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ABSTRACT 

The space of internal geometry of a model of a real crystal is supposed to be finite, closed, and with a constant Gaus-
sian curvature equal to unity, permitting the realization of lattice systems in accordance with Fedorov groups of trans-
formations. For visualizing computations, the interpretation of geometrical objects on a Clifford surface (SK) in Rie-
mannian geometry with the help of a 2D torus in a Euclidean space is used. The F-algorithm ensures a computation of 
2D sections of models of point systems arranged perpendicularly to the symmetry axes l3, l4, and l6. The results of mod-
eling can be used for calculations of geometrical sizes of crystal structures, nanostructures, parameters of the cluster 
organization of oxides, as well as for the development of practical applications connected with improving the structural 
characteristics of crystalline materials. 
 
Keywords: F-Algorithm, Crystal Lattice Systems, Microstructure, Riemannian Geometry, Space of Interpretation 

1. Introduction 

Modern material science, building on very different 
models of the structure of a substance, tries to create ab-
solutely new materials or materials with properties 
needed when exploiting machines and mechanisms under 
unusual conditions. Let us note that some successes are 
recently observed in making materials with a structure 
modeled at very different scaled and dimensional levels 
it is the so-called nanomaterials technology. However, 
essential breakthroughs in applications of these materials 
when fabricating microelectronic engineering have not 
yet been made. In our opinion, an essential value has the 
fact that all up-to-date models are based only on one no-
tion of the structure of a solid, namely, considered in a 
Euclidean space.  

In the present paper we offer the other, alternative ap-
proach to describing both a structure and making materi-
als with special or unique properties by means of inter-
preting the space of experience and processing materials 
in a strictly symmetrized electromagnetic field. 

Development of physicochemical methods of investi-
gating a crystal structure and processing technologies, 
growing needs for production of high quality crystalline 
materials arouse a lot of attention to new approaches 
grounded on modeling crystal structures with the use of 
different modeling spaces. At the present time, concepts  

of non-Euclidean phase spaces are ever more widely 
used for describing general evolutionary principles of 
various physical systems. In this connection, a particular 
interest of researchers to problems of a possible realiza-
tion of Fedorov groups in non-Euclidean spaces is noted. 
The realization of Fedorov groups of symmetry was con-
sidered in a pseudo-Euclidean space, Lobachevsky space 
and Minkowski space [1]. A lack of similar examinations 
is that in the specified spaces a space of infinite extent is 
used for a model of lattices [2,3]. 

It is traditionally accepted to construct the crystal 
structure of an ideal crystal by the multiplication of a 
finite number of atoms by all transformations from some 
Fedorov group in a Euclidean space. But such a con-
struction of an ideal crystal is not related to natural 
causes of the growth of a real crystal, its finite (localised) 
character and shape restricted in the space. Besides, the 
problem of the relation of the internal structure and ex-
ternal faceting of a real crystal remains unresolved. An 
ambiguity of the geometrical interpretation of the space 
of the real crystal of minerals has led to the necessity of 
developing models by using a non-Euclidean method of 
describing crystal structures. 

When modeling under the conditions of Riemannian 
geometry, it will be natural to maintain the term “Fe-
dorov group” for discrete groups of movements, which  
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we shall denote by F-groups. For a model of the crystal 
structure in an elliptic space, as well as in the Euclidean 
case, the conditions of the global discreteness and ho-
mogeneity are fulfilled. In the case of F-groups the fi-
niteness theorem for the volume of the fundamental do-
main of a finite polyhedron is rather simply proved.  

When modeling crystal structures, the space of Rie-
mannian geometry (V4) with the constant Gaussian cur-
vature К = 1, that coincides in sufficiently small regions 
with a Euclidean space (a locally Euclidean space), was 
chosen as a modeling space. When constructing crystal 
lattices, simulated groups of transformations, which are 
used for computations of point systems, are the basic tool 
of investigating. In this case we deal with a finite space 
where the distance between any two points does not ex-
ceed a certain value [4-8]. 

2. Geometrical Approach to Modeling  
Crystal Structures 

2.1. Space of Interpretation RE 

Historically developed priority of Euclidean geometry 
(despite the discoveries of non-Euclidean geometries) 
has led to two fundamental consequences: 

1) Up till now, the space of our experience is supposed 
to be Euclidean, 

2) All the laws of physics and chemistry are supposed 
to be realizing in a Euclidean space. 

