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ABSTRACT 

The coupled system of non-linear second-order 
reaction differential equation in basic enzyme 
reaction is formulated and closed analytical ex-
pressions for substrate and product concentra-
tions are presented. Approximate analytical me-
thod (He’s Homotopy perturbation method) is 
used to solve the coupled non-linear differential 
equations containing a non-linear term related to 
enzymatic reaction. Closed analytical expres-
sions for substrate concentration, enzyme sub-
strate concentration and product concentration 
have been derived in terms of dimensionless 
reaction diffusion parameters k,   and   us-
ing perturbation method. These results are 
compared with simulation results and are found 
to be in good agreement. The obtained results 
are valid for the whole solution domain. 

Keywords: Non-Linear Reaction Equations;  
Mathematical Modelling; Steady-State; Homotopy 
Perturbation Method; Simulation 

1. INTRODUCTION 

Enzyme kinetics is the study of the chemical reaction 
that are catalysed by enzymes. In enzyme kinetics, the 
reaction rate is measured and the effects of varying the 
conditions of the reaction investigated. Enzymes are 
usually protein molecules that manipulate other mole-
cules the enzymes substrate. These target molecules bind 
to an enzyme’s active site and are transformed into 
products through a series of steps known as the enzy-
matic mechanism. These mechanisms can be divided 
into single-substrate and multiple-substrate mechanisms. 
To understand the role of enzyme kinetics, the researcher 
has to study the rates of reaction, the temporal behav-
iours of the various reactants and the conditions which 
influence the enzyme kinetics. Introduction with a ma-
thematical bent is given in the books by Rubinow [1], 
Murray [2], Segel [3] and Roberts [4].   

The generalized theoretical treatment of the tran-
sient-state kinetics of enzyme reaction system described 
[5-9] under the conditions    0 0E S , the enzyme 
concentration  E  remains effectively constant during 
the course of the reaction and only the substrate concen-
tration  S  changes appreciably with time. The rate of 
second-order reactions in chemistry are frequeuntly stu-
died within PFO kinetics [10,11]. Numerical studies of 
reaction (1) far from the QSS or equilibrium approxima-
tions demonstrate that if the excess reactant concentra-
tion ratio  0E :  0S  say, is less than 10-fold, apprecia-
ble errors are introduced in the pseudo-first-order kinet-
ics description [7]. Silicio and Peterson [10] have nu-
merical estimates for second-order reactions that show 
that the fractional error in the observed pseudo-first- 
order constant is less than 10% if the reactants ratio is 
10-fold. However, Corbett [12] has found that a pseu-
do-first-order reaction can yield more accurate data than 
is generally realized, even if only a two-fold excess of 
one the reactants is employed. For enzyme catalyzed 
reactions, Kasserra and Laidler [5] suggest that an ex-
cess of initial enzyme concentration is necessary to 
guarantee that the reaction follows first-order kinectics 
in transient-phase studies. 

Schnell and Maini [13] have shown that, under the 
condition  0E >>  0S , the appropriate frame work to 
study the Michaelis-Menten reaction (1) is the reverse 
quasi-steady-state approximation (rQSSA) or equilib-
rium approximation. The reverse quasi-steady-state as-
sumption considers the substrate S  to be in a quasi- 
steady-state with respect to the enzyme-substrate comp- 

lex C  by assuming that  d S

dt
 0. Recently Schnell 

and Mendoza [14] have obtained the analytical expres-
sion of concentration by the linearization of the Micha-
elis-Menten reaction by pseudo-first-order kinetics. Re-
cently Meena, Eswari and Rajendran [15] have derived 
the analytical solution of non-linear reaction equations 
containing a non-linear term related to the enzymatic 
reaction using variational iteration method (VIM). 

The purpose of this communication is to derive closed 
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analytical expressions for substrate concentration, en-
zyme substrate concentration and product concentration 
interms of dimensionless reaction diffusion parameters k, 
  and   using Homotopy perturbation method (HPM) 
and compartive study of the same with Numerical simu-
lation. 

