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Abstract 
 
A mathematical model for pulsatile flow of blood in a catheterized artery in presence of an axisymmetric 
stenosis with a velocity slip at the constricted wall is proposed. The expressions for the flow characteristics, 
velocity profiles, the flow resistance, the wall shear stress, the effective viscosity are obtained in the present 
analysis. The effects of slip velocity on the blood flow characteristics are shown graphically and discussed 
briefly. 
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1. Introduction 
 
Atherosclerosis is the leading cause of death in many 
countries. There is considerable evidence that vascular 
fluid dynamics plays an important role in the develop-
ment and progression of arterial stenosis, which is one of 
the most widespread diseases in human beings. The fluid 
mechanical study of blood flow in artery bears some 
important aspects due to the engineering interest as well 
as the feasible medical applications. The hemodynamic 
behavior of the blood flow is influenced by the presence 
of the arterial stenosis. If the stenosis is present in an 
artery, normal blood flow is disturbed. The actual causes 
of stenosis are not well known but its effects on the car-
diovascular system can be understood by studying the 
blood flow in its vicinity [1-4]. Ahmed et al. [5] de-
scribed the effect of stenosis at moderate Reynolds 
number with a reference to monkey aorta with induced 
atherosclerosis. Siouffi et al. [6] studied experimental 
analysis of unsteady flows through a stenosis, on the 
basis of the changes induced by the waveform on post 
stenostic flow characteristic in a 75% severe stenosis. 
The study of pulsatile flow through a stenosis is moti-
vated by the need to obtain a better understanding of the 
impact of flow phenomena on atherosclerosis and stroke. 
In order to understand the effect of stenosis on blood 
flow through and beyond the narrowed segment of the 
artery, many studies have been undertaken experimen-
tally and theoretically. Liu and Yamaguchi [7] find out a 

systematic study of a pulsatile flow in a stenosed channel 
to identify how the waveform affects the generation, de-
velopment and breakdown of the vortex wave. Numeri-
cal solutions of pulsatile flow have been reported by 
several investigators [8,9], which has been done assum-
ing the blood as a Newtonian fluid. A number of re-
searchers have studied the flow of non-Newtonian fluids 
with the pulsation through arterial stenosis [10-13].  

The flow through an annulus with mild constriction at 
the outer wall can be used as a model for the blood flow 
through the catheterized stenotic artery. The insertion of 
a catheter (a long flexible cylindrical tube) into a con-
stricted tube (i.e. stenosed artery) results in an annular 
region between the walls of the catheter and artery. This 
will alter the flow field, modify the pressure distribution 
and increase the resistance. Even though the catheter tool 
devices are used for the measurement of arterial blood 
pressure or pressure gradient and flow velocity or flow 
rate, X-ray angiography and intravascular ultrasound 
diagnosis and coronary balloon angioplasty treatment of 
various arterial diseases, a little attention has been given 
in the literature to the flow in catheterized arteries. Roose 
and Lykoudis [14] studied the fluid mechanics of the 
ureter with an inserted catheter by considering the peri-
staltic wave moving along the stationary cylinder. 
McDonald [15] considered the pulsatile blood flow in a 
catheterized artery and obtained theoretical estimates for 
pressure gradient corrections for catheters, which are 
positioned eccentrically, as well as coaxially with the 
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artery. The effect of catheterization on various flow 
characteristics in an artery with or without stenosis was 
studied by Karahalios [16]. Dash et al. [17] considered 
the steady and pulsatile flow of the Casson fluid in a nar-
row artery when a catheter is inserted into it and esti-
mated the increase in frictional resistance in the artery 
due to catheterization. In view of the discussions given 
above the present work is devoted to study the pulsatile 
flow of blood through a catheterized artery in presence of 
an axi-symmetric stenosis with a velocity slip at the con-
stricted wall. The theoretical model used here enables 
one to observe the effects of slip velocity on resistance to 
flow, the wall shear stress distribution in the stenotic 
region, and the effective viscosity. To neglect the en-
trance, end and special wall effects, the artery length is 
assumed large enough as compared to its radius. 
 
