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Abstract 
 
In this paper an electron microscopic image of diameter 80 - 120 nm and of dimensions 180 × 220 pixels is 
used as a test object to fabricate Fresnel zone plate hologram. The author proposes a different set of pupils: 
one pupil still being a delta function and the other being a function of <  > = sqrt(x2 + y2). The obtained re-
constructed images in case of scanning holography are investigated. 
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1. Introduction 
 
The pioneer work of digital holography or computer-gene- 
rated hologram (CGH) was early proposed by Good- 
man, et al. [1] and Lohmann, et al. [2], and numerical 
hologram reconstruction was initiated by Kronrod et al. 
[3] in the early 1970 followed by many other authors. 
Improved reconstructed images from CGH are obtained 
using an iterative operations [4]. Recently, the possibili-
ties of reconstructing the hologram structure and image 
from a digitally recorded specklegram without reference 
beam has been considered separately by Hamed [5] and 
Gorbatenko, et al. [6]. Also, improved reconstructed im-
age from digital Fourier holograms is attained using su-
perposition of reconstructed images obtained by multiple 
wavelengths [7] and separately using a two-step only qua- 
dratic phase shifting holography [8] where neither the re- 
ference—wave intensity nor an object-wave intensity 
measurement is needed in this technique.  

The idea of holographic recording accomplished by het-
erodyne scanning was originally proposed by Poon [9-11]. 
And heterodyne scanning was accomplished using a two- 
pupil optical system Lohmann and Rhodes [12]. They real-
ized Fresnel-zone-plate-type impulse response, i.e. its phase 
is a quadratic function of x and y, in and out-of focus plane 
near the focal plane of lenses L1 and L2. In a precedent pro-
posed work by Poon, one of the pupils is a delta function 
and the other has a constant uniform circular aperture. 

The original idea, which was later analyzed and called 
scanning holography [13], is to scan the 3-D object in a 2 
-D raster with a complex Fresnel zone plate—type im-

pulse response created by interference of a point source 
and a plane wave emerging from each pupil. A temporal 
frequency offset is introduced between the two pupils 
and the desired signal from a spatially integrating detec-
tor is obtained using a heterodyne detection. 

In the present study, the author investigates scanning 
holographic imaging based on two-pupil heterodyne detec-
tion. In the original standard system proposed by Poon, one 
of the pupils is a delta function and the other a constant. 

In the present case, the author proposes a different set 
of pupils: one pupil still being a delta function and the 
other being a function of   = sqrt (x2 + y2). The simu-
lated reconstructed images using the above technique of 
heterodyne detection are investigated. The proposal of 
the linearly modulated aperture [5] was investigated in a 
re- cent article of modulated speckle images. 
 
2. Theoretical Analysis 
 
2.1. A Two-Pupil Heterodyne Scanning 

Hologram 
 
The optical scanning hologram is based on two—pupil 
heterodyne detection as shown in Figure 1. In this study, 
the 1st pupil is chosen to be a linear function distributed 
within the circular frame of diameter 02D   . 

 1
0

, ; 1 for linear apertureP x y         (1) 

The 2nd pupil remains as before a delta function which 
is represented as follows: 
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Figure 1. A two-pupil optical heterodyne scanning system. 1-Laser operating at frequencyω0; 2,11-beam splitters; 3- 
acousto-optic frequency shifter; 4-cos Ω t giving a modulated frequency signal at ω0 + Ω; 5,7-reflecting mirrors; 2,5,7,11-form 
the Mach-Zehnder interferometer; 6,8-are two-pupils one pupil being a delta function and the other being a linear function of ρ; 
9,10-are two converging lenses where the two pupils are located at the front focal planes of lenses  L1 and L2, both with a focal 
length of f; 12-two dimensional scanning mirror; 13-object transparency; 14-Collector lens; 15-photo-detector; 16-electronic 
band pass filter tuned at the heterodyne frequency Ω; 17-output of scanned and processed current iΩ (x,y). 
 

