-thermodif- 
fusive wave propagation on semiconductor materials and ob- 
served that life time of charge carriers and thermal relaxation 
time affects the wave characteristics significantly at long 
wavelengths as compared to that at short wavelengths. Sharma 
et al. (2008) investigated the elasto-thermodiffusive surface 
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waves in a semiconductor halfspace underlying a fluid with 
varying temperature. Recently, Sharma et al. (2010) studied the 
surface waves at the interface of semiconductor layer over a 
piezoelectric halfspace and found that phase velocity as well as 
attenuation decreases with the decreasing life time of the carrier 
field. 

Keeping in view the above work, the present article is de- 
voted to give detailed information of generalized surface acous- 
tic waves at the interface of the piezoelectric and semiconduc- 
tor halfspaces. The behavior of displacement components, 
stresses, electron concentration and piezoelectric potential at 
the interface of considered structure has been discussed. The 
effect of life time of the carrier field on phase velocity and at- 
tenuation coefficient is also taken into consideration so as to 
understand the interaction of acoustic wave in the piezoelectric 
halfspace with the carriers in the semiconductor halfspace.  

Formulation of Problem 

We consider a composite structure consisting of a homoge- 
neous transversely isotropic piezoelectric halfspace and a ho- 
mogeneous isotropic, non-piezoelectric elastic semiconductor 
halfspace which are in welded contact with each other as shown 
in Figure 1. We take the origin of coordinate system  at 
any point on the plane surface (interface) and z-axis pointing 
vertically downward into the piezoelectric halfspace along the 
poling direction. Thus, the piezoelectric halfspace and the 
semiconductor medium are represented by  and 

oxyz

z0z  0  
respectively. We choose x-axis along the direction of wave 
propagation in such a way that all particles on a line parallel to 
the y-axis are equally displaced. Therefore, all field quantities 
are independent of y-coordinate. 

Further, the disturbance is assumed to be confined in the 
neighborhood of the interface  0z   and hence vanishes as 

. The basic governing equations of motion and electron 
diffusion for the composite structure under study, in the ab- 
sence of body forces and electric sources, are given below: 

z 

1) Homogeneous isotropic, n-type semiconductor elastic 
halfspace [Maruszewski (1989), Sharma et al. (2007)]: 

 2 s s n sN            u u su           (1) 
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2) Homogeneous, transversely isotropic, piezoelectric (6 mm  
 

 

Figure 1.  
Geometry of the problem. 

class) medium [Sharma and Pal (2004)]: 

   11 , 44 , 13 44 , 15 31 ,
p p p p
xx zz xz xzc u c u c c w e e u       p p   (3) 
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 have been used. In the above equations the 
superposed dots on various quantities denote time differentia-
tion and comma nota- tion is used for spatial derivatives. Here 
   are Lamè’s parameters; s  is the density; n  is the 
elastodiffusive con- stants of electrons;  is the diffusion 
coefficient of electron; n

nD
t  and  are the life time and re-

laxation time of the carriers fields; 0  and  are the equilib-
rium and non-equilibrium values of electrons concentration; 

T

nt
n n

  is the coefficient of linear thermal expansion of the semi-
conductor material. The quantities  are flux-like con-
stants and  is the uniform temperature; 

,  QaQpa

0T  ,0,s s su wu  
and  ,0,p puu pw  are displacement vectors for semicon-
ductor and of piezoelectric materials respectively. The quanti- 
ties p , p , ij  and ije  are the electric potential, density, 
elastic parameters and piezoelectric constants; 11

c
  and 33  

are the electric permittivity perpendicular and along the axis of 
symmetry of piezoelectric material, respectively. Throughout 
this paper the superscripts , p s  on the field quantities and 
material parameters refers to piezoelectric and semiconductor 
materials respectively.  

