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Abstract 
 
The present paper is concerned with two novel approximate analytic solutions of the undamped Duffing 
equation. Instead of the traditional perturbation or asymptotic methods, a homotopy technique is employed, 
which does not require a small perturbation parameter or a large parameter for an asymptotic expansion. It is 
shown that proper choices of an auxiliary linear operator and also an initial approximation during the imple-
mentation of the homotopy analysis method can yield uniformly valid and accurate solutions. The obtained 
explicit analytical expressions for the solution predict the displacement, frequency and period of the oscilla-
tions much more accurate than the previously known asymptotic or perturbation formulas. 
 
Keywords: Homotopy Analysis Method, Auxiliary Linear Operator, Initial Approximation, Duffing  

Oscillator, Uniform Solution 

1. Introduction 
 
The importance of nonlinear Duffing equation has been 
widely understood among the scientists since it plays a 
key role in some important practical phenomena such as 
periodic orbit extraction, non uniformity caused by an 
infinite domain, nonlinear mechanical oscillators, predic- 
tion of diseases, and so on. 

Since the Duffing equation engulfs a strong nonli- 
nearity within itself, it’s full analytical solution has not 
been achieved so far. Therefore, considerable attention 
has been directed towards the study of strongly nonlinear 
oscillators and several methods have been used to find 
approximate solutions to nonlinear oscillators. Most of 
the methodologies involve the introduction of a small 
parameter into the equation, which might be artificial, 
and then expansion of the solution through the per- 
turbation series around this parameter. However, the 
solutions obtained within this approach may not be 
uniform, restricting the applicability of such perturbation 
methods [1,2]. To overcome the limitations of the 
perturbative techniques, many novel techniques have 
been proposed in recent years. For example, modified 
Lindstedt-Poincare method [3,4] and variational iteration 
methods [5]. Some other numerical and approximate 

methods follow [6-10]. 
Liao in [11] proposed a new technique which is based 

on the homotopy concept in topology, named the ho- 
motopy analysis method (HAM). Unlike the aforemen- 
tioned traditional perturbation methods, this technique 
does not require a small perturbation parameter in the 
equation. In this method, according to the homotopy 
technique, a homotopy with an imbedding parameter is 
constructed, and the imbedding parameter is considered 
as a small parameter. Thus the original nonlinear pro- 
blem is converted into an infinite number of linear 
problems without using the perturbation techniques, see 
the book by Liao [12]. Different from other methods, the 
HAM provides a simple way to control and adjust the 
convergence region of solution series by means of an 
auxiliary parameter [13,14]. 

Following the introduction of HAM by Liao, He in [15] 
proposed the so-called homotopy perturbation method 
(HPM). Unfortunately, Sajid and Hayat [16] pointed out 
that the so-called homotopy perturbation method has 
nothing new except its new name, because the HPM is 
only a special case of the homotopy analysis method 
(HAM) when so that all results given by the HPM can be 
obtained by the HAM as a special case. Moreover, as a 
special case of the HAM, the HPM can not give con- 
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vergent series solution for strongly nonlinear problems. 
Abbasbandy in [17] gave a simple example to show that, 
like perturbation approximations, the results given by the 
HPM are divergent when the physical parameters 
become large. Among many other authors VanGorder 
and Vajravelu in [18] also pointed out this fact. More 
recently, Liang and Jeffrey in [19] pointed out that in 
some cases the series solution given by the HPM and 
VIM (another method proposed also by He in [20]) is 
divergent at all points except  that however de- 
fines the initial condition. 

= 0t

We in the present paper use the homotopy analysis 
technique for the solution of the nonlinear Duffing 
equation. Better auxiliary linear operators and initial 
approximations are the essential target to be used here 
within the homotopy concept so that highly accurate 
solutions have been obtained. The proposed linear 
operators together with the homotopy analysis method 
provide formulas for the displacement, frequency and 
period of the oscillations, which are valid for all the 
existing parameters and also are more accurate than 
those already available in the literature. 

The following strategy is adopted in the rest of the 
paper. In Section 2 the idea of homotopy analysis 
method is laid out. Application of the method is 
implemented in Section 3, in which, first the homotopy 
analysis method is revisited and later using different 
auxiliary parameters and initial approximations, analytic 
expressions are derived yielding better results. Section4 
presents compari- sons of the period and displacement 
between those in [15], our findings and the exact 
numerical ones. Finally conclusions follow in Section 5. 
 