2. MATHEMATICAL FORMULATION OF 
THE PROBLEM 

The model of an enzyme action, initially developed by 
Michaelis and Menten revealed the binding of free en-
zyme to the reactant forming an enzyme-reactant com-
plex. In turn this complex undergoes a transformation, 
releasing the product and free enzyme and the presence 
of free enzyme leads to another round of binding to a 
new reactant. The simplest reversible association be-
tween an enzyme E and a substrate S yield an intermedi-
ate enzyme-substrate complex C that irreversibly breaks 
down to form a product P, and the mechanism is often 
written as: 

1 2

1

k k
k

E S C E P


             (1) 

This mechanism illustrates the binding of substrate S 
and release of product P. E is the free enzyme and C is 
the enzyme-substrate complex. The time evolution of 
reaction (1) is obtained by applying the law of mass ac-
tion to yield the set of coupled non-linear differential 
equation [14]: 

         1 0   S

d S
k E C S K C

dt
           (2) 

         1 0  M

d C
k E C S K C

dt
            (3) 

   2  
d P

k C
dt

                         (4) 

and by imposing the laws of mass action: 

       0E  E t   C t   

          0S  S t   C t  P t    

with initial conditions at t = 0     

           0 0 0 0S  S  , E E  , C    , P          (5) 

In this system the parameters 1  1 2 , and  -   k  k  k are 
positive rate constants, 1 1SK k k  is the equilibrium 
dissociation constant, 2 1K k k  the Van Slyke-Cullen 
constant and M SK   K   K  is known as the Micha-
elis-Menten constant. By introducing the following pa-
rameters         

      
 

1 0

0 0

    
,   ,  v  ,

k E t S t C t
u

ε S E
      

    
     

 
 

02

0 1 0 0 0

  
 ,  , ,   M

EP t k K
w τ k

E k S S S
      

the system of Eqs.2-4 with initial condition (5) can be 
represented in dimensionless form as follow: 

   
du

uε u k v
d

 

              (6) 

( )
dv

u u k v
d

                    (7) 

dw
v

d



                         (8) 

     0 1,  0 0 ,  0 0u v w          (9) 

3. ANALYTICAL SOLUTION OF STEADY 
STATE CONCENTRATION USING 
HOMOTOPY PERTURBATION ME-
THOD 

Recently, many authors have applied the Homotopy 
perturbation method to various problems and demon-
strated the efficiency of the Homotopy perturbation me-
thod for handling non-linear structures and solving vari-
ous physics and engineering problems [15-18]. This 
method is a combination of topology and classic pertur-
bation techniques. Ji Huan He used the Homotopy per-
turbation method to solve the Lighthill equation [19], the 
Duffing equation [20] and the Blasius equation [21]. The 
idea has been used to solve non-linear boundary value 
problems, integral equations and many other problems. 
In these papers [22-27], the homotopy perturbation me-
thod is applied and the obtained results show that the 
Homotopy perturbation method is very effective and 
simple. The Homotopy perturbation method is unique in 
its applicability, accuracy, efficiency and uses the im-
bedding parameter p as a small parameter and only a few 
iterations are needed to search for an asymptotic solution. 
Using this method, we can obtain the following solution 
to Eqs.6-8 (Ref Appendix-A and B)  

 

   
 

(k ) 2

k -

2

 

  -    

e e e
u e
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k e ek e
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
 

   
 
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
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 

 (10)  
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            (11) 
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  (12) 

Eqs.10-12 represents the analytical expression of the 
dimensionless substrate concentration u   , enzyme 
substrate concentration v    and product concentration 
w    for all values of parameters k ,   and  . 

4. NUMERICAL SIMULATION 

The non-linear differential Eqs.2-4, are also solved 
using numerical methods. The functionbvp4c in Scilab 
software which is a function of solving two-point boun-
dary value problems (BVPs) for ordinary differential 
equations is used to solve this equation. Its numerical 
solution is compared with Homotopy perturbation me-
thod and it gives satisfactory result. The Scilab program 
is also given in Appendix (C). 

5. RESULT AND DISCUSSION 

Figures 1-6 show the analytical expression of conen-
trations of substrate u , enzyme-substrate complex v  
and product w  for various values of dimensionless 
reaction parameters k,   and  , wherein k and   
values are same and   is different.  From these fig-
ures, it is inferred that the vlaue of the concentration of 
substrate decreases gradually from its intial value 
(  0 1 u  ). The concentration of the substrate becomes 
 

 

Figure 1. Normalised concentration profiles    ,  u v   
 and w   as a function of dimensionless time for various 

values of reaction/diffusion parameter 0.98,    6 k    
and 0.98  . These concentrations were computed using 
Eqs.10-12. The line denotes Eqs.10-12 and +, *, ^ denote 
the numerical simulation. 

