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ABSTRACT 
 
The paper reports on investigations into the effect of spatial correlation on channel estimation and capacity 
of a multiple input multiple output (MIMO) wireless communication system. Least square (LS), scaled least 
square (SLS) and minimum mean square error (MMSE) methods are considered for estimating channel 
properties of a MIMO system using training sequences. The undertaken mathematical analysis reveals that 
the accuracy of the scaled least square (SLS) and minimum mean square error (MMSE) channel estimation 
methods are determined by the sum of eigenvalues of the channel correlation matrix. It is shown that for a 
fixed transmitted power to noise ratio (TPNR) assumed in the training mode, a higher spatial correlation has 
a positive effect on the performance of SLS and MMSE estimation methods. The effect of accuracy of the 
estimated Channel State Information (CSI) on MIMO system capacity is illustrated by computer simulations 
for an uplink case in which only the mobile station (MS) transmitter is surrounded by scattering objects. 
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1.  Introduction 
 
In recent years, there has been a growing interest in mul-
tiple input multiple output (MIMO) techniques in rela-
tion to wireless communication systems as they can sig-
nificantly increase data throughput (capacity) without the 
need for extra operational frequency bandwidth. In order 
to make use of the advantages of MIMO, precise channel 
state information (CSI) is required at the receiver. The 
reason is that without CSI decoding of the received sig-
nal is impossible [1–5]. In turn, an inaccurate CSI leads 
to an increased bit error rate (BER) that translates into a 
degraded capacity of the system [6–8]. 

Obtaining accurate CSI can be accomplished using 
suitable channel estimation methods. The methods based 
on the use of training sequences, known as the training- 
based channel estimation methods, are the most popular. 
In [9,10], several training-based methods including least 
square (LS) method, scaled least square (SLS) method 
and minimum mean square error (MMSE) method have 

been investigated. It has been shown that the accuracy of 
the investigated training-based estimation methods is 
influenced by the transmitted power to noise ratio 
(TPNR) in the training mode, and a number of antenna 
elements at the transmitter and receiver. In particular, it 
has been pointed out that when TPNR and a number of 
antenna elements are fixed, the SLS and MMSE methods 
offer better performance than the LS method. This is due 
to the fact that SLS and MMSE methods utilize the chan-
nel correlation in the estimator cost function while the 
LS estimator does not take the channel properties into 
account. 

It is worthwhile to note that the channel properties are 
governed by a signal propagation environment and spa-
tial correlation (SC) that is dependent on an antenna con-
figuration and a distribution of scattering objects that are 
present in the path between the transmitter and receiver. 
The works in [9,10] have demonstrated superiority of 
SLS and MMSE estimation methods, which make use of 
channel correlation, over the LS method neglecting 
channel properties. However, no specific relationship 
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between spatial correlation and channel estimation accu-
racy has been shown. The works presented in [11,12] 
have reported on the relationship between spatial corre-
lation and estimation accuracy of MMSE method. How-
ever, only simulation results, giving trends without any 
further mathematical insight have been presented. 

In this paper, we try to fill the existing void by pre-
senting the mathematical analysis explaining the effects 
of channel properties on SLS and MMSE channel esti-
mation methods. It is shown that for a fixed TPNR, the 
accuracy of SLS and MMSE methods is determined by 
the sum of eigenvalues of channel correlation matrix, 
which in turn characterizes the signal propagation condi-
tions. In addition, we report on the effect of spatial cor-
relation on both the channel estimation and capacity of 
MIMO system. In the work presented in [13–16], it has 
been shown that the existence of spatial correlation leads 
to the reduced MIMO channel capacity. However, these 
conclusions rely on the assumption of perfect CSI avail-
able to the receiver. In practical situations, obtaining 
perfect CSI can not be achieved. Therefore, in this paper 
we take imperfect knowledge of CSI into account while 
evaluating MIMO capacity. 

The rest of the paper is organized as follows. In Sec-
tion 2, a MIMO system model is introduced. In Section 3, 
LS, SLS and MMSE channel estimation methods are 
described and the channel estimation accuracy analysis is 
given. Section 4 shows derivations for the lower bound 
of MIMO channel capacity when the channel estimation 
errors are included. Section 5 describes computer simu-
lation results. Section 6 concludes the paper. 
 