And though mathematicians and, partly, physicists do 
not forget to repeat that with N. Lobachevsky, J. Bolyai 
and B. Riemann’s discoveries Euclidean geometry has 
lost its unique position as the singular geometry of the 
space of our experience, the problem of the choice of an 
adequate geometrical space is still open. Nevertheless, a 
reliable experimental confirmation of the fulfillment of 
Coulomb’s law in non-Euclidean spaces has not yet been 
obtained, and so far it is not clear how it can be realized.  

However, after A. Poincaré constructed the interpreta-
tion (a model) of a non-Euclidean geometry (realizing 
Lobachevsky’s plane), the situation changed radically. It 
turned out that Euclidean geometry itself and, accord-
ingly, a Euclidean space are no more than one of a vari-
ety of geometrical interpretations. There arises the 
unique possibility of considering the interpretation (rep-
resentation) of one geometry by means of geometrical 
images of other geometry, of course, according to strictly 
defined rules. 

A considerable quantity of modern investigations 
which can be found in [1] is devoted to interpretation 
problems. For constructing geometrical models of crystal 
structures the approach applied in [9] has been used.  

A general scheme for the interpretation of elliptic Rie-
mannian geometry in a Euclidean space ( R

EI ) is simple 

enough. 
A certain geometrical image A of the Riemannian 

space 4A V , possessing necessary properties, is chosen 
as an object of the interpretation in a Euclidean space, 
with the help of some geometrical image B of the 
Euclidean space,   ,R

EI A B  where  The 
chosen geometrical image B of the Euclidean space is 
endowed with properties of the geometrical image A, and 
becomes, thus, а carrier of properties of the geometrical 
image of the Riemannian space in the Euclidean space.  

3.B R

Operations with the geometrical image B are executed 
according to the rules of the Riemannian space with re-
gard to certain conditions stated below. Consequently, in 
the Euclidean space there arises a certain region RE 
which is called the space of interpretation. 

 R
E EI M R ,               (1) 

where M is the Riemannian space being subject to the 
interpretation. 

Properties of the space RE are sufficiently specific and 
taken into consideration in each specific case. 

A Clifford surface SK—a direct circular cylinder of the 
elliptic space [10] is chosen as the basic geometrical 
element of the elliptic Riemannian space for constructing 
the space of interpretation RE. The basis for such a choice 
is the fact that Euclidean geometry (R2) takes place on 
SK. 

D. Hilbert wrote about it that the greatness of W. Clif-
ford’s discovery is that the Euclidean plane “in the 
small” is present in a closed and restricted curvilinear 
space. SK is isomeric to a Euclidean rectangle or rhomb 
with identified opposite sides, what leads us to an ordi-
nary Euclidean torus.  

  2
R
E KI S T ,              (2) 

where T2 is a 2D torus belonging to the Euclidean space. 
But with that principal difference, that a torus loses its 

geometrical independence in the space of interpretation 
and becomes a carrier of the SK properties. That is, in the 
space of interpretation a torus is a very surface on which 
Euclidean geometry is fulfilled and well-known groups 
of movements of a Euclidean torus are more not applica-
ble to it. To operate with a torus in the space of interpre-
tation one should follow other rules. In RE the motions of 
a torus are rotations. At the same time, using the fact that 
RE is “arranged” in a Euclidean space, it is possible to 
carry out sections of RE by a Euclidean plane and, in such 
a way, to study properties of structures in the space of 
interpretation. It is extremely important that the Clifford 
surface is a carrier of Euclidean geometry, then in RE on 
a torus (or on systems of tori) all the physical laws show 
themselves in the same form and with the same content, 
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as on the Euclidean plane and in the space. The differ-
ence is that an arc lying on a torus is used instead of a 
segment of a Euclidean straight line. For example, in 
Coulomb’s law L—an arc on a torus is used in RE instead 
of r.  

The existence of systems of parallel straight lines of 
the Riemannian space on the Clifford surface (SK) leads 
to the presence of groups of parallel transports, both on 
the Clifford surface and generally in the Riemannian 
space (the so-called Clifford’s parallels), and, so, of 
groups of translations. It is important to remember that 
these groups are realized only on SK, but not on planes of 
the Riemannian space. In RE these groups show them-
selves rather originally and will be described below. Im-
ages of translations on the Clifford surface are expressed 
in RЕ as a rotation of the torus about own axes, and are 
defined by the group  where  1 2,l l

T T TH H H , 1l
TH  is a 

subgroup of the rotation about the axis l1, 2l
TH  is a sub-

group of the rotation about the axis l2, that is, as a slip on 
itself.  