 
Figure 2. Normalised concentration profiles    ,  u v   

 and w   as a function of dimensionless time for various 
values of reaction/diffusion parameter 2.3,    6.8 k   and 

2.3  . These concentrations were computed using Eqs. 
10-12. The line denotes Eqs.10-12 and +, *, ^ denote the nu-
merical simulation. 
 

 
Figure 3. Normalised concentration profiles    ,  u v  and 
 w   as a function of dimensionless time for various values 

of reaction/diffusion parameter 4,    4.8 and 4k     . 
These concentrations were computed using Eqs.10-12. The 
line denotes Eqs.10-12 and +, *, ^ denote the numerical simu-
lation. 
 
zero when 0.5   and reaches the steady-state value 
( 0u  ) when 1  . The enzyme substrate concentra-
tion v  increase gradually from its intial value 
(  0 0v  ) and attains maximum in the interval [0,0.5] 
and degrees gradually, after that attains steady state val-
ue when 1   for all values of reaction parameter. 

The concentration of the product w  increases slowly 
from the initial concentration (  0 =0w ), attains maxi-
mum value in the interval [0.5,1] and attains steady state  
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Figure 4. Normalised concentration profiles    ,    andu v   
 w   as a function of dimensionless time for various values 

of reaction/diffusion parameter 0 .85,    6 .5 andk    
0.85  . These concentrations were computed using Eqs. 

10-12. The line denotes Eqs.10-12 and +, *, ^ denote the nu-
merical simulation. 
 

 
Figure 5. Normalised concentration profiles    ,    andu v   

 w   as a function of dimensionless time for various values 
of reaction/diffusion parameter 0 .98,    5 .8 andk    

0.98  . These concentrations were computed using Eqs. 
10-12. The line denotes Eqs.10-12 and +, *, ^ denote the nu-
merical simulation. 
 
when 1   for all values of reaction parameter. Also 
when the value of the parameter   decreases the prod-
uct conentration increases. It is noted that in the interval 
[1,1.5] concentration of substrate u  attains minimum 
value where as the product concentration attains its 
maximum value. Our approximate analytical expression 
of substrate concentration, enzyme substrate concentra-
tion and product concentration are compared with simu-
lation results in Figures 1-6. A satisfactory agreement  

 
Figure 6. Normalised concentration profiles    ,    andu v   

 w   as a function of dimensionless time for various values 
of reaction/diffusion parameter 0 .6,    6  5 and k .   

0 .6  . These concentrations were computed using Eqs. 
10-12. The line denotes Eqs.10-12 and +, *, ^ denote the nu-
merical simulation. 
 
is noted. 

6. CONCLUSIONS 

Pseudo-first-order kinetics serves the purpose of 
solving the set of differential equations governing the 
time course of the reaction, which can be validated by a 
proper choice of conditions. The time dependent non- 
linear reaction-diffusion equation has been formulated 
and solved analytically and numerically. Analytical ex-
pressions for the substrate concentration, enzyme sub-
strate concentration and product concentration have been 
derived interms of dimensionless reaction diffusion pa-
rameters k,   and   using the HPM. The primary 
result of this work is simple approximate calculations of 
concentrations for all values of dimensionless parame-
ters k,   and   The HPM is an extremely simple 
method and it is also a promising method to solve other 
non-linear equations. This method can be easily ex-
tended to all kinds of system of coupled non-linear equa-
tions in multi-substrate systems and networks of coupled 
enzyme reactions. 

7. ACKNOWLEDGEMENTS 

This work was supported by the Department of Science and Tech-

nology (DST) Government of India. The authors also thank 

Mr.M.S.Meenakshisundaram, Secretary, The Madura College Board, 

Principal and S.Thiagarajan Head of the Department of Mathematics, 

The Madura College, Madurai, for their constant encouragement. It is 

our pleasure to thank the referees for their valuable comments. 



G. Varadharajan et al. / Natural Science 3 (2011) 459-465 

Copyright © 2011 SciRes.                                                                    OPEN ACCESS 

463

 
REFERENCES 
[1] Rubinow, S.I. (1975) Introduction to Mathematical Biol-

ogy. Wiley, New York. 
[2] Murray, J.D. (1989) Mathematical biology. Springer 

Verlag, Berlin. 
[3] Segel, L.A. (1980) Mathematical models in molecular 

and cellular biology. Cambridge University Press, Cam-
bridge. 