2. The Homotopy Analysis Method 
 
Liao in [1] proposed a new kind of analytic technique for 
nonlinear problems, namely the homotopy analysis 
method. This method is based on the homotopy and has 
several advantages. To underline, firstly its validity does 
not depend upon whether or not nonlinear equations 
under consideration contain small or large parameters, 
hence it can solve more of strongly nonlinear equations 
than the perturbation techniques. Secondly, it provides us 
with a great freedom to select proper auxiliary linear 
operators and initial guesses so that uniformly valid 
approximations can be obtained. Thirdly, it gives a 
family of approximations which are convergent in a 
larger region. Liao successfully applied the homotopy 
analysis method to solve some nonlinear problems in 
mechanics. For example, Liao in [21] gave a purely 
analytic solution of 2D Blasius’s viscous flow over a 
semi-infinite flat plate, which is uniformly valid in the 
whole physical region. Further examples are provided 

within the reference [12]. To briefly describe the method 
let’s consider the following nonlinear differential equa- 
tion  

    = 0,  N u f r r            (1) 

with boundary conditions  

, = 0,  
u

B u r
n

    
           (2) 

where  is a nonlinear operator,  is a boundary 
operator,  is an unknown analytic function and 

N
u

B
  is 

the boundary of the domain . By this technique, we 
construct a homotopy 


 ,v r p  from the cartesian set 

 0, 1  to  which satisfies  R

         0, = 1 = 0H v p p L v u ph N u f r      , (3) 

where [0,1]p  is an embedding parameter, 0  is an 
initial approximation of Equation (1) that satisfies the 
boundary condition (2) and  is a constant that can be 
adjusted to speed the convergence. It is clear from 
Equation (3) that for  and  respectively the 
followings hold  

u

h

= 0p 1=p

   
     

0,0 = = 0,

,1 = = 0.

H v L v u

H v N u f r




          (4) 

Hence, it can be deduced from (4) that the deformation 
process of  from zero to unity is just that of the 
solution from 

p
 0u r  to . Further, considering  

as a parameter, the solution to system (1-2) can be 
naturally expressed taking into account a Taylor 
expansion of the solution  at  and later 
imposing the expansion at   

 u r

,v t
= 1p

p

 p

,

= 0p

     0
=1

= k
k

u t u t u t


             (5) 

where  are defined by ku
=0

1
=

!k

p

u
u

k p




. 

 
3. Application to Duffing Equation 
 
Duffing equation describes many kinds of nonlinear 
oscillatory systems in physics, mechanics and engi- 
neering. The unforced, undamped Duffing equation that 
we consider consists of the nonlinear initial value system  

   
2

3
2

d
= 0,  0 = ,  0 = 0.

d

u
u u u A u

t
      (6) 

The parameters   and A  in (6) measure respec- 
tively the nonlinearity and amplitude of the displacement 
 u t . Actually the period of the solution can be for- 

mulated analytically as in [2]  

 
2π

2
202 2

4 d
= ,   = .

2 11 1 sin

x A
T k

AA k x


  

  (7) 
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For the system (6) Liao in [22] suggested the 
subsequent auxiliary linear operator  

 
2

2

d
=

d

u
L u u

t
                 (8) 

with an assumption of the initial solution of the form  

0 = cos ,u A t                 (9) 

such that   


 is a nonzero unknown constant with the 
property of . Considering the homotopy in- 
troduced in (3) with  and imposing the constraint 
that no secular terms are allowed, He in [15] obtained a 
first-order approximation to the solution in subsequent 
form  

 0 = 1
h = 1

   
2 3

2 2

3
= cos cos

4 1 4 9 1

A A
u t

 
3 ,t 

 


 
 (10) 

in which   is defined as  

2 210 7 64 104 49
= .

18

2 4A A A      
  (11) 

It should be remarked here that the solution given in 
(10) has a non removable singularity for = 1  . 

Carrying out a further step, it is easy to obtain the 
next-order solution 2  in (5) which can later be com- 
bined with (10) to form a second-order solution. He then 
obtained the period of the approximate solution by  

u

2π
=T ,


                 (12) 

with   given as in (11). He, later claimed that the 
solution he achieved by the homotopy technique with the 
properly chosen auxiliary parameters is of high accuracy 
and it is valid for a very large values of  . Denoting the 
ratio of exact period (7) to approximate one (12) in the 
limit of   tending to infinity as rat , He found that 

 (it should be emphasized that a simple 
error occurred in [15] for the evaluation of 

= 96rat 1.040
rat ). 

