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ABSTRACT 

Automata theory has played an important role in computer science and engineering particularly modeling behavior of 
systems since last couple of decades. The algebraic automaton has emerged with several modern applications, for ex-
ample, optimization of programs, design of model checkers, development of theorem provers because of having proper-
ties and structures from algebraic theory of mathematics. Design of a complex system not only requires functionality 
but it also needs to model its control behavior. Z notation is an ideal one used for describing state space of a system 
and then defining operations over it. Consequently, an integration of algebraic automata and Z will be an effective 
computer tool which can be used for modeling of complex systems. In this paper, we have combined algebraic automata 
and Z notation defining a relationship between fundamentals of these approaches. At first, we have described algebraic 
automaton and its extended forms. Then homomorphism and its variants over strongly connected automata are speci-
fied. Finally, monoid endomorphisms and group automorphisms are formalized, and formal proof of their equivalence 
is given under certain assumptions. The specification is analyzed and validated using Z/EVES tool. 
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1. Introduction 

Almost all large, complex and critical systems are being 
controlled by computer software. When software is 
used in a complex system, for example, in a safety criti-
cal system its failure may cause a huge loss in terms of 
deaths, injuries or financial damages. Therefore, con-
structing correct software is as important as its other 
counterparts, for example, hardware or electrome-
chanical systems [1]. Formal methods are approaches 
used for specification of properties of software and 
hardware systems insuring correctness of a system [2]. 
Using formal methods, we can describe a mathematical 
model and then it can be analyzed and validated in-
creasing confidence over a system [3]. At the current 
stage of development in formal approaches, it is not 
possible to develop a system using a single formal 
technique and as a result its integration is required with 
other traditional approaches. That is why integration of 
approaches has become a well-researched area in com-
puting systems [4,5,6,7,8,9,10]. Further, design of a 
complex system not only requires capturing functional-
ity but it also needs to model its control behavior. There 
are a large variety of specification techniques which are 
suitable for specific aspects in the software develop-
ment process. For example, algebraic techniques, Z, 

VDM, and B are usually used for defining data types 
while process algebra, petri nets and automata are some 
of the examples which are best suited for capturing dy-
namic aspects of systems [11]. Because of well-defined 
mathematical syntax and semantics of the formal tech-
niques, it is required to identify, explore and develop 
relationships between such approaches for modeling of 
complete, consistent and correct computerized systems. 

Although there exists a lot of work on integration of 
approaches but there does not exist much work on for-
malization of graphical based notations. The work [12,13] 
of Dong et al. is close to ours in which they have inte-
grated Object Z and Timed Automata. Another piece of 
good work is listed in [14,15] in which R. L. Constab- le 
has given a constructive formalization of some important 
concepts of automata using Nuprl. A combination of Z 
with statecharts is established in [9]. A relationship is 
investigated between Z and Petri-nets in [16,17]. An in-
tegration of UML and B is given in [18,19]. Wechler, W. 
has introduced algebraic structures in fuzzy automata 
[20]. A treatment of fuzzy automata and fuzzy language 
theory is given when the set of possible values is a 
closed interval [0, 1] in [21]. Ito, M., has described for-
mal languages and automata from the algebraic point of 
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view in which he has investigated the algebraic struc-
tures of automata and then a kind of global theory is 
treated [22]. Kaynar, D. K et al. has presented a model-
ing framework of timed computing systems [23]. In [24], 
Godsil, C. et al. has presented some ideas of algebraic 
graphs with an emphasis on current rather than classical 
topics of graphs. 

Automata theory has proved to be a cornerstone of 
theoretical computer science since last couple of decades. 
Compiler constructions, modeling of finite state systems, 
natural language processing, defining a regular set of 
finite words are some of the traditional applications of 
automata. The algebraic automaton is an advanced form 
of automata having properties and structures from alge-
braic theory of mathematics. It has emerged with several 
modern applications, for example, optimal representation 
and efficient implementation of algorithms, optimization 
of programs, speech recognition, design of model check-
ers, image processing and verification of protocols. The 
applications of algebraic theory of automata are not lim-
ited to computers but are being seen in many other disci-
plines of science and engineering, for example, repre-
senting characteristics of natural phenomena in biology 
[25]. Modeling of chemical systems using cellular auto-
mata is another important application area of it [26]. An-
other interesting application of automata is presented in 
[27] in which it is described a system for specifying and 
automatically synthesizing physics-based animation pro-
grams based on hybrid automata. 