[4] Roberts, D.V. (1977) Enzyme kinetics. Cambridge Uni-
versity Press, Cambridge.  

[5] Kasserra, H.P. and Laidler, K.J. (1970) Transient-phase 
studies of a trypsin-catalyzed reaction. Canadian Journal 
of Chemistry, 48, 1793-1802. doi:10.1139/v70-298 

[6] Pettersson, G. (1976) The transient-state kinetics of 
two-substrate enzyme systems operating by an ordered 
ternary-complex mechanism. European Journal of Bio-
chemistry, 69, 273-278.  
doi:10.1111/j.1432-1033.1976.tb10883.x 

[7] Pettersson, G. (1978) A generalized theoretical treatment 
of the transient-state kinetics of enzymic reaction sys-
tems far from equilibrium. Acta Chemica Scandinavica - 
Series B, 32, 437-446.  
doi:10.3891/acta.chem.scand.32b-0437 

[8] Gutfreund, H. (1995) Kinetics for life sciences: Recep-
tors, transmitters and catalysis. Cambridge University 
Press, Cambridge. doi:10.1017/CBO9780511626203 

[9] Fersht, A.R. (1999) Structure and mechanism in protein 
science: A guide to enzyme catalysis and protein folding. 
Freeman, New York. 

[10] Silicio, F. and Peterson, M.D. (1961) Ratio errors in 
pseudo first order reactions. Journal of Chemical Educa-
tion, 38, 576-577. doi:10.1021/ed038p576 

[11] Moore, J.W. and Pearson, R.G. (1981) Kinetics and Me-
chanism. Wiley, New York. 

[12] Corbett, J.F. (1972) Pseudo first-order kinetics. Journal 
of Chemical Education, 49, 663. doi:10.1021/ed049p663 

[13] Schnell, S. and Maini, P.K. (2000) Enzyme kinetics at 
high enzyme concentration. Bulletin of Mathematical Bi-
ology, 62, 483-499. doi:10.1006/bulm.1999.0163 

[14] Schnell, S. and Mendoza, C. (2004) The condition for 
pseudo-first-order kinetics in enzymatic reaction is inde-
pendent of the initial enzyme concentration. Journal of 
Biophysical Chemistry, 107, 165-174.  
doi:10.1016/j.bpc.2003.09.003 

[15] Meena, A., Eswari, A. and Rajendran, L. (2010) Mathe-
matical modelling of enzyme kinetics reaction mecha-
nism and analytical sloutions of non-linear reaction equa-

tions. Journal of Mathematical Chemistry, 48, 179-186.  
doi:10.1007/s10910-009-9659-5 

[16] Li, S.J. and Liu, Y.X. (2006) An improved approach to 
nonlinear dynamical system identification using pid neu-
ral networks. International Journal of Nonlinear Science 
and Numerical Simulation, 7, 177-182. 

[17] Mousa, M.M., Ragab, S.F. and Nturforsch, Z. (2008) 
Application of the homotopy perturbation method to lin-
ear and nonlinear schrödinger equations. Zeitschrift für 
Naturforschung, 63, 140-144. 

[18] He, J.H. (1999) Homotopy perturbation technique. 
Computer Methods in Applied Mechanics and Engineer-
ing, 178, 257-262. 

[19] He, J.H. (2003) Homotopy perturbation method: a new 
nonlinear analytical Technique. Applied Mathematics and 
Computation, 135, 73-79.  
doi:10.1016/S0096-3003(01)00312-5 

[20] He, J.H. (2003) A Simple perturbation approach to Bla-
sius equation. Applied Mathematics and Computation, 
140, 217-222. doi:10.1016/S0096-3003(02)00189-3 

[21] He, J.H. (2006) Some asymptotic methods for strongly 
nonlinear equations. International Journal of Modern 
Physics B, 20, 1141-1199.  
doi:10.1142/S0217979206033796 

[22] He, J.H., Wu, C.G. and Austin, F. (2010) The variational 
iteration method which should be followed. Nonlinear 
Science Letters A, 1, 1-30. 

[23] He, J.H. (2003) A coupling method of a homotopy tech-
nique and a perturbation technique for non-linear prob-
lems. International Journal of Non-Linear Mechanics, 35, 
37-43. doi:10.1016/S0020-7462(98)00085-7 

[24] Ganji, D.D., Amini, M. and Kolahdooz, A. (2008) Ana-
lytical investigation of hyperbolic equations via he’s me-
thods. American Journal of Engineering and Applied 
Sciences, 1, 399-407. 