2.  System Description & Channel Model 
 
We consider a flat block-fading narrow-band MIMO sys-
tem with Mt antenna elements at the transmitter and Mr 
antenna elements at the receiver. The relationship between 
the received and transmitted signals is given by (1): 

sY HS V                   (1) 

where Ys is the Mr × N complex matrix representing the 
received signals; S is the Mt × N complex matrix repre-
senting transmitted signals; H is the Mr × Mt complex 
channel matrix and V is the Mr × N complex zero-mean 
white noise matrix. N is the length of transmitted signal. 
The channel matrix H describes the channel properties 
which depend on a signal propagation environment. Here, 
the signal propagation is modeled as a sum of the line of 
sight (LOS) and non-line of sight (NLOS) components. 
As a result, the channel matrix is represented by two 
terms and given as [17,18], 

1

1 1NLOS LOS

K
H H H

K K
 

 
          (2) 

where HLOS denotes the LOS part as and HNLOS denotes 
NLOS part. K is the Rician factor defined as the ratio of 
power in LOS and the mean power in NLOS signal 
component [17]. The elements of HLOS matrix can be 
written as [18] 

)
2

exp( rt
rt
LOS DjH




              (3) 

where Drt is the distance between t-th transmit antenna and 
r-th receive antenna. Assuming that the components of 
NLOS are jointly Gaussian, HNLOS can be written as [19,20], 

2/12/1
TgRNLOS RHRH               (4) 

where Hg is a matrix with i.i.d Gaussian entries. 
Here, the Jakes fading model [21,22] is used to de-

scribe the spatial correlation matrices RR at the receiver 
and RT at the transmitter. An uplink case between a base 
station (BS) and a mobile station (MS) is assumed, as 
shown in Figure 1. 

The BS antennas are assumed to be located at a large 
height above the ground where the influence of scatterers 
close to the receiver is negligible. In turn, MS is assumed 
to be surrounded by many scatterers distributed within a 
“circle of influence”. For this case, the signal correlation 
coefficients at the receiver BS and transmitter MS, ρR

BS 
and ρT

MS, can be obtained from [22] and are given as: 

0( ) [2 / ]MS T T
T mn mnJ                (5) 

0 max

2 2
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(6) 

where, δmn
T and δmn

R are the antenna spacing distances 
between m-th and n-th antennas at transmitter and re-
ceiver, respectively; λ is the wavelength of the carrier; 
γmax is the maximum angular spread (AS); θ is the AoA 
of LOS and J0 is the Bessel function of 0-th order. Using 
ρR

BS(δmn
T) and ρT

MS(δmn
R), the correlation matrices RR

r

M

BS
 

and RT
MS for BS and MS links can be generated as 
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Figure 1. Jakes model for the considered MIMO channel. 
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3.  Training-Based Channel Estimation 
 
For a training based channel estimation method, the rela-
tionship between the received signals and the training 
sequences is given by Equation (1) as 

Y HP V                    (9) 

Here the transmitted signal S in (1) is replaced by P, 
which represents the Mt × L complex training matrix 
(sequence). L is the length of the training sequence. The 
goal is to estimate the complex channel matrix H from 
the knowledge of Y and P. 

Here the transmitted signal S in (1) is replaced by P, 
which represents the Mt × L complex training matrix 
(sequence). L is the length of the training sequence. The 
goal is to estimate the complex channel matrix H from 
the knowledge of Y and P. 

The transmitted power in the training mode is assumed 

to be constrained by 
2

F
P where P is a constant and 

||.||F
2 stands for the Frobenius norm. According to [9,10], 

the estimation using LS, SLS or MMSE method requires 
orthogonality of the training matrix P. In the undertaken 
analysis, the training matrix P is assumed to satisfy this 
condition. 

   

3.1.  LS Method 

In the LS method, the estimated channel can be written 
as [23], 

†ˆ
LSH YP                      (10) 

where {.}† stands for the pseudo-inverse operation. 
The mean square error (MSE) of LS method is given 

as 

2ˆ{LS LS }
F

MSE E H H            (11) 

in which E{.} denotes a statistical expectation. According 
to [9,10], the minimum value of MSE for the LS method 
is given as  

2

min
LS t rM M

MSE


                 (12) 

in which ρ stands for transmitted power to noise ratio 
(TPNR) in training mode. Equation (12) indicates that 
the optimal performance of the LS estimator is not in-
fluenced by channel matrix H. 