It is obvious that theory of automata has various ap-
plication areas as discussed above. Because of having 
some interesting properties from algebra, the algebraic 
automata has increased its importance in some special 
application domain of computer science. For example, 
algebraic automata can be used in static as well as in 
dynamic part of distributed systems. To understand it, we 
can suppose objects or entities representing a collection 
of distributed systems. As in this case, for many applica-
tions, there is no precedence of order in computation that 
means the entities can be concatenated in any order and 
hence the associative property is satisfied. Further, after 
identifying the identity element in this collection of ob-
jects, the structure produced is called a monoid which is 
an abstract algebraic structure. It is to be mentioned that 
the identity element can be identified if it exists based on 
the nature of the problem. Because of having these spe-
cial algebraic characteristic, an automaton can be ex-
tended to develop algebraic automata which can be used 
for specification and capturing control behavior over 
such systems. After understanding the importance of 
algebraic automata, a relationship is identified and pro-
posed, in this paper, between algebraic automata and Z 
notation thus facilitating the modeling techniques for 
complex systems. To achieve the objective of proposed 
integration, at first, we have given formal description of 

algebraic automaton and its other extended forms. The 
strongly connected automaton is described by reusing the 
structure defining algebraic automata. Then homo-
morphism, which is an important structure in verifying 
symmetry of the algebraic structures, and its other vari-
ants over strongly connected automata are formalized. 
Next, monoid endomorphisms and group automorphisms 
are described. Finally, a formal proof of their equiva-
lence is given under certain assumptions. The specifica-
tion is analyzed and validated using Z/EVES tool. The 
major objectives of this paper are: 1) to identify a linkage 
between automata and Z notation to be useful for mod-
eling the systems and 2) providing a syntactic and se-
mantic relationship between Z and algebraic automata. In 
Section 2, an introduction to Z notation is given. In Sec-
tion 3, an overview of algebraic automata is provided. 
Formal construction of proof showing equivalence of 
algebraic structures is given in Section 4. Finally, con-
clusion and future work are discussed in Section 5. 

2. An Introduction to Z Notation 

Formal methods are approaches, based on the use of ma- 
thematical techniques and notations, for describing and 
analyzing properties of software systems [28]. That is, 
descriptions of a system are written using notations wh- 
ich are mathematical expressions rather than informal 
notations. These mathematical notations are based on di- 
screte mathematics such as logic, set theory, graph the-
ory and algebraic structures. There are several ways in 
which formal methods may be classified. One frequen- 
tly-made distinction is between property oriented and 
model oriented methods [29]. Property oriented methods 
are used to describe the operations which can be per-
formed on a system and then defining relationships be-
tween these operations. Property oriented methods usu-
ally consist of two parts. The first one is the signature 
part which is used for defining the syntax of operations 
and the second one is an equations part used for defining 
the semantics of the operations by a set of equations 
called the rules. Algebraic specification of abstract data 
types [30] and the OBJ language [31] are examples of 
property oriented methods. 

Model oriented methods are used to construct a model 
of a system’s behavior and then allow us to define opera-
tions over it [32]. Z notation is one of the most popular 
specification languages which is a model oriented ap-
proach based on set theory and first order predicate logic 
[33]. It is used for specifying behavior of abstract data 
types and sequential programs. 

A brief overview of some important structures and op-
erators of Z, used in our research, is given by taking a 
case from a book on “Using Z: specification, refinement 
and proof” by Woodcock J. and Davies J., [34]. A pro-
gramming interface is taken as case study for file systems. 
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A list of operations which is defined after defining file 
and an entire system is, 1) read: used to read a piece of 
data from a file, 2) write: used to write a piece of data to 
a file, 3) access: may change the availability of a file for 
reading and writing over the file of the system. 