Therefore, He in [15] concluded that for any value of   
the maximal relative error is only 4 percent. 

In place of the linear operator (8), He [23] proposed to 
use  

 
2

2
2

d
=

d

u
L u u

t
               (13) 

with the same assumption of the initial solution as in (9) 
and . If the occurrence of secular terms in the 
solution is eliminated in the first iteration, the solution to 
Duffing Equation (6) can be written at the first-order in 
the form  

1=h

3

2

sin sin 2
= cos ,

16

A t
u A t

t  


      (14) 

with   defined as  

21
= 4 3

2
.A              (15) 

It can be immediately seen that the displacement  
in (14) does not blow up for any physical value of 

u
  

and the form of   obtained in (15) is much simpler 
than Equation (11) obtained in [15]. With this frequency, 
the ratio between the exact and approximate period can 
be computed as 1.0222 in the limit   . Thus (15) 
represents a better estimate and only 2 percent relative 
error occurs, even for infinite value of  . A comparison 
between (10-11) and (14-15) will be performed later in 
section Section 4. 

It is a well-known fact that in the homotopy method 
there is a great freedom for the choice of auxiliary linear 
operator and initial approximate solution. We prove, in 
what follows, that with different proper selections, a 
better solution than (10-11) can be obtained.  
 
3.1. A New Proposed Homotopy 1 
 
Making a substitution = t   permits the frequency   
to appear explicitly in the Duffing Equation (6). This is 
actually a coupled technogy of homotopy analysis me- 
thod with the Lindstedt Poincare method. Afterwards, 
keeping the linear operator as in (8) with  replaced by t
 , choosing the initial approximation as 0 = cu A os   

with 2

1
=h

A 
 (note that this selection of  is nece-  h

ssary to keep the consistency in the limit  ). If the 
occurrence of secular terms in the solution is eliminated 
in the first iteration, the leading-order 0  is found to be 
the same as (15) and the solution to the transformed 
Duffing equation can be written at the first-order in the 
form  

1
= 31cos cos3

32
u A .         (16) 

With the frequency 0=  , the ratio between the 
exact and approximate is the same as for homotopy 
approach of He [23] in the limit  . To get a better 
estimate and hence improve the frequency, we again set 
the coefficient of cos  to disappear so that secular 
terms in the next solution will be eliminated. This results 
in  

2

1 2

3
=

128 4 3

A
w

A


,





             (17) 

leading to  
2

0 1 2

256 189
= =

128 4 3

A

A

  






 

whose large   limit yields a ratio 1.00623, so only 0.62 
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t
percentage relative error is observed, which is much 
better than the above approaches.  
 
3.2. A New Proposed Homotopy 2 
 
If we now select the linear operator as in (13) but assume 

the initial approximation to the solution as  

0 = cosu A  , with   denoting the frequency of the 
solution different from that of linear solution  , they 
can be determined at the first iteration by restricting the 
appearance of secular terms at the next level. Within this 
approach   and   are found to be  

   4 2 2 1/3 1/3 2/3 2/3

1/3

4096 4096 3 3601 3 2 3808 3808 3 143 304 3

= ,
12 3

i i i A A i i     




          

  (18) 

2 2

2 2

9 7 9
= ,

1

A

A

  
 

 

 
 

where 

 

2 4 2 6 3

4 2 2 4 2 6 3 8 4

= 262144 731136 528096 59833

        648 6 32768 123904 166536 92513 17113 .

A A A

A A A A

   

A   

   

      
 

By this means, the homotopy method (3) yields the first-order solution  

       
 

2 2 2 2 2 2 2 2 2

4 2 2 4

2cos 18 13 18 2 2 cos 2
= cos .

4 10 9

A t A A A
u A t

          


   

      


 

t
        (19) 

 
The forms of the solution in (19) and of the frequency 

in (18) are more complicated when compared with those 
of (10-11) and (14-15). However, after a straightforward 
evaluation it is found that  in the limit = 0.997314rat
   , resulting in only 0.26 percent maximal relative 
error, which is best of all among those presented in [15] 
and above by our two approaches. 
 
4. Discussion of the Results 
 
In this section, to show the advantages of our homotopy 
approaches, a comparison is made between the full nu- 
merical simulation results of (6), those of He in [15] and 
the ones obtained in section Section 3. We particularly 
choose the parameters = 1A  and = 1  in what 
follows. For these specific values, it is straightforward to 
compute the correspondences of the periods, which are 
tabulated in Table 1. As compared to the exact period, 
our homotopy technique is seen to give extremely more 
accurate results than the homotopy perturbation em- 
ployed in [15]. 