[25] Loghambal, S. and Rajendran, L. (2010) Mathematical 
modeling of diffusion and kinetics of amperometric im-
mobilized enzyme electrodes. Electrochimica Acta, 55, 
5230-5238. doi:10.1016/j.electacta.2010.04.050 

[26] Meena, A. and Rajendran, L. (2010) Mathematical mod-
eling of amperometric and potentiometric biosensors and 
system of non-linear equations—Homotopy perturbation 
approach. Journal of Electroanalytical Chemistry, 644, 
50-59. doi:10.1016/j.jelechem.2010.03.027 

[27] Eswari, A. and Rajendran, L. (2010) Analytical solution 
of steady state current an enzyme modified microcylinder 
electrodes. Journal of Electroanalytical Chemistry, 648, 
36-46. doi:10.1016/j.jelechem.2010.07.002 

 
 
 
 
 
 
 
 
 
 
 
 
 

http://dx.doi.org/10.1139/v70-298�
http://dx.doi.org/10.1111/j.1432-1033.1976.tb10883.x�
http://dx.doi.org/10.3891/acta.chem.scand.32b-0437�
http://dx.doi.org/10.1017/CBO9780511626203�
http://dx.doi.org/10.1021/ed038p576�
http://dx.doi.org/10.1021/ed049p663�
http://dx.doi.org/10.1006/bulm.1999.0163�
http://dx.doi.org/10.1016/j.bpc.2003.09.003�
http://dx.doi.org/10.1007/s10910-009-9659-5�
http://dx.doi.org/10.1016/S0096-3003(01)00312-5�
http://dx.doi.org/10.1016/S0096-3003(02)00189-3�
http://dx.doi.org/10.1142/S0217979206033796�
http://dx.doi.org/10.1016/S0020-7462(98)00085-7�
http://dx.doi.org/10.1016/j.electacta.2010.04.050�
http://dx.doi.org/10.1016/j.jelechem.2010.03.027�
http://dx.doi.org/10.1016/j.jelechem.2010.07.002�


G. Varadharajan et al. / Natural Science 3 (2011) 459-465 

Copyright © 2011 SciRes.                                                                    OPEN ACCESS 

464 

 
APPENDIX A 

Basic idea of Homotopy – perturbation me-
thod (HPM) 

To explain this method, let us consider the following 
function  

    0,   A w f r r               (A1) 

With the boundary conditions of 

, 0,  
w

B w r
n

     
               (A2) 

where A , B ,  f r  and   are a general differential 
operator , a boundary operator, a known analytical func-
tion and the boundary of the domain  , respectively. 
Generally speaking, the operator A  can be divided into 
a linear part L  and a nonlinear part N . Eq.A1 can 
therefore, be written as 

      0L w N w f r               (A3) 

By the Homotopy technique, we construct a Homo-
topy    , : 0,1z r p R   which satisfies 

       
    

0, 1

0   [0,1],      

H z p p L z L w

p A z f r p r

    
    

(A4) 

Or 

           0 0, 0H z p L z L w pL w p N z f r         

        (A5) 

where  0,1p  is an embedding parameter, while 0w  
is an initial approximation of Eq.A1, which satisfies the 
boundary conditions. Obviously, from Eqs.A4 and A5, 
we will have 

     0,0 0 H z L z L w           (A6) 

     ,1 0.H z A z f r             (A7)  

The changing process of p from zero to unity is just 
that of  ,z r p  from 0w  to  .w r  In topology, this is 
called deformation, while    0L z L w  and  
   A z f r  are called Homotopy. According to the 

HPM, we can first use the embedding parameter p  as a 
“small parameter”, and assume that the solutions of Eqs. 
A4 and A5 can be written as a power series in p : 

2
0 1 2 .....z z pz p z                (A8) 

Setting 1p   results in the approximate solution of Eq. 
A1  

0 1 2
1

lim  ..... 
p

w z z z z


             (A9) 

The combination of the perturbation method and the 
Homotopy method is called the HPM, which eliminates 

the drawbacks of the traditional perturbation methods 
while keeping all its advantages.  