The non-vanishing components of stresses, current density 
and electric displacement in both the media are: 
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Here s
ij  and p

ij  are the stress tensors. The quantities s
zJ  

and ,zN  respectively denote the current density and carrier 
density gradient in semiconductor; p

zD  is the electric dis- 
placement vector of piezoelectric material and  is the elec- 
tronic charge. The above model consisting of partial differential 
equations of motion, Gauss equation and equation for electron 
diffusion is also subjected to the continuity of stresses, dis- 
placements, electric fields and current density at the interface 

e

 0z   of two media. Mathematically, this requirement leads 
to the following interfacial boundary conditions: 

,  ,  ,  ,  ,  p s p s p s p s p p s
zz zz xz xz z zu u w w N D J     z        (8) 

We define the following quantities 
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where   is the characteristic frequency, and lv , t  are 
respectively, the longitudinal and shear wave velocities. Upon 
introducing the quantities (9) in Equations (1) to (5) we obtain 

v
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Formal Solution of the Problem 

In order to facilitate solution in semiconductor medium, we 
introduce the scalar and vector point potential functions s  
and s  through the relations 
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Upon using relations (15) in Equations (10)-(11), we obtain 
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The Equation (17) corresponds to purely transverse wave in 
the semiconductor which get decoupled from rest of the motion 
and not affected by the charge carrier fields. 

We consider the case of time harmonic plane waves and as- 
sume wave solution of the form  
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where c
k


  is the phase velocity,  and k   are the wave  

number and angular frequency of the waves respectively. Upon 
using solution (19) in Equations (16) to (18) and (12) to (14), 
the straightforward algebraic simplification leads to the follow- 
ing formal solution which satisfies the radiation condition in 
both the media: 

1) Semiconductor halfspace : 0z 
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Here the quantities  2 1,2ia i   and  2 1,2,3im i   are 
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Upon using the solution (20) to (22) in Equations (6) and (7) 
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via quantities (9) and Equation (15), the normal stresses, shear 
stresses, current density and displacements for the semicon- 
ductor and piezoelectric solid are obtained as: 
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and  are the unknowns to be determined. ,  1,2,3s p
i iA A i 

Secular Equation 

We obtain a system of six homogeneous algebraic equations 
in the six unknowns s

iA  and  upon using the 
formal solution obtained in the previous section in the boundary 
conditions (8) which has a non-trivial solution if the determi- 
nant of the coefficient of  vanishes and this 
require lengthy algebraic reductions and simplifications which 
leads to the following secular equation for the propagation of 
guided waves in the considered composite structure 
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   det 0,  , 1,2,3, ,6ija i j            (35) 

where the non-zero elements  are given below ija
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2
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4,5,6 ,  ,

,  

k k

k k

k k

k k

k k

a p a q a y k a q

q
a p a d k a a

q
a a a a a

a M k a n n a n n

S n S n
a P k a

n n

a n n n n a b k







     

    

     

      


  



      4,5,6

  (36) 

The complex secular Equation (35) contains complete infor- 
mation about the characteristics of the waves traveling at the 

interface. 

Solution of Secular Equation 

In general, wave number and hence the phase velocities of 
the waves are complex quantities, therefore the waves are at-
tenuated in space. In order to solve the secular equations, we 
take 

1 1 1c V i Q                    (37) 

where k R iQ  , R
V


  and ,  R Q  are real numbers. Here,  

it may be noted that  and Q  respectively, represent the 
phase velocity and attenuation coefficient of the waves. Upon 
using representation (37) in various relevant relations, the com- 
plex roots 

V

 2 1,2,m i  3i  can be computed from (26) with the 
help of Cardano’s method. The roots  2 1,2,3im i   are further 
used to solve secular Equation (35) to obtain phase velocity 
 V  and attenuation coefficient   of the surface waves by 
using function iteration numerical technique whose procedure 
is outlined by Sharma et al. (2010). 

Q

For initial value of  0 0 0,c c V Q  , the roots  1,2,3im i 

er 

 
are computed from Equations (26) by using Cardano’s method 
for each value of non-dimensional wave numb  R  for 
assigned frequency. The values of  1,2m i  ,3i  so obtained 
are then used in secular Equation (35) to obtain the current 
values of V and Q . The process is terminated as and when 
the conditi

 
on 1n nV V    ,   being arbitrarily small num- 

ber to be selected at random to achieve the accuracy level, is 
satisfied. The procedure is continuously repeated for different 
values of R  to obtain corresponding values of the V  and 
Q . Thus, the real phase velocity and attenuation coefficient of 
Rayleigh type surface waves in the composite structure under 
study can be computed from dispersion relation (35).  