3.2.  SLS Method 

The SLS method reduces the estimation error of the LS 
method. The improvement is given by the scaling factor 
γ which can be written as 

{ }

{ }
H

LS H

tr R

MSE tr R
 


               (13) 

The estimated channel matrix is given as [9], [10] 

†
2 1

{ }ˆ
{( ) } { }

H
SLS H

n r H

tr R
H YP

M tr PP tr R 
 

    (14) 

Here, σn
2 is the noise power; RH is the channel correla-

tion matrix defined as RH=E{HHH} and tr{.} implies the 
trace operation. The SLS estimation MSE is given as [9,10] 
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        (15) 

The minimized MSE of MMSE method can be written 
as [9,10] 

min

{ }

{ }
SLS LS H

LS H

MSE tr R
MSE

MSE tr R



               (16) 

By taking into account expression (12), the minimized 
MSE of the SLS method (16) can rewritten as 
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where n=min(Mr, Mt) and is λi the i-th eignvalue of the 
channel correlation RH. 

If TPNR is fixed then the following equality can be 
derived 

1 1
2

[( ) ]
n n

SLS i i
i it r

MSE
M M

           (18) 

As observed from (18), MSE decreases when the sum 
of eignvalues of RH decreases. This shows that in order 
to minimize MSE, the sum of eigenvalues of RH has to be 
reduced. 

3.3.  MMSE Method 

In the MMSE method, the estimated channel matrix is 
given as (19) [9,10,23], 

2 1ˆ ( )H H
MMSE H n r HH Y P R P M I P R        (19) 

The MSE of MMSE estimation is given as 
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2ˆ{ } { }MMSE MMSE E
F

MSE E H H tr R        (20) 

in which RE is an estimation error correlation written as 

1 2 1 1
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       (21) 

The minimized MSE is given as (22) [2,3,11] 

1 2 1 1{( ) }H H
MMSE n rMSE tr M Q PP Q         (22) 

In (22), Q is the unitary eigenvector matrix of RH and 
Λ is the diagonal matrix with eigenvalues of RH. The 
minimized MSE for the MMSE method, given by Equa-
tion (22), can be rewritten using the orthogonality prop-
erties of the training sequence P and the unitary matrix Q, 
as shown by 
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(23) 

Assuming that TPNR in expression (13) is fixed, the 
bound for MSE is given by 

1 1 1( )
n n

MMSE i r i
i i

MSE M             (24) 

The expression (24) shows that, similarly as in the 
SLS method, a smaller sum of eigenvalues of the channel 
correlation RH leads to a smaller estimation error for the 
MMSE method. In other words, a smaller sum of eigen-
values of the channel correlation leads to the more accu-
rate channel estimation. 

From the above mathematical analysis it becomes ap-
parent that when the value of TPNR is fixed the accuracy 
of a training-based MIMO channel estimation is governed 
by the sum of eigenvalues of the channel correlation matrix 
RH. In turn, the properties of RH and its eigenvalues are 
determined by the channel properties which are influenced 
by a signal propagation environment and an array antenna 
elements and configuration. 

It is worthwhile to note that the spatial correlation (for 
example due to the presence of LOS component) is re-
sponsible for the channel rank reduction. In this case, the 
sum of eigenvalues of RH has a smaller value. Thus from 
the derived expressions, it is apparent that the spatial cor-
relation (due to an increased LOS component) contributes 
in a positive manner to improving the training-based 
MIMO channel estimation accuracy. 

4.  MIMO Channel Capacity Taking into 
Account Channel Estimation Errors 

The achievement of high channel capacity in a MIMO 
system depends on two factors. One is a rank of channel 
matrix or effectiveness of freedom (EDOF). The other 
one is the availability of CSI at the receiver. In [26,27,29] 
it has been shown that higher accuracy of CSI leads to 
higher channel capacity. However, the undertaken inves-
tigations have not considered the channel properties. 