We next present numerical simulation results of the 
displacement function. Figure 1 shows the exact nume- 
rical and second-order approximate solution of He, wher- 
eas Figures 2-4 demonstrate the exact numerical and 
first-order solutions from the homotopy approaches. It is 
observed from Figure 1 related to the second-order 

homotopy perturbation method of He that the uniformity 
of the approximate solution gets weakened as  in- 
creases. On the other hand, our first-order approach in 
the homotopy analysis gives extremely accurate solu- 
tions when compared with the exact solution. Particu- 
larly as seen from Figure 4, a much higher accuracy can 
be observed from the approach 3. Thus, the analytic 
approximations as displayed in Figures 2-4 are suffi- 
ciently reliable and can be used in the analysis of Duff- 
ing oscillator in further research. 

t

It should be emphasized that only the first-order app- 
roximate solutions that we obtained in Section 3 reveal 
ex- cellent agreement with the exact numerical solutions. 
Addition of higher approximations from the homotopy 
technique would yield more remarkable agreement. It is 
furthermore worthwhile to state that the homotopy solu- 
tions obtained here are valid for all the values of the 
parameters A  and  . Therefore, we do not need to 
approximate the small   perturbation solutions or the 
large   asymptotic solutions as in [2]. In fact, our  

 
Table 1. Illustrating the periods for the Duffing Equation (6) 
for A = 1 and ε = 1. First is the exact, second is from He in 
[15], third is from approach of He [23], fourth is from 
approach 1 and the fifth is from approach 2.s 

4.76802 4.73233 4.74964 4.78166 4.76877 
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Figure 1. Solution of the Duffing Equation (6): straight curve from the numerical solution and dashed curve from the 
second-order solution of He (10). 

 

 
Figure 2. Solution of the Duffing Equation (6): straight curve from the numerical solution and dashed curve from the 
first-order solution of approach of He [23] (14). 
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Figure 3. Solution of the Duffing Equation (6): straight curve from the numerical solution and dashed curve from the 
first-order solution of approach 1 (16). 

 

 
Figure 4. Solution of the Duffing Equation (6): straight curve from the numerical solution and dashed curve from the 
first-order solution of approach 2 (19). 

Copyright © 2011 SciRes.                                                                                  AM 



M. TURKYILMAZOGLU 

Copyright © 2011 SciRes.                                                                                  AM 

789
  
homotopy approaches are able to estimate the frequency 
and period of the oscillations in a better way. Moreover, 
unlike the solution of He, no singularity appears in the 
displacement solution. Thus it can be concluded that the 
homotopy method presented here can safely handle the 
situations of high nonlinearity occurring in the Duffing 
problems. 
 
5. Concluding Remarks 
 
In this paper the nonlinear problem of Duffing equation 
has been considered with the homotopy analysis tech- 
nique. As compared to the perturbation methods, the 
homotopy treatment employed here does not require any 
small parameter, yielding explicit formulas for the 
quantities of physical desire, such as the displacement, 
frequency and the period of the oscillations. 

Four homotopy approaches have been pursued in this 
analysis. First, the homotopy method of He in [15] has 
been reinvestigated further calculating the second-order 
contribution that was missed in [15]. Taking the 
advantage of free selection of the linear operator and the 
initial approximation to the solution, two more approa- 
ches have been proposed here. The homotopy methods 
with these choices are proven to generate analytic 
approximations that are more accurate than the result 
presented in [15]. Moreover, the approximate solutions 
obtained by these techniques are valid not only for small 
parameters but also very large parameters that are in- 
volved in the degree of the nonlinearity. The purely 
explicit analytical formulas obtained for the frequency 
and period agree excellently with the exact values even 
for infinitely large parameters, the discrepancy of the 
approximate period with respect to the exact one is as 
low as 0.26%. In addition to this, the displacement 
function is uniformly valid and does not exhibit any 
singularities as compared to the solution in [15]. 

The homotopy technique proposed here can be safely 
adopted for sets of fully coupled, highly nonlinear 
equations governing other physical problems in science 
and engineering. Analytical solutions obtained here also 
provide a good scientific base for the validation of the 
numerically computed values using different schemes in 
the literature. 
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