 2 ( , ) ,P x y x y                  (2) 

The Fourier transform of Equation (1) is previously 
computed as follows [14]: 

       1 0
1 2 2

2
. i

i

J k J k
P k const J k

k k k

 
   

 
    (3) 

J0, J1 are Bessel functions of zero and first orders. 
The optical transfer function is obtained as [10]: 
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In the present work, we have assumed linear function 
for the 1st pupil and the same delta function for the 2nd 
pupil is used, hence substitute from (1) and (2) in Equa-
tion (4), we can write the OTF as follows: 
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This equation can be rewritten symbolically as follows: 
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    (6) 

Since the Fourier transform of multiplication product is 
transformed into a convolution product of the Fourier spec-
trum of each function [15], then Equation (6) becomes 
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(7) 

The Fourier transform of a shifted delta function is 
calculated to give this result: 
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 (8) 

Substitute from Equation (8) to Equation (7), we obtain:  
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       (9) 

It is shown that the F.T. of the linear function p1(x,y) = 
ρ = (x2 + y2)1/2 appeared in Equation (9) is obtained in 
Equation (3). 
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2.2. Special case (Poon results): 
 
In case of uniform circular aperture to represent the 1st 
pupil instead of the linear aperture, then the F.T. becomes: 

     2 2. . . . 1 ,x yF T x y F T k k           (10) 

In this case, Equation (9) is reduced to 
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        (11) 

From the properties of convolution product of a func-
tion with a delta function leave it unchanged, then Equa-
tion (11) is reduced to the OTF of Poon [13] to give: 
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0
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 
; Poon’s result (12) 

The intensity distribution of the complex optical scan-
ning hologram, obtained in case of uniform circular ap-
erture for the 1st pupil and delta function for the 2nd pupil, 
is represented as : 
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While in case of the linear pupil combined with the delta 
function for the 2nd pupil, the intensity distribution of the 
complex optical scanning hologram is written as follows: 
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3. Results and Discussion 
 
The original image of dimensions 180 × 220 pixels is 
plotted as shown in Figure 2. The actual dimension of 

the image range is 80 - 120 nm. The auto-correlation in- 
tensity of the image is shown in Figure 3. 

A cosine FZP hologram obtained using a linear aperture 
and a pinhole aperture is shown in Figure 4. The recon-
structed images are obtained by operating the Fourier trans- 
form upon the holographic images which are plotted as in 
Figure 5(a)-(f). The reconstruction from the complex ho- 
lographic FZP images are shown as in Figure 5(e) for 
constant pupil and in Figure 5(f) for linear pupil. It is 
shown that the reconstructed images from the complex 
holograms are much better in resolution than the recon-
structed images obtained from cosine and sine holograms. 
Also, it is shown that the reconstructed FZP image ob-
tained in case of linear modulation for the 1st pupil as in 
Figure 5(b) is better in resolution than the reconstructed 
image obtained from the sine FZP hologram using circular 
uniform pupil Figure 5(a). This improvement in image 
resolution is attributed due to the resolution improvement 
occurred for apodized linear pupils [5,14] as compared 
with the constant uniform circular pupils. The image pro-
file of the original image of H1N1 virus is shown as in 
Figure 6(a) while the image profile of the sine FZP re-
constructed image, is shown in Figure 6(b) and the image 
profile of the sine FZP reconstructed image using linear 
amplitude aperture is shown in Figure 6(c). Also, image 
profile of the cosine FZP reconstructed image is repre-
sented in Figure 6(d), image profile of the cosine FZP 
reconstructed image using linear amplitude modulation is 
shown in Figure 6(e), image profile of the complex FZP 
reconstructed image is shown in Figure 6(f), and the im-
age profile of the complex FZP reconstructed image using 
linear amplitude modulation is shown in Figure 6(g). All 
image profiles represented in Figures 6(a)-(g) are taken at 
slice x = [12,127,575] and slice y = [1,180,100,100]. 
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Figure 2. Electron microscope image of the reasserted H1N1 
influenza virus photographed at the CDC influenza Labo-
ratory. The viruses are 80 - 120 nm in diameter. The image 
has dimensions of 180 × 220 pixels. 
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Figure 3. The auto-correlation intensity of the H1N1 image 
shown in Figure 2. The correlation image has dimensions of 
180 × 220 pixels. 