If CSI is perfectly known at the receiver (but unknown 
at the transmitter), the capacity of a MIMO system with 
Mr receive antennas and Mt transmit antennas can be 
expressed as [1,24,25], 

2(log {det[ ( )]})
R

HSNR
M

t

C E I HH
M


         (25) 

In Equation (25), ρSNR is a signal to noise ratio (SNR). 
The channel matrix H is assumed to be perfectly known 
at the receiver. 

In practical cases, H has to be replaced by the esti-
mated channel matrix, which carries an estimation error. 
By assuming that the channel estimation error is defined 

as e and the estimated channel matrix as Ĥ  

Ĥ H e                        (26) 

The received signal can accordingly be written as, 

ˆY HS eS V                    (27) 

Correlation of e is given as 

2ˆ ˆ{( )( ) }H
E eR E H H H H I             (28) 

in which σe
2 is the error variance. In [26,27], the defini-

tion of error variance is slightly different. Using Equa-
tion (20), we have 

2
e

r

MSE

M
                        (29) 

The channel capacity of MIMO system with an imper-
fectly known H at the receiver is defined as the maximum 
mutual information between Y and S and is given as 

{ }

ˆmax { ( ; , )}
tr Q P

C I S Y


 H

ˆ

             (30) 

If the transmitter does not have any knowledge of the 
estimated channel, the mutual information in Equation 
(30) can be written as [26–29], 

ˆ ˆ ˆ( ; , ) ( ; | ) ( | ) ( | , )I S Y H I S Y H h S H h S Y H      (31) 

Because adding any dependent term on Y does not 
change the entropy [28], then 
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ˆˆ( | , ) ( | , )h S Y H h S uY Y H            (32) 

in which u is the MMSE estimator given as 

ˆ{ |
ˆ{ |

H

H

E SY H
u

E YY H


}

}
                (33) 

Combining this with Equation (27), we have 
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(34) 

where Q=E{SSH} is a Mt by Mt correlation matrix of 
transmitted signal S defining the signal transmission 
scheme. The autocorrelation matrix holds the property 
that trace(Q) equal to the total transmitted signal power 
Ps (ρSNR=Ps/σn

2). If we assume the special case of Mt 
equal to Mr and the transmitted signal power being 
equally allocated to transmitting antennas, (34) becomes 

2 2
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in which p=Ps/Mt is the power allocated to the signal 
transmitted through each transmit antenna. Because con-
ditioning decreases the entropy therefore 

ˆ( | ) ( | ,h S uY H h S uY Y H   ˆ )

ˆ )

ˆ

          (36) 

Then we have 

ˆ( | ) ( | ,h S uY H h S uY Y H             (37) 

In this case, 

ˆ ˆ( ; | ) ( | ) ( | , )I S Y H h S H h S uY Y H       (38) 

For the case of  and  having a 

Gaussian distribution, (38) can be expressed as [26,27,29], 
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The lower bound of the ergodic channel capacity
be

 

 can 
 shown to be given as 
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(40) 
Equation (40) indicates that for a fixed value of S

th
NR, 

e capacity is a function of the estimated channel matrix 
Ĥ  and the channel estimation error σe

2. As a result, the 
channel properties and the quality of channel estimation 
influence the MIMO capacity. 
 
.  Simulation Results 5

 
ere we present computerH  simulation results which 

demonstrate the influence of channel properties on the 
training-based channel estimation. A 4×4 MIMO system 
including 4-element linear array antennas both at the 
transmitter and receiver is considered. The Jakes model 
presented in Section 2 is used to describe the propagation 
environment between BS and MS. The distance between 
transmitter and receiver is assumed to be 100λ. The An-
gle of Arrival (AoA) of LOS is set to 0°. The training 
sequence length L is assumed to be 4. The default an-
tenna element spacing at both BS and MS is set to 0.5λ 
(wavelength). 

Figure 2 shows a relationship between MSE and the 
sum of eigenvalues of the channel correlation matrix for 
both MMSE and SLS methods. The results include an 
effect of maximum angle spread (AS), antenna spacing 
and Rician factor K, which are related to the sum of ei-
genvalues of RH. The obtained results are given in four 
sub-figures A, B, C and D. 