Amplitudes of Field Functions 

The amplitudes of various field functions at the surface 
 0z   are obtained as: 

      1, , , , , , , , exps s s s s s s s s
zz xz zz xzu w N U W N A iR x Vt       

      1, , , , , , , , expp p p p p p p p p p s
zz xz zz xzu w U W A iR x Vt        

where  

   2 31 exp
2

s s sq
U L L     

 
Qx  

 1 2 2 3 exp
2

s s sq
W n n L L Qx

     
 

 

   1 2 2 expsN S S L Qx     

   1 2 3 expp p p pU L L L Qx     

   1 1 2 2 3 3 expp p p pW M L M L M L Qx     

   1 1 2 2 3 3 expp p p pPL P L P L Qx      
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    2 31 exps s s
zz p L q L Qx      

    1 2 2 3 exps s s
xz q n n L pL Qx      

   1 1 2 2 3 3 expp p p p
zz y L y L y L Qx      

   1 1 2 2 3 3 expp p p p
xz d L d L d L Qx      

Here  

   

 
 

 
 

2 3
2 3 2 3

2 3 10 0 0

2 22 3
2 3 2 3

2 30 0
1 3 2 1

,  ,  ,

,  

1s s
ij ij ijs s p

ij ij ij

p p
ij ijp p

ij ij

y y y y
L L L

y y y y
L L

y y y y

   
    

  

   
 

   

p

 

The elements of matrices , 0
ij 2s

ij , 3s
ij , 1p

ij , 2 p
ij  and 

3 p
ij  are defined in appendix.  

Numerical Results and Discussion 

In order to illustrate the analytical developments in the pre- 
vious section, we now perform some numerical computations 
and simulations. The composite material chosen for the purpose 
of numerical calculations is composed of 6 mm class cadmium 
selenide (CdSe) piezoelectric material and n-type silicon (Si) 
semiconductor. The physical data for piezoelectric and semi- 
conductor half spaces are given as under:  

1) Piezoelectric half space [Sharma and Pal (2004)]: 

10 2 10 2
11 13

10 2 10 2
33 44

2 2
31 33

2 11
15 11

11 2 3
33

7.41 10  nm ,  3.93 10  nm ,

8.36 10  nm ,  1.32 10  nm ,

0.160 cm ,  0.347 cm ,

0.138 cm ,  8.26 10  C2N-1m ,

9.03 10  C2N-1m , 5504 kgm .p

c c

c c

e e

e 

 

 

 

 

 

 

   

   

  

   

  

2

 

2) Semiconductor halfspace [Sharma et al. (2007)]: 

11 2 2

2 2 1 20 3
0

6 1 3

0.64 10  nm ,  0.65.0 nm ,

0.35 10  m s ,  10  m ,

2.6 10  K ,  2300 kg m .

n

s
T

D n

 

 

 

   

  

  

  

   

 

Here we present the effect of different interacting fields and 
corresponding parameters on the surface wave at the interface 
of considered structure. The profiles are plotted with respect to 
non-dimensional wave number  R  on linear-log scales. The 
corresponding results in the physical domain can be obtained 
with the help of quantities defined in Equation (9) from the 
instant non-dimensional one. The numerical computations have 
been performed; correct upto four decimal places here, by em- 
ploying the procedure outlined in section (Solution of Secular 
Equation) by using MATLAB programming. The computer 
simulated results have been presented graphically in Figures 2 
to 9. 
Figure 2 represents the variations of longitudinal and trans- 
verse displacements versus distance (x) for semiconductor 
halfspace in the considered composite. The profiles show that 
as we move along the direction of wave propagation, the dis- 
placements of the particles of the medium decreases and ulti- 

mately vanish at some distance. Moreover the magnitude of the 
longitudinal displacement is higher than that of transverse dis- 
placement. The magnitude decreases because of the resistance 
offered by the medium to the wave propagation due to the ane- 
lastic properties of the materials, in which the energy of the 
elastic wave is lost to heat the material by causing permanent 
deformations. 