  ,R
E S TI H H                (3) 

where SH  is a translational group formed from sub-
groups of the paratactic displacements of SK. 

Translations of the Clifford surface itself in the Rie-
mannian space are expressed in RЕ as a rotation of the 
torus about own generatrices.  

    2 .R
E S K TI H S H T           (4) 

Different crystallographic axes of symmetry (from l2 
up to l6) are considered on different Clifford surfaces, 
what is expressed in RE as an application of tori with dif-
ferent ratios of the interior and exterior radiuses. When 
unfolding tori, it shows itself in the form of rectangles 
with different lengths of sides and with different angles 
between their diagonals (for the axis l3, for example, an 
angle between diagonals is taken to be equal to 60 or 30 
degrees, for the axis l4 this angle is equal to 45 degrees, 
with corresponding side lengths of the rectangle of an 
unfolding).  

     2 ,i im lR
E T K T i iI H S H T r R ,       (5) 

where ri and Ri are the interior and exterior addresses of a 
torus, respectively; il

TH  are subgroups of the rotation of 
T2; im

SH  are subgroups of the rotation of SK; i is an or-
der of symmetry.  

  ,R
E S TI O O                (6) 

where  is a subgroup of the    2 ,O
T T k kO H T r R 

rotation of a torus, the ratio kr

k

m

R n


the radiuses. 

ace of interpretation RE (Riemannian in 
Eu

 being correct for  

By the sp
clidean) we shall call a totality of all points A being 

equivalent to a point O through which there passes a to-
rus—  2 ,O

k kT r R  with the ratio of the internal and exte-
rior ra  equal to m : n, on all possible transla-
tions of this torus, interpreted as it was pointed out 
above.  

diuses being

 , ,E T TR H O              (7) 

where TH  
f th

is a translational subgroup; 

graphy and ma-
te

 interpretation there exist three families 

tic field of a charge is restricted in sizes, 

res of crystal structures in RE is pos-
si

el of 
a 

TO  
ce 

is a sub-
group o e rotations that form a subspa of RE. We 
shall call the point О by the center of the space of inter-
pretation. It is easy to show that the space of interpreta-
tion is restricted, closed, and continuous. A select of the 
value of the ratio of the radiuses of a torus will be de-
fined for a given model by a type of symmetry of a crys-
tal structure viewed. It is convenient to study the geo-
metrical and structural features of objects in RE by means 
of sections of the space of interpretation by Euclidean 
planes. However, the most important property of the 
space of interpretation is that on a torus in RE we have 
the right to consider physical laws in their normal 
Euclidean interpretation, except for a replacement of 
Euclidean segments by arcs of a torus.  

For problems of mineralogy, crystallo
rial science Coulomb’s law is of heightened inter-

est—thanks to its simplicity and the fact that when inter-
preting it the features of RE show themselves most 
brightly, namely: 
 In the space of

of the shortest lines (rounds with the ratio of diame-
ters being equal 1:2:3) each of which becomes a fam-
ily of lines of force of an electrostatic charge Q. The 
electrostatic lines of force do not start from the charge 
Q, and do not end at infinity, but touch a surface of 
the charge, and close up at some distance from it. 
This distance is calculated using usual trigonometry 
formulas;  

 An electrosta
closed, and continuous. At some distance from a 
charge Q its electrostatic field is already absent. This 
distance is called a radius of the field of a charge Q 
and denoted by Rp. It should be noted that an electro-
static field of a charge Q does not occupy the entire 
space of interpretation completely. Thus two different 
charges, Q1 and Q2, can interact or not, depending on 
a distance between them, as well as on their own lin-
ear dimensions. 

Studying the featu
ble in sections by its Euclidean plane in two ways: 
Case 1: Symmetry of a structure is known. A mod
crystal structure is considered in the form of point sys-

tems where points simulate a distribution of centers of 
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structure is unknown, or a 
str

l lattice system in a 
Eu

here is the othe
si

tures in 

In m escribing the 

 to mod-
el

n el-
lip

odeling of lattice structures of a given 

structures of 

ng of microstructures of crystals in 

nt for 
ob

e chemical composition of an explored 
st

ture of electrostatic components of 
pa

structing sublattices for 
ea

atoms in lattice points—the so-called R-systems which 
are computer-simulated using a special program. A sec-
tion by the Euclidean plane is carried out either perpen-
dicularly to the axis of symmetry of the structure studied, 
or at an angle interesting us. 