Sub-figure A supports the theory presented in Section 3 
that for MMSE and SLS methods channel estimation 
errors are smaller for smaller sums of eigenvalues of RH. 
When the sum of eignvalues increases, the channel esti-
mation accuracy becomes worse. 

The relationship between the sum of eignvalues of RH 
and the maximum AS is shown in sub-figure B. The sum 
of eigenvalues increases when AS increases. Larger val-
ues of AS correspond to a lower level correlation while 
smaller values of AS correspond to a higher level corre-
lation. Higher values of spatial correlation lead to a 
smaller sum of eigenvalues of RH. This condition helps to 
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nd the MS transmitter antenna spacing. 
O

um of ei-
ge

improve the accuracy of the training based MIMO chan-
nel estimation. 

Sub-figure C presents the relationship between the sum 
of eigenvalues a

Figure 3 is plotted in three dimensions (3D) to provide 
a further support for the results of Figure 2. In this figure, 
the relationship between MSE, TPNR ρ and K for 
MMSE method is presented at three different values of 
maximum AS (indicating three special correlation levels). 
One can see that when TPNR is increased to 30dB the 
estimation error decreases almost to zero. When the 
value of Rician factor K is increased, indicating a 
stronger LOS component in comparison with NLOS 
components, the MSE decreases. This is consistent with 
the trend observed in Figure 2 that a stronger LOS com-
ponent results in better estimation accuracy. 

ne can see that the sum of eigenvalues becomes smaller 
when the spacing distance is less than 0.2λ. 

Sub-figure D gives the relationship between the sum 
of eigenvalues and the Rician factor K. The s

nvalues is smaller at higher values of K (when the 
LOS component is strongest). This means that a stronger 
LOS component reduces the sum of eigenvalues and thus 
improves the channel estimation accuracy. 
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Figure 2. Relationship between MSE vs Sum of eigenvalues of RH showing an im-
pact of antenna spacing and the Rician factor K. 
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Figure 3. 3D plot of MSE vs TPNR and K for different values of AS for MMSE method. 
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The presented results also show that for MMSE 

method MSE is reduced for the smallest AS, which cor-
responds to the highest level of spatial correlation. 

In the next step, we simulate the MIMO channel ca-
pacity under the condition of channel estimation error. 
Simulations are run for the cases of 2×2 MIMO and 4x4 
MIMO systems. The simulation settings including the 
distance between the transmitter and receiver, training 
sequence length, AoA, AS and antenna element spacing 
are same as in the earlier undertaken simulations. The 
minimum mean square error (MMSE) channel estimation 
method is applied for the Jakes model representing the 
channel between the BS and MS. The channel capacity is 
determined using Equation (40). For simulation purposes, 
RH is obtained using the actual channel matrix H and 
TPNR is assumed to be equal to SNR. 100000 channel 
realizations are used to obtain the value of capacity. Fig-

 4 shows the resu

figure B. 
From Figure 4, one can see that the mean square error 

increases as the angle spread becomes larger. For all 
three groups, at K factor of 20dB, MSE shows the best 
performance while the worst accuracy occurs at the K 
factor of 0dB. In sub-figure B, the relationship trends are 
different from the ones observed in sub-figure A. As the 
angle spread increases, the channel capacity is enhanced. 
In all three groups of lines at three SNR values, the high-
est capacity occurs at K equal to 0dB while at 20dB the 
capacity is decreased. These two sub-figures indicate that 
the channel capacity is increased when the channel esti-
mation accuracy is reduced. This finding is opposite to 
the one shown in [26,27,29]. This could be due to the 
fact that in [26,27,29] the influence of spatial correlation 
or K factor on the channel capacity was not considered. 
The presented simulation results strengthen the notion 
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 estimation ac-
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and include two sub-figures. Sub-figure A presents the 
relationship between MSE and angle spread (AS). There 
are three groups of lines drawn for three different values 
of SNR. In each group, the lines correspond to three dif-
ferent values of K factor. The relationship between 
channel capacity and the angle spread is given in sub- 
 

curacy. At the same time it decreases the rank and EDOF 
of the channel matrix. 

Similar findings are obtained for the 4×4 MIMO sys-
tem, as illustrated in Figure 5. The results are shown for 
SNR of 5, 10 and 15dB and the Rician factor K of 0 and 
10dB. 
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