2. Mathematical Formulation 
 
Consider an axially symmetric, laminar, pulsatile and 
fully developed flow of blood through a catheterized 
artery with an axisymmetric stenosis as shown in Figure 
1. The artery is assumed to be a rigid circular tube of 
radius 0  and the catheter as a coaxial rigid tube of 
radius c . The artery length is assumed to be large 
enough as compared to its radius so that the entrance, 
end and special wall effects can be neglected. The ge-
ometry of the stenosis which is assumed to be manifested 
in the arterial segment is described as 
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where  R z , 0R  are tube radius with and without 
stenosis, respectively, 0L  is the stenosis length and d   
 

 

Figure 1. Geometry of an axially symmetrical stenosis with 
an inserted catheter. 

indicate its location,   is the maximum projection 
(maximum height) of the stenosis in to the lumen. 

Blood is assumed to be represented by a Newtonian 
fluid. We have taken here cylindrical coordinate system 
 , ,r z  whose origin is located on the tube axis. It can 
be shown that the radial velocity is negligibly small in its 
magnitude and may be neglected for a low mean Rey-
nolds number flow problem with mild stenosis.  

The moment equations are 
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where u  is the fluid velocity in the axial direction,   
is density, p  is the pressure, t  is the time, and   is 
the shear stress.  

For a Newtonian fluid  

u

r
  
 


                   (5) 

where   is the coefficient of viscosity. 
The boundary conditions are  

  at Bu u r R z               (6) 

0 at cu r R                 (7) 

where Bu  is the slip velocity at the wall and the radius 
of the catheter  0cR R . 

The pressure gradient as a function of z  and t  can 
be expressed as 
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,   1 sinf t a t  ,  is the  a

amplitude and   is the angular frequency of blood 
flow. 

To solve the above system of equations, following 
non-dimensional variables are introduced. 
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where   is the pulsatile Reynolds numbers for Newto-
nian fluid and 0q  is the pressure gradient in a uniform 
tube without catheter.  
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Using non-dimensional variables Equations (2)-(5) 
reduce to It can be expressed in dimensionless form as 
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where  Q t  is defined in Equation (15). 
 An application of Equation (10) in to (9), yields 
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Consider the Womersley parameter to be small. The ve-
locity u can be expressed in the following form where   1 sinf t a  t  ,   0q z q z q ,  
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The boundary conditions in their non-dimensional 
form are now expressed as      2
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  at Bu u r R z                (12) Substituting the expression of u from Equation (18) in 
(11), we get  0 at cu r  R                 (13) 
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Substituting u from Equation (18) into conditions (12) 
in (13) we get 

 0 1,  0 at Bu u u r R z            (22) 

0 10,  0 at cu u r R              (23) The non-dimensional volumetric flow rate is given by 
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boundary conditions (22) and (23), we have the expres-
sions for  and u  as in Equations (24) and (25). 
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The effective viscosity e  is defined as  
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which is determined, by substituting velocity Equations (24) and (25) into the Equation (26), in the form 
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From Equations (15), (24) and (25) the expression for volumetric flow rate is given by 
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The effective viscosity e  can be found out with the 

help of Equations (17) and (28). 
If steady flow is considered, then Equation (28) re-

duces to 
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where sQ  is the steady flow rate. 

The value of  can be found from Equation (29), 
taking .  
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4. Result and Discussions 
 
With a view to examining the applicability of the present 
mathematical model, a specific numerical illustration has 
been undertaken with the use of the existing data for the 
various physical parameters encountered in the analysis. 
The following data have been made use of in order to 
carry out the numerical computations: 

0.5a  ; 0,  0.1,  0.2,  0.3,  0.4,  0.5cR  ; 

0.5  ; 0,  0.1,  0.2  . 