Case 2: Symmetry of a 
ucture has been badly studied from the point of view 

of symmetry. Under these circumstances the task be-
comes complicated and is solved in a few stages, what 
will be considered below (Item 1.2). 

The principal difference of an idea
clidean space and in RE consists in the following: in a 

Euclidean space an ideal crystal has to be either infinite 
large-sized or infinitesimal. An ideal Euclidean crystal 
has no center of symmetry, zonality, and sectoriality, and 
is not faceted. The question about the faceting of an ideal 
crystal is solved with the help of introducing different 
sets of the so-called “boundary conditions”. Simply 
speaking, the ideal Euclidean model of a crystal does not 
possess those structural features that are characteristic for 
real crystals, except for a fragmentary coincidence to 
restricted fragments of a plane lattice. In the history of 
mineralogy, crystallography, and geology generally, no 
real crystal coinciding on its own structural and symme-
try characteristics with its ideal Euclidean models has 
been met. The fact is well-known, but somehow slips 
attention of researchers all the time.  

In the space of interpretation RE t r 

crystal in accordance with its Fedorov group of sym-
metry, realized in the elliptic Riemannian space with 
the involvement of visualizing the model construc-
tions. Building on data obtained when modeling point 
systems with a given Fedorov group, it is possible to 
form judgments about the morphology of a structure, 
clustering, and a type of zonality, and to make suppo-
sitions of different types of anisotropy; 

 Theoretical modeling of a family of 
tuation. An ideal crystal in the space of interpretation is 

restricted in sizes, has a certain shape and symmetry, is 
zonal and sectorial, and also possesses the center—that is, 
it possesses practically a complete set of the structural 
and symmetry characteristics which the real crystal of a 
mineral has. If one takes into account that both the radius 
of an electrostatic field Rp and linear dimensions of the 
space of interpretation RE are calculated in accordance 
with values of the ionic radius Ri and atomic radius Ra of 
a given substance, we can always estimate both real sizes 
of microcrystalline blocks and distances at which there 
are electrostatic interactions between real ions. 

2.2. Principles of Modeling Crystal Struc
Elliptic Riemannian Geometry  

odern structural examinations, when d
organization and processes of the growth of a crystal 
structure, information about the type of a space in which 
an explored process being watched is not enough used 
[11-14]. The examinations of different non-Euclidean 
methods of describing elements of a crystal lattice [4] are 
the foundation of the suggested theoretical approach to 
modeling crystal structures under the conditions of Rie-
mannian geometry. In order to achieve results the inter-
pretation of the geometrical objects (SK, F-groups, and 

symmetries) in Riemannian geometry is used. In a 
three-dimensional Euclidean space a 2D torus 2T  (see 
formula 2), on which the basic geometrical trans rma-
tions (lattices, elements of Fedorov groups) are consid-
ered, corresponds to the Clifford surface (SK).  

The basic difference from existing approaches

fo

ing consists in a statement according to which the or-
ganization of a lattice structure happens in accordance 
with a certain F-group ( ( ) ФR

EI F  ) operating in the 
Riemannian space V4. An a  in a model of the 
lattice system is considered as a point site, and point sys-
tems are studied in the initial stage without regard to the 
chemical features of atoms. By using the approach under 
consideration, modeling the cluster organization of mi-
crostructures of oxides is carried out, as well as practical 
applications aimed at perfecting crystalline materials and 
improving their physical properties are developed.  

General principles of modeling crystal structures i

tom or ion

tic Riemannian geometry may be reduced to the fol-
lowing: 
 Theoretical m

electrostatic fields of ions of elements having partici-
pated in the formation of lattices of a given crystal; 
constructing the potential surfaces answering to 
minimum energy; 

 Theoretical modeli
the model sections perpendicular to axes of symmetry, 
with regard to: a composition, symmetry, a structure 
of electrostatic fields of ions and their systems, the 
principle of closest packing; as well as crystallo-
graphic analysis and interpreting data obtained. 

Thus a general procedure of computing experime
taining a model of a crystal structure of a necessary 

chemical composition and structure adds up to the fol-
lowing stages. 