A file is represented as a schema using a relation be-
tween storage keys and data elements. For simple speci-
fication, basic set types are used. In the formal notation, 
name, type, keys and data elements of a file are repre-
sented as Name, Type, Key, and Data respectively in Z 
notation as given below. An axiomatic definition is used 
to define a variable null which is used to prove that the 
type of a file cannot be null even there are no contents on 
a file. 

[Name, Type, Key, Data]; |  null: Type 

A file consists of two components, i.e., file contents 
and its type which are specified by contents and type 
respectively. The schema structure is usually used 
be-cause of keeping specification both flexible and ex-
tensible. In the predicate part, an invariant is described 
proving that the file type is non null even there are no 
con-tents in it. As a file can associate a key with at most 
one piece of a data and hence the relation contents is 
sup-posed to be a partial function. 

 

The read operation is defined over the file to interro-
gate the file state. A successful read operation requires 
an existing key as input and provides the corresponding 
data as output. The symbol is used when there is no 
change in the state of a component. Now the structure 

 File means that the bindings of File and File’ are 
equal. The decorated file, File’, represents the next state 
of the file. Here, it is in fact unchanged because the k? is 
given as input and the output is returned in output vari-
able d!. The symbols ? and ! are used with input and 
output variables respectively in the schema given below. 
In the predicate part of the schema, first it is ensured that 
the input key k? must be in the domain of contents which 
is a partial function. Then the value of data against the 
given key is returned in the output variable d!. 





 

Another operation is defined to write contents over the 
file. The symbol  is used when there is a change in the 
state of a component (schema). In the schema defined 

below, the structure 



 File gives a relationship between 
File and File’, representing that the binding of File is 
now changed. The meaning of File’ is the same as de-
fined above. In this case, the write operation defined 
below replaces the data stored under an existing key and 
provides no output. The old value of contents is updated 
with maplet k? d?. It is to be noted that file type re-
mained unchanged as defined in the predicate part of the 
schema. The symbol   is an override operator which 
is used to replace the previous value of a key with the 
new one in a given function. 

 

The structure file is reused in description of a file sys-
tem. As a system may contain a number of files indexed 
using a set of names and some of which might be open. 
Hence, the system consists of two components namely 
collection of files known to the system and set of files 
that are currently open. The variable file is used as a par-
tial function to associate the file name and its contents. 
The variable open is of type of power set of Name. The 
set of files which are open must be a subset of set of total 
files as described in the predicate part of the schema 
given below. 

 

As the open and close operations neither change name 
of any file nor add and remove files from the system. It 
means both of these are access operations. It may change 
the availability of a file for reading or writing. The 
schema described below is used for such operations. The 
variable n? is used to check if the file to be accessed ex-
ist in the system. In the schema, it is also described that 
the file is left unchanged. 
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Renaming is another important concept of Z which we 
have used in our research. For example, if we require 
creating another system with same pattern but with dif-
ferent components then renaming can be used rather than 
creating the new system from the scratch. Renaming is 
sometimes useful because in this way we are able to in-
troduce a different collection of variables with the same 
pattern. For example, we might wish to introduce vari-
ables newfile and newopen under the constraint of exist-
ing system System. In this case, the new system NewSys-
tem can be created in horizontal form by defining: 
NewSystem em[newfile/file, newo en/open] which 
is equivalent to the schema given below in the vertical 
form. 

A Syst p

 

3. Algebraic Automata 

As we know that automata theory has become a basis in 
the theoretical computer science because of its various 
applications and playing a vital role in modeling scien-
tific and engineering problems [35]. Modeling control 
behavior, compiler constructions, modeling of finite state 
systems are some of the traditional applications of it 
[36,37,38]. Automata can be classified because of its 
deterministic and nondeterministic nature. Both types of 
automata have their own pros and cons in modeling of 
systems. Both of the automata are equivalent in power 
because if a language is accepted by one, it is also ac-
cepted by the other. Nondeterministic finite automata 
(NFA) are useful because constructing an NFA is easier 
than deterministic finite automata (DFA). On the other 
hand, DFA is useful when implementation is required. 
Consequently, both of the automata can be used based on 
the requirements and nature of a problem. 