 

Figure 4. A cosine FZP hologram using two pupil model 
with one of linear distribution while the other remains the 
same pinhole aperture. 

 
Reconstruction of sine-FZP hologram

   

Reconstruction of sine-FZP hologram using linear aperture 

 
(a)                                                         (b) 

Reconstruction of cosine-FZP hologram

   

Reconstruction of cosine-FZP hologram using linear aperture

 
(c)                                                         (d) 
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Real image reconstruction of complex FZP hologram,Hc+

   

Real image reconstruction of complex FZP hologram,Hc+ using linear aperture

 
(e)                                                         (f) 

Figure 5. (a) Reconstruction of the sine-FZP hologram computed using two-pupils heterodyne detection, where the 1st pupil is 
uniform circular and the 2nd is a delta function; (b) Reconstruction of the sine-FZP hologram computed using two-pupils 
heterodyne detection, where the 1st pupil is linearly distributed while the 2nd remains a unchanged (delta function); (c) Re-
construction of the cosine-FZP hologram computed using two- pupils heterodyne detection, where the 1st pupil is uniform 
circular and the 2nd is a delta function; (d) Reconstruction of the cosine-FZP hologram computed using two-pupils hetero-
dyne detection , where the 1st pupil is linearly distributed while the 2nd remains a unchanged (delta function); (e) Reconstruc-
tion of the complex-FZP hologram computed using two-pupils heterodyne detection, where the 1st pupil is uniform circular 
and the 2nd is a delta function; (f) Reconstruction of the complex-FZP hologram computed using two-pupils heterodyne de-
tection, where the 1st pupil is linearly distributed while the 2nd remains a unchanged (delta function). 
 

   
(a)                                                         (b) 

   
(c)                                                         (d) 
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(e)                                                         (f) 

 
(g) 

Figure 6. (a) Image profile of the original image of H1N1 virus at slice x = [12,127,575] and slice y = [1,180,100,100]; (b) Image 
profile of the sine FZP reconstructed image at slice x = [12,127,575] and slice y = [1,180,100,100]; (c) Image profile of the sine 
FZP reconstructed image at slice x = [12,127,575] and slice y = [1,180,100,100] using linear amplitude modulation; (d) Image 
profile of the cosine FZP reconstructed image at slice x = [12,127,575] and slice y = [1,180,100,100]; (e) Image profile of the 
cosine FZP reconstructed image at slice x = [12,127,575] and slice y = [1,180,100,100] using linear amplitude modulation; (f) 
Image profile of the complex FZP reconstructed image at slice x = [12,127,575] and slice y = [1,180,100,100]; (g) Image profile 
of the complex FZP reconstructed image at slice x = [12,127,575] and slice y = [1,180,100,100] using linear amplitude modula-
tion. 
 
4. Conclusions 
 
Firstly, we conclude that the complex FZP hologram 
gives better resolution for the reconstructed images as 
compared with the reconstructed images obtained from 
the sine and cosine FZP holograms. 

Secondly, the reconstructed images in case of the sine- 
FZP hologram provided with linearly modulated aperture 
is better in resolution than the reconstructed images ob-
tained in case of uniform circular pupil. This resolution 
improvement of the reconstructed holographic images in 
case of linear pupils is due to the sharp distribution of the 
PSF obtained in case of linear pupils as compared with the 
corresponding PSF obtained for circular uniform aperture. 
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