Figure 3 presents the variations of the longitudinal and trans- 
verse displacements for the piezoelectric halfspace versus dis- 
tance in the composite structure. Here we have found the simi- 
lar profiles as in case of silicon halfspace in the considered 
composite, which justify the boundary conditions which require 
that the respective displacements in both the materials must 
balance the effect of each other at the interface in order to sta- 
bilize the welded contact at , otherwise such structure is 
impossible to exist. 

0z 

The Figure 4 displays the variations of the carrier concentra- 
tion at the interface of composite with the distance. It is found  

 

 

Figure 2.  
Variations of displacements for semiconductor halfspace versus dis- 
tance. 
 

 

Figure 3.  
Variations of displacements for piezoelectric halfspace versus distance. 
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that the change in the carrier concentration also decreases with 
distance, before it ultimately vanishes after some distance along 
the direction of wave propagation. 

In Figure 5 the variations of piezoelectric potential are plot- 
ted with the distance, which also follow the similar trend as that 
of the carrier concentration. It also justifies the boundary condi- 
tion that change in carrier concentration balance the change in 
piezoelectric potential at the interface. The disturbance causes a 
surface acoustic at piezoelectric halfspace which is associated 
with an electric field. This electric field changes the carrier 
concentration at the interface as the negatively charged elec- 
trons interact with it. In this process the carriers follow the 
electric field associated with the surface acoustic wave and 
acquire energy from this electric field.  

Figure 6 shows the variations of normal and shear stresses 
for the semiconductor halfspace versus distance in the compo- 
site structure. It is observed that both the stresses decrease with 
the increase in the distance along the direction of wave propa-  

 

 

Figure 4.  
Variations of electron concentration for semiconductor halfspace ver- 
sus distance. 
 

 

Figure 5.  
Variations of electric potential for piezoelectric halfspace versus dis- 
tance. 

gation. The shear stress possesses higher magnitude than that of 
the normal stress. In Figure 7, the variations of normal and 
shear stresses for piezoelectric halfspace in the same composite 
are plotted. We found the similar profiles with equal magni- 
tudes and same vanishing distance along the direction of wave 
propagation as in case of semiconductor halfspace. The shear 
stress possesses larger magnitude in comparison to the normal 
stress in both the material components of the composite. The 
results show that at the interface the stresses balance the effect 
of each other.  

Figure 8 displays the variations of phase velocity with the 
wave number at the interface of the composite. The profiles are 
noticed to be clearly dispersive, hence showing that phase ve- 
locity is dependant on the wavelength of the wave. Phase ve- 
locity possesses large magnitude at long wavelengths in com- 
parison to small wavelengths. This is due to the reason that 
long wavelengths penetrate the medium to a greater extent 
thereby brings the various coupling field in to play which con- 

 

 

Figure 6.  
Variations of stresses for semiconductor halfspace versus distance. 
 

 

Figure 7.  
Variations of stresses for piezoelectric halfspace versus distance. 
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tribute to increase the phase velocity. The magnitude of phase 
velocity decreases with decrease in the life time of the carrier 
field. 

Figure 9 shows the variations of attenuation coefficient with 
the wave number at the interface of the composite. The attenua- 
tion increases with decreasing wavelength. It is also noticed 
that it decreases with decreasing life time of the carrier field. 

Concluding Remarks 

1) The functional iteration method along with the Cardano 
method has been successfully employed to solve complex 
characteristic equations to obtain the surface waves characteris-
tics at the interface of composite.  

2) At the interface of the considered composite the displace-
ments, stresses, electron concentration, electric potential de-
crease along the direction of wave propagation and then vanish 
after some distance. 

 

 

Figure 8.  
Variations of phase velocity versus wave number. 
 

 

Figure 9.  
Variations of attenuation coefficient versus wave number. 

3) The phase velocity possesses large magnitude at long 
wavelengths which goes on decreasing with the decreasing 
wavelength hence showing a dispersive character. 

4) The attenuation increases with the decreasing wavelength 
in the considered composite structure. 

5) The phase velocity as well as attenuation decreases with 
decreasing life time of the carrier field. 

6) The study may find applications in fabrication of mi-
cro-electromechanical surface acoustic wave devices. 
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