Algebraic automaton which is an abstract form of 
automata, however, has some properties and structures 
from algebraic theory of mathematics. The algebraic 
automata have emerged with several modern applications 
in computer science. Further, the applications of alge-
braic theory are not limited to computers but are being 
seen in other disciplines of science, e.g., representing 
chemical and physical phenomena in chemistry and bi-
ology. It is a well known fact that a given automata may 
have different implementations and consequently its time 
and space complexity must be different, which is another 
issue in modeling using automata. Therefore it is also 
required to describe the formal specification of automata 

for its optimal implementation. Further, this relationship 
will result a useful tool at academic as well as industrial 
level. A formal verified linkage of algebraic automata 
and Z is given in the next section. 

4. Formal Proof of Equivalence 

Now we give formal description of some important con-
cepts of algebraic automata using Z notation. And an 
equivalence of endomorphisms and automorphisms over 
strongly connected automata is formalized. The defini-
tions used in this section are based on a book on “Alge-
braic Theory of Automata and Languages” [22]. 

4.1 Formalizing Automaton and its Extensions 

An algebraic automaton (AA) is a 3-tuple (Q, Σ, δ), 
where 1) Q is a finite nonempty set of states, 2) Σ is a 
finite set of alphabets and 3) δ is a transition function 
which takes a state and an alphabet and produces a state. 
To formalize AA, Q and Σ are denoted by S and X re-
spectively. 

[Q, X] 

In modeling using sets in Z, we do not impose any re-
striction upon number of elements and a high level of 
abstraction is supposed. Further, we do not insist upon 
any effective procedure for deciding whether an arbitrary 
element is a member of the given collection or not. As a 
consequent, our Q and X are sets over which we cannot 
define any operation. For example, cardinality to know 
the number of elements in a set cannot be defined. Simi-
larly, subset and complement operations over these sets 
are not defined as well. 

To describe a set of states for AA, a variable states is 
introduced. Since, a given state q is of type Q therefore 
states must be of type of power set of Q. For a set of 
alphabets, the variable alphabets is used which is of type 
of power set of X. As we know that δ is a function be-
cause for each input (q1, a), where q1 is a state and a is 
an alphabet there must be a unique state, which is image 
of (q1, a) under the transition function δ. Hence we can 
declare δ as, delta: Q x X → Q. 

For a moment, we have used mathematical language 
of Z which is used to describe various objects. The same 
language can be used to define the relationships between 
the objects. This relationship will be used in terms of 
constraints after composing the objects. The schema 
structure is used for composition because it is very pow-
erful at abstract level of specification and helps in de-
scribing a good specification approach. All of the above 
components are encapsulated and put in the schema 
named as Automaton. The formal description of it is 
given below. 
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Invariants: For each input (s, x) where s is an element 
of states and x is a member of alphabets, there is a un- 
ique state t such that: delta (s, x) = t. 

An extended form of algebraic automaton is denoted 
by EA. In the extended form, two more components are 
added in addition to the three components of the alge-
braic automaton defined above. In the schema given be-
low, the variables states and alphabets have the same 
meaning but the third one delta function is refined. In the 
extended form, the delta function takes a states and a 
string as inputs and produces the same state or new state 
as output. We also need to compute the set of all the 
strings based on the set of alphabets and hence a fourth 
variable is used and denoted by strings which is of type of 
power set of set of all the sequences (strings: P (seq X)). 
As we know that a sequence can be empty and hence a 
fifth variable is used representing it and is denoted by 
epsilon of type seq X. 

 

Invariants: 1) The null string is an element of strings. 
2) If transition function takes a state and the null string 
epsilon, and it produces the same state. 3) For each input   
where s is an element of states, a is an alphabets and u is 
an element of strings, delta function is defined 
as:  ( , ( )) (( ( , )), ).delta s a u delta delta s a u    º

Another extended form of algebraic automaton is a st- 
rongly connected automaton. A strongly connected is a 
one for which if for any two given states there exists a 
string s such that the delta function connects these states 
through the string s. The strongly connected automaton 
is represented by SCEA as a schema in Z notation and 
described as given below. It has the same number of 
components and properties in addition to one more con-
straint defined here. 