APPENDIX B 

Solution of the Eqs.2 and 3 using Homotopy perturba-
tion method. In this Appendix, we indicate how Eqs.10, 
11 and 12 in this paper are derived.  Furthermore, a 
Homotopy was constructed to determine the solution of 
Eqs.2 and 3.  

 1-   

     0

du
p u

d

du
p u u v k v v

d




    


   
        

     (B1) 

 1-   0 
dv dv

p kv p k v u u v
d d 
              

    (B2) 

and the initial approximations are as follows:    

 (0) 1,  0 0u v                  (B3)

           approximate solutions of (B1) and (B2) are  
2 3

0 1 2 3 ..................u u pu p u p u       (B4) 

and 
2 3

0 1 2 3 ..................v v  pv p v p v       (B5) 

Substituting Eqs.B4 and B5 into Eqs.B1 and B2 and 
comparing the coefficients of like powers of p  

0 0
0: 0

du
p u

d



                 (B6) 

1 1
1 0 0 0 0:   0

du
p u u v kv v

d
   


           (B7) 

2 2
2 0 1 1 0 1 1:   =0  

du
p u u v u v kv v

d
    


       (B8) 

And          0 0
0: 0

dv
p kv

d
                (B9) 

1 1
1 0 0 0: 0

dv
p kv u u v

d
             (B10) 

2 2
2 1 0 1 1 0: + = 0

dv
p kv u u v u v

d
         (B11) 

Solving the Eqs.B6-B11, and using the boundary con-
ditions (B3), we can find the following results 

 0  u e                (B12) 

 1 = 0u                 (B13) 

 
(k ) 2

2

e e e
u

k k k

   
 

    
     
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   
 

k -

2

  
  

k e ek e

k k

     
 

      
 

    (B14) 

And 

 0 0v                    (B15) 

 
k

1  
e e

v
k

 




 



           (B16) 

      
 

 
kk 2

2 2 2

e e e
v

k k k k

  


     

  

  
   

 (B17)  

According to the HPM, we can conclude that  

    0 1 2
1

lim  
p

u u u u u 


            (B18) 

    0 1 2
1

lim
p

v v v v v 


             (B19) 

Using Eqs.B12, B13 and B14 in Eqs.B18 and Eqs. 
B15, B16 and B17 in Eqs.B19, we obtain the final re-
sults as described in Eqs.10 and 11. The dimensionless 
concentration of the product is given by 

   

 
 

 
 

 
 

 
  

  
  

0

k

k2

 v  

1 1 1

k k k k 2

11
  

2 k k 2 k  k

w d

e e e

ee



  

 

   

  

     



     

  

 



  
  

  


 

   



   (B20) 

The above equation represent the new analytical ex-
pression of product  w   for all values of parameters 

,   and  k   which is given in Eq.12. 

APPENDIX C 

Scilab program to find the solutions of the Eqs. 6-9 
function main123456 
options= odeset('RelTol',1e-6,'Stats','on'); 
%initial conditions 
x0 = [1; 0;0];  
tspan = [0 10];  
tic 
[t,x] = ode45(@TestFunction,tspan,x0,options); 
toc  

figure 
hold on 
plot(t, x(:,1)) 
plot(t, x(:,2)) 
plot(t, x(:,3)) 
legend('x1','x2') 
ylabel('x') 
xlabel('t')  
return  
function [dx_dt]= TestFunction(t,x) 
b=6.5;a=0.85;d=0.85; 
dx_dt(1)=-b*x(1)+b*(x(1)+a-d)*x(2); 
dx_dt(2) =x(1)-((x(1)+a)*x(2)); 
dx_dt(3) =d*x(2);  
dx_dt = dx_dt';   
return 

 

APPENDIX D 
 
Nomenclature 

Symboles 

 E          Enzyme concentration (  M) 

 C          Enzyme-substrate complex   (  M) 

 S          Substrate concentation(  M) 

 0E         Initial enzyme concentration  (  M) 

 0S          Initial substrate concentraton  (  M) 

MK          Michaelis-Menten constant 

SK           Equilibrium dissociation constant 

(  M) 

K            Van Slyke-Cullen constant (  M) 

1 1 2, ,  -   k  k  k     Positive rate constants (None) 

,   ,   k         Reaction diffusion parameter (None) 
u            Dimensionless Substrate concentra-
tion (None) 
v            Dimensionless enzyme substrate con-
centration (None) 
w        Dimensionless product concentration 
(None) 
t              Time (Sec) 
              Dimensionless time (None)

 