Stage 1: Th
ructure is detected. 
Stage 2: The struc
rameters of ions and atoms constituting the structure of 

a given substance is computed. 
Stage 3: Regularities of con
ch of elements composing a given structure are re-

vealed, according to the series of crystallochemical activ-
ity [15]. 
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Stage 4: Upon the Clifford surface’s unfolding a frag-
m

 appropriate to-
ru

ent of the sublattice is constructed using the computa-
tions of the parameters of electrostatic components of a 
model for each ion, and then the incorporation of sublat-
tices of the rest of atoms and ions is conducted in accor-
dance with the computed parameters, according to the 
series of crystallochemical activity [15]. 

Stage 5: By the unfolding obtained an
s is folded, and all the necessary transformations (par-

allel translations, rotations about axes of symmetry, etc.) 
are applied to it, according to the scheme for the inter-
pretation R

EI .  
Stage 6: For visualizing the constructions a necessary 

se

rithm 

in the examination of properties and 

ction of the space RE by a Euclidean plane is con-
structed, where the features of a studied structure are 
considered. 

2.3. F-Algo

The important place 
features of the organization of a crystal structure in the 
space RE is occupied with constructions of point systems 
with the use of special computational algorithms for 
solving of tasks of the visualization and interpretation of 
constructed models. For modeling lattice systems in the 
space RE an algorithm has been developed, with the help 
of which constructions of lattices are produced with regard 
to the fact that for each Fedorov group Ф of the Euclid-
ean space R3 in the Riemannian space there is an appro-
priate F-group satisfying to the condition ( )R

EI F   .  
For the proof it is enough to take the p acerojective sp  

RP
  

 and 

3 and to use the homeomorphism theorem for the 
groups SO(3) and SU(2) [16]. From an epimorphism  
π: SU(2)  SO(3) it is possible to obtain F-groups, as 
subgroups of the group SU(2). The so-called binary 
groups arise: 

 * 1π ,n nD D  

 * 1π ,n n

 * 1π ,n nT T   * 1π ,n nQ Q

I I  

a binary group of a dihedral, a binary group of a tetrahe-

lgorithm suggested in this work defines rules for 
co

dron, a binary group of an octahedron, and a binary 
group of an icosahedron. The binary groups, as well as 
orthogonal representations, in whole, arise naturally in 
describing a physical system with a spin and in calculat-
ing characteristics of gravitational fields in Riemannian 
spaces. 

The a
nstructing point systems for a given F-group and there-

fore will be denoted by F-algorithm. The given 
F-algorithm, realizing the translational subgroup SH  in 
the Riemannian space when interpreting  S KS R

EI H   
 2TH T , will describe a representation b  

 point on a Euclidean plane: 
y the fo ngllowi

rule for a

 
3 2π

exp ,sl i
r l

  1
1

1, ,s
s

n
n

 
 

        (8) 

1.Fr r G                  (9) 

As parameters of a model the 
ac

following variables were 
cepted: GF is a matrix of a subgroup of the rotations 

TO  induced in a section by a given F-group, where 
 R FEI   ; rs is the radius of the surface SK; tr  is the 

 appropriate torus 2T , where  Rradius of an E s tI r r ; n is 
an amount of the points lying n the sec e sur-
face SK.  

A set of points computed by the F-algorithm (8) or-
ga

 o tion of th

nizes a system of the points on a plane, which we shall 
denote by K-system. The parameters defining a K-system 
are: a Fedorov group Ф, F-groups, and a basic axis of 
symmetry li. A K-system can be determined with the help 
of its constituent sets i

nT  and represented in the follow-
ing form: 

 1 2 3, ,n n nK T T T ,             (10) 

where are sequentially generati
nT  

 ca
ed sets in Figure 1 

(for the se 6n  ), satisfying to the conditions given 
below:  

  
  

  
     

2 2 2

2 2 2 2 1

,

3 2 2 2 2

,

, , 1, ,

, , , , 1, ,

, , , , 1, .

i i i tO

n j j j j t nx y

n k k k k t nx y

y x y r i n

T x y x y r x y T i n

T x y x y r x y T k n

  

    

    

(11) 

A set of points computed by the F-algorithm (9) or-
a

1
n iT x

g nizes a system of the points on a plane, which we shall 
denote by R-system. This implies that the generation of 
an R-system is carried out by performing a group of the 
transformations  2TH T  over a K-system.  