2

   (34) 

For the present steady simulation, the profiles of the 
velocity-field are computed and plotted in Figures 2 and 
3. Figure 2 shows the variations of axial velocity, u with 
radial distance, r for different time periods, t and fixed 
stenosis height,  , c  and R  . It is seen that velocity 
increases rapidly with time, t as t goes from t = 0˚ to t = 
90˚ and then decreases sharply when t goes from t = 90˚ 
to t = 270˚. It further increases in the time cycle from t =  
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Figure 2. Variation of axial velocity with radial distance. 
 

 

Figure 3. Variation of axial velocity with radial distance. 
 
270˚ to t = 360˚.. 

Axial velocity decreases with increasing stenosis 
height,   for different slip velocity, Bu  and for fixed 
values of c , R   and t (Figure 3). It can be clearly 
observed that the axial velocity assumes higher magni-
tude in a uniform artery than that in a stenosed artery. 
Also the axial velocity increases with increasing slip 
velocity, Bu  in both the stenotic and uniform artery. 
Both these figures also include the corresponding pro-
files in the absence of stenosis. 

The variations of the wall shear stress, w  with the 
axial distance, z for different values of catheter radius, 

c  and slip velocity, R Bu  for fixed  ,  and t   are 
presented in Figure 4. The blood flow characteristic, w  
increases with axial distance, r in the stenotic region in 
the upstream of the stenosis throat and attains its maxi-
mum at the throat and then decreases sharply. The wall 
shear stress, w  decreases with increasing slip velocity 
for any value of c . One notices that the flow charac-
teristic, w

R
  assumes higher values in a catheterized ar-

tery than that in an uncatheterized artery. 
Figure 5 demonstrates the variations of the blood flow 

characteristic, w  with catheter radius for different val-
ues of slip velocity, Bu  in stenosed and normal artery. 
It is noticed that increase in catheter radius increases the 
wall shear stress. On the other hand, increase in slip ve-
locity reduces the wall shear stress in both the normal 
and the stenosed artery. The variations of effective vis-
cosity, e  with the catheter radius, c  for different 
values of slip velocity, 

R

Bu  and fixed stenosis height,   
and time,  are illustrated in Figure 6. The effective 
viscosity, e

t
  increases with increasing catheter radius, 

c  significantly while it decreases with increasing slip 
velocity, 
R

Bu . 
Figure 7 reveals the variations of effective viscosity, 

e  with the catheter radius, c  for different stenosis 
heights, 

R
  and t  for fixed time. An increase in steno-

sis height   increases the effective viscosity e . It is 
observed that the magnitude of effective viscosity e  is 
less in a normal artery in comparison to that of the 
stenosed artery. 

 

 

Figure 4. Variation of wall shear stress with axial distance. 
 

 

Figure 5. Variation of wall shear stress with catheter ra-
dius. 
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Figure 6. Variation of effective viscosity with catheter ra-
dius. 
 

 
Figure 7. Variation of effective viscosity with catheter ra-
dius. 
 
5. Conclusions 
 
To estimate for the increased velocity profiles, wall shear 
stress and effective viscosity during artery catheteriza-
tion, pulsatile flow of blood through an axisymmetric 
stenosis has been analyzed assuming that the flowing 
blood is represented by a Newtonian fluid. From the 
analysis it is concluded that the slip velocity plays an 
important role in reducing wall shear stress and effective 
viscosity. Elevation of blood viscosity is considered as a 
risk factor in the cardiovascular disorders, the present 
model may be used as a tool for reducing the blood vis-
cosity by using slip velocity at the constricted wall. The 
present study is more useful for the purpose of simula-
tion and validation of different models in different condi-
tions of arteriosclerosis. This study also provides a scope 
for estimating the influence of the various parameters 
mentioned above on different flow characteristics and to 
ascertain which of the parameters has the most dominating 

role. Further careful investigations are thus suggested to 
address the problem more realistically and to overcome 
the restrictions imposed on the present work. 
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