 

Invariants: 1) The null string is an element of strings. 
2) If the transition function takes a state and null string 
as input, then it produces the same state. 3) For each 
( , ( ))s a u  º , where s is state, a an alphabet and u is a 
string, the delta function is defined as:  ( , ( ))delta s a u  º

(( ( , )), ).delta delta s a u   4) For any two states q1 and q2, 
there exists a string s such that:  ( 1, ) 2.delta q s q

4.2 Homomorphism and its Variants 

The word homomorphism means “same shape” and is an 
interesting concept because a similarity of structures can 
be verified by it. It is a structure in abstract algebra 
which preserves a mapping between two algebraic struc-
tures, for example, monoid, groups, rings, vector spaces. 
Now we give formal specification of it and its variants 
over strongly connected automata. In [22], Ito M. has 
given a concept of homomorphism and its variants over 
algebraic automata. 

Let SCEA1 = (Q1, 1 , δ1) and SCEA2 = (Q2, 2 , 
δ2) be two strongly connected automata, and let   be a 
mapping from Q1 into Q2. If  
holds for any q

(q,x)) 2    ( ( q), x)

Q1 and , then ρ is called a 
homomorphism from Q1 to Q2. The above pair of sche-
mas is represented by 

x1

 SCEA in Z which shows a rela-
tionship between SCEA1 and SCEA2. A formal defini-
tion of homomorphism from SCEA1 into SCEA2 in 
terms of a schema is given below. It consists of two 
components  SCEA and row. The variable row is a 
mapping from Q1 into Q2. The sets Q1 and Q2 are used 
for states of SCEA1 and SCEA2 respectively. 
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Invariants: 1) For every q in set of states and s in set 
of strings of the first automata, if the mapping row satis-
fies the following condition then it conforms a homo-
morphism from automata SCEA1 into SCEA2:  

Invariants: 1) For all q1, q2 in set of states of SCEA1 
and q in set of states of SCEA2, if images of q1 and q2 
are same under the mapping row then the elements q1 
and q2 must be same. 2) Each element of the set of states 
of automata SCEA2 is an image of some element of 
automata SCEA1 under the mapping row. 

( ( , )) 2 (( ), )row deltal q s delta rowq s . 

If SCEA1 = SCEA1 in the homomorphism then it is 
called an endomorphism. The mapping row is defined 
from set of states S into itself. We have induced formal 
definition of endomorphism from the definition of 
homomorphism because it is a special case of it. 

If SCEA1 = SCEA2 then an isomorphism becomes an 
automorphism. Its formal description is given below 
along with its invariants which are not explained here 
because it is a repetition as given above in the schema 
Isomorphism. 

 

 Invariants: 1) For every state q and string s, if the 
mapping row satisfies the condition: ( ( , ))row deltal q s   

, then it conforms an endomorphism 

between SCEA into itself.  

2 (( ), )delta rowq s
4.3 Formalizing Endomorphisms 

Let G be a nonempty set. The structure (G,*) under bi-
nary operation * is monoid if  1) ∀ x, yG, x*yG, 2) 
∀ x, y, z

Let us define the bijection over two given sets. Let A 
and B are two nonempty sets. A mapping π from A to B 
is called one to one if different elements of A have dif-
ferent images in B. That is ∀ a1, a2A; bB • π (a1) = 
b and π(a2) = b a1 = a2. The mapping π is called onto 
if each element of B is an image of some element of A. If 
a mapping is one to one and onto then it is called bijec-
tive. If the mapping defined in case of homomorphism is 
bijective from algebraic automata SCEA1 to SCEA2 
then it is called an isomorphism and the automata are 
said to be isomorphic. Now we give a formalism of iso-
morphism from SCEA1 to SCEA2 using the schema 
given below. For this purpose, we simply define the re-
quired constraints of bijection over the homomorphism 
and it results an isomorphism. 