  2T T K .        R H      (12) 

The initial forms of the organiz
ar

 
E

 

ation of real crystals 
e R-systems. The real structure of a crystal is supposed 

to be consisting of rows of particles, integrated into a 
system, and to have concrete sizes of the space of inter-
pretation. With the help of the apparatus of elliptic Rie-
mannian geometry, a distribution of atoms and a filling 
of the crystalline space can be interpreted as a compact 
locally Euclidean set. The misorientation and displace-
ment of R-systems are accompanied by the appearance, 
in the integrated space of a crystal, of blocks and bound-
ary spaces separating them [15].  

The process of the organization of a crystal structure in
R  consists in sequential introducing new particles into 
consideration, arranged at the shortest distances (put on a 
torus) from fixed ones in accordance with a given Fedorov 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 1. Stages of constructing a K-system. A sequence of 
the formation of the sets: (a) b ; (c)  

h o iz on of a lat-
ce in RE can be presented as a multistage process in 

n number of the 
la

of a crystalline polyhe-
dr

along geodetic lines of the elliptic space, spreading the  

1T ; (6 ) 2
6T 3

6T .
 
group, up to the faceting. T us the rgan ati
ti
which bonding of chemically responsive particles is un-
der way, beginning from the zero point. 

On a K-system, nodes are connected by arcs of circles 
and arranged from each other at a certai

ttice periods (E). An ideal crystal is usually constructed 
by the multiplication of a finite number of atoms by all 
the transformations of some Fedorov group, but such a 
construction of the ideal crystal is not related to natural 
causes of the crystallization [4].  

The organization of a lattice system in the space of in-
terpretation RE, up to the faceting 

on, consists of the structurally-forming (Figure 2(a)) 
and structurally-filling (Figure 2(b)) stages, each of 
newly fixed particles behaving like a new center of the 
organization of the lattice. The realization of bonds passes 

 
(a) 

 

 
(b) 

Figure 2. (a) Structurally-forming ( ), and structur-
ally-filling stages of the organization tal st cture; 
(b) The sets ( have b onstr . 

 a pe c Riemannian 
ace. 

 degrees of order of atoms inside a crystal and at 
its

res in the space 
 developed, 
ons of crys-

1
12T

 of a crys
ucted

ru
2

12T , 3
12T ) een c

 
forces of long-range interaction to the whole closed re-
gion, what is  s cific feature of an ellipti
sp

The noted features of a distribution of lattice points on 
a R-system are in good conformity with really observed 
different

 near-surface layers, different reticular densities of 
particles on different areas of the same face. The con-
structed model possesses all the attributes of a real crys-
tal: a center, an exterior faceting, symmetries of a certain 
Fedorov group, finite sizes, and zonality. 

3. Visualization of Lattice Systems 

For computer simulation of crystal structu
RE an rСrystal software package has been
allowing to conduct the visualization of secti
tal structures and to construct models of the electrostatic 
components of parameters of ions. There is the possibil-
ity of inputting various types of crystal structures with 
the use of a special technique of coding. The software 
package for modeling point systems uses the F-algorithm 
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for visualizing constructions and the scheme for the in-
terpretation R

EI  of geometrical objects on the Clifford 
surface in the Riemannian space.  

Examples of the computations of point systems with 
the use of th -algorithm have been given for modeling 
the symmetry axes: l3 (Figure 4),

e F
 l4 (Figure 5), and l6 

(F

d sections perpendicularly to the axis l6, 

 

igure 3).  
  It is obvious from Figure 3(a) and Figure 3(b) that 
the character of the distributions of the point systems, on 
the constructe
essentially differs in a central region. If the point system 
in Figure 3(a) has a homogeneous distribution, then for 
the point system in Figure 3(b) a block structure is 

 

 
(a) 

 

 

 

Figure 4. The organization of a lattice system in the section 
plane, perpendicularly to the axes l3, for a model of the 
trigonal system. 
 

 

Figure 5. The organization of a lattice system in the section 
plane, perpendicularly to the axes l4, for a model of the cu-
bic system. 

on in the space and have a centre and a zonal 
ructure. 

ures 7 and 8) and a series of its polymorphic 
m

 
clearly seen. All the constructed point systems fill a re-
stricted regi
st

With the use of the rCrystal software package the com-
plex modeling of the crystal structures SiO2 (Figure 6), 
Al2O3 (Fig

odifications α-, β-, θ-, and γ-Al2O3 [17,18] has been 
carried out. A method of modeling mesoatomic ensem-
bles, clusters and crystal structures, permitting to explore 
the geometrical properties of oxide systems, has been 

(b) 

Figure 3. The homogeneous (a) and block (b) structures (an
ideal system) in a section perpendicular to the axes l6. 
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po-
ne
tio charge distribution on a surface 

developed. On the basis of the model computations a 
minimum structural element Al4O6 has been selected, 
parameters of which were computed in the space RE. Us-
ing the above mentioned approach a model of the crys-
talline structure Al2O3 has been computed. The geomet-
rical configuration of a micropolyhedron Al4O6 and a set 
of the external physicochemical conditions (a structure of 
the electromagnetic field, thermodynamic parameters, 
crystallophysical parameters) define methods of packing 
of the micropolyhedrons in different motifs in accor-
dance with the principle of closest packing (Figures 7(а) 
and (b)). The structure of an electrostatic field modeled 
in the space RE, being formed by the structural element 
Al4O6, defines possible methods of integrating into a 
macrostructure in accordance with the most probable 
joining mechanism. 

4. Computation of Pair Interaction  
Potentials When Modeling Structures  
in the Space RE

In the space RE the models of the electrostatic com
nts of parameters of ions in the case of pair interac-
ns with regard to a 

have been constructed for the following ions presented in 
Table 1. When computing, a model of the charged 
spheres with different charge distributions on a surface 
was used. The suggested approach uses the scheme ,R

EI  
what allows to study the features and character of the 
interaction of elements in a modeled crystal structure, 
and to explore regularities of its formation. 

When computing the geometrical parameters of poten-
tials of the interatomic interaction, it was supposed that 
the interaction occurs under the conditions of the elliptic  

 
 

O 
Si 

 

Figure 6. The model of the crystal structure SiO2. The sec-
tion arranged perpendicularly to the axis l3 has been shown. 

closed Riemannian space V4. The structural features of an 
electrostatic field in the Riemannian space, considered 
for the case of interacting the unlike charges of ions, im-
pose the special conditions which lead to the formation 
of coherent states and to the formation of local closed  

 

 
(a) 

 

 
(b) 

Figure 7. The motif I1 of the model of the crystal structure 
Al2O3, satisfying to the principle of closest packing (a), the 
corundum motif I2 (b); the models has been presented in a 
projection on the plane [0001]. 
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regions of the attraction and repulsion, what speaks of 
the reasonability of the applied approach [4,15]. 

In the last column of Table 1 the computed values of 
radiuses of the electrostatic fields in the space RE have 
been given. The atomic and ionic radiuses used when 
modeling were taken from N. Belov’s work [19].  

When interpreting the total electrostatic field in mod-
els of ionic crystals, it becomes possible to take into ac-
count the multiparticle and long-range parts of the inter-
actions that occur under the conditions of elliptic Rie-
mannian geometry, and also there appears the possibility 
for investigating their role in the stabilization of probable 
polymorphic structures.  

The energy of the atomic bunching under the condi-
tions of a given atomic volume in ionic crystals is char-
acterized by the interatomic interaction potential V(r  
The suggested model potential becomes strongly repul-

 on the distance between adjacent ions in a 

ntial curves for a series of the 
systems un derat ed by f the 
su te av n

According to the principles of modeling, s
1.3 e com ion of the eters of co ents of 
the electrostat ents 
(F res 9-1 aving par  in the tion of 
th ystallin blattices o stals have  
out. I  the space RE a model of the electrostatic field of a 
charge is ch rized by: tricted size, the closure, 
a e con y. The str e of the mo electro-
static field has a distinct zonal character. The shape of a 
di ution nergy b , a group of metries 

ation of 
su

rystal 
on

s the interpretation of geomet-
ric  

 
(a) 

 

 

).

sive at a distance R, less than some critical value 2R0 
(Figure 8). Let us note that the potential V(r) directly 
influences
crystal. It can be expected that the distance between the 
nearest neighbors will be near Rmin (a minimum point).  

The parameters1 of pote
der consi

d ap h, h
ion, comput

e be iven i
 means o

 Table 2. 
tated in item 

gges proac en g

, th putat param mpon
ic fields of 

1) h
ions for different 

ticipated
elem

formaigu
e cr e su f cry been carried

n
aracte a res

nd th tinuit uctur del 

strib of the e ands  sym
(b) 

Figure 8. The model curves of the radial section of the elec-
trostatic potential of the ions: Н+ (a) and O2– (b), built in the 
space RE. 
 
Table 1. The computation of radiuses of electrostatic fields 
of the ions in the space RE. 

ion 
atomic radius 

(a.u.) 
ionic radius 

(a.u.) 

radius of 
electrostatic field 

(a.u.) 

and the energy parameters determine a type of the con-
figuration of ions participating in the organiz

blattices. 

5. Conclusions 

The possibilities for constructing a model of a real c
 other principles immediately connected with the in-

volvement of a non-Euclidean method of describing have 
been considered. The elliptic closed space of Riemannian 
geometry V4 with the constant Gaussian curvature К = 1, 
that coincides in sufficiently small regions with a Euclid-
ean space, was chosen as a modeling space. For visualiz-
ing the model construction

H+ 0.25 1.36 23.19 

O2– 0.66 1.36 11.04 

Fe2+ 1.18 0.78 6.26 

Fe3+ 1.18 0.65 5.79 

Mg2+ 1.45 0.72 6.87 

Al3+ 1.26 0.53 5.70 

al objects on a Clifford surface (SK) in Riemannian 

1The Notes: R0 is the radius of the hard component of the electrostatic 
field, where the repulsive forces have a dominating character; Rmin is 
the coordinate of the minimum of the potential V(r); ε is the value of 
the potential well V(r). 
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Table 2. The parameters of potential curves of the intera-
tomic interaction in the space RE. 

bond type 
R0,  Rmin, depth 

radius of 
electrostatic 

(a.u.) (a.u.) (ε) 
field (a.u.) 

[H+] – O2– 17.96 20.81 –6.14 23.19 

[O2–] – Fe2+ 7.88 8.76 –8.51 11.04 

[O2–] – Fe3+ 7.88 8.92 –8.81 11.04 

[O2–] – Al3+ 7.98 8.97 –8.90 11.04 

[Fe2+] – O2– 5.07 5.68 –5.81 6.26 

[Fe3+] – O2– 4.71 5.51 –16.22 5.79 

[Mg2+] – O2– 5.60 6.24 –6.32 6.87 

[Al3+] – O2– 4.66 5.44 –17.41 5.70 

 

   

Figure 9. The equatorial section of
3+

 the model of the electro-
static potential of the ion Al . The computation has been 
carr  the RE.
 

ied out in space  

 

   

Figure 11. The equipotential picture of the electrostatic field 
of the ion O2– relatively the ion H+. The frontal section. 

geometry with the help of a 2D torus in a Euclidean 
space E3 is used. The process of the organization of a 
crystal structure in the space of interpretation RE is pre-
sented as a multistage process consisting in sequential 
introducing the point systems  into 
consideration, each point of whic
accordance with a given Fedorov group, beginning from 
a zero point and up to the faceting of a crystal, each of 
newly fixed point behaving like a new center of the or-
ganization of the lattice. Properties of the internal space 
of a real crystal, such as zonality, boundedness in sizes 
(finiteness), sectoriality and the occurrence of a center, 
are naturally deduced from properties of the modeling 
space. The main characteristic of improvements in the 
suggested model constructions is that the local changes 

The developed F-algorithm for constructing crystalline 
lattice systems ensures a computation of 2D sections of 
models of point systems, arranged perpendicularly to the 
symmetry axes l3, l4, and l6. As an example of the reali-
zation of the developed principles of modeling, the 
computations of components of the electrostatic fields of 
the ions Al3+, O2–, Fe2+, and Mg2+, having participated in 
the formation of the crystalline sublattices of α-, β-, θ-, 
and γ-Al2O3, have been presented. The linear parameters 
of crystal lattices, obtained from the model computations, 
are connected with the character of their constituent at-
oms and can be used to determine a type of chemical 
bonding between them.  

The suggested approach can be used for computing the 

as for the development of practical 

 

  2TR H T K
h is fixed on a torus in 

of structural features, as well as curved regions (defects), 
can be more completely taken into account. 

geometrical parameters of the cluster organization of 
nanostructures of oxides and many other nonequilibrium 
materials, as well 

Figure 10. The equipotential picture of the electrostatic field 
of the ion H+ relatively the ion O2–. The frontal section. 

Copyright © 2011 SciRes.                                                                                 MSA 



Geometrical Modeling of Crystal Structures with Use of Space of Elliptic Riemannian Geometry 

Copyright © 2011 SciRes.                                                                                 MSA 

536 

applications connected with improving the structural 
characteristics of crystalline materials. 
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