G, (x*y)*z = x*(y*z), that is associative prop-
erty is satisfied, 3) ∀ xG, there exists an eG such 
that x*e = e * x = x, e is an identity of G. 

Let A be a automaton and E (A) = a set of all the en-
domorphisms over an automaton A. It is proved in [21] 
that E (A) forms a monoid which is an algebraic struc-
ture as defined in Section 1. To formalize it, two vari-
ables are assumed. The first one is a set of all endomor-
phisms which is of type of power set of Endomorphism. 
The second one is a binary operation which is denoted by 
the variable boperation. It takes two endomorphisms as 
input and produces a new endomorphism as an output. 
The formal definition of the above structure is given be-
low. 

 

Invariants: 1) This property defines binary operation 
over the set of endomorphisms. 2) Associative is verified 
here in this property. 3) This property ensures the exis-
tence of an identity element in the collection of endo-
morphisms. 
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4.4 Formalizing Automorphisms 

The algebraic structure (G, *) is called a group if 1) it is 
a monoid and 2) for any element x in the set G, there 
exists an element y in G such that x*y = y*x = e. That is 
the inverse of each element of G exists. Now let us sup-
pose that G (A) = set of all the automorphisms over the 

algebraic automata A. For its formal specification, three 
variables are assumed. The first one is a set of all auto-
morphism which is of type of power set of Automor-
phism. The second one is an identity element. And the 
last one is binary operation denoted by boperation. It 
takes two automorphisms as input and produces a new 
automorphism as an output. 

 

 
 
Invariant: The last one property verifies existence of 

inverse of each element in set G (A). The first three 
properties are same as in case of endomorphisms. 

4.5 Proof of Equivalence 

In this section, a formal proof of equivalence of endo-
morphisms and automorphisms is described. That is we 
have to verify that the set of all endomorphisms and set 
of all automorphisms over strongly connected algebraic 
automata are same. This verification is done in terms of a 
schema named as Equivalence. There are three inputs to 
this schema which are Endomorphism, Endomorphisms- 
SCEA and AutomorphismsSCEA. At first, it is described 
that set of all endomorphisms are bijective over the 
strongly connected automata. Then it is verified that the 
number of elements must be same in both of the endom- 
orphisms and automorphisms. 

 

5. Conclusions 

The main objective of this paper was proposing an inte-
gration of some fundamental concepts in strongly con-
nected automata and Z notation. To achieve this objec-

tive, first we described formal specification of strongly 
connected automaton. Then a relationship was identified 
and proposed between automata and Z structures. Next 
we described two important concepts of homomorphism 
and isomorphism between algebraic structures. Extended 
forms over strongly connected automata were formalized 
for these structures. Finally, a formal proof of equiva-
lence between endomorphisms and automorphisms over 
strongly connected automata was described. It is to be 
mentioned here that preliminary results of this research 
were presented in [39]. 

Why and what kind of integration is required, were 
two basic questions in our mind before initiating this 
research. Strongly connected algebraic automaton is best 
suited for modeling behavior while Z is an ideal one used 
describing state space of a system. This distinct in nature 
but supporting behavior of Z forces us to integrate it with 
strongly connected algebraic automata. 

An extensive survey of existing work was done before 
initiating this research. Some interesting work [40,41,42] 
in addition to given in Section 2 was found but our work 
and approach are different because of abstract and con-
ceptual level integration of Z and automata. We believe 
that this work will be useful in development of integrated 
tools increasing their modeling power. It is to be men-
tioned that most of the researchers discussed here have 
either taken some examples in defining integration of 
approaches or addressed only some aspects of these ap-
proaches. Further, there is a lack of formal analysis 
which can be supported by computer tools. Our work is 
different from others because we have given a generic 
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approach to link Z and algebraic automata with a com-
puter tool support. 

Our idea is original and important because we have 
observed after integrating that a natural relationship ex-
ists there. This work is important because formalizing 
graph based notation is not easy as there has been little 
tradition of formalization in it due to concreteness of 
graphs [43]. Our work is useful for researchers interested 
in integration of approaches. We believe that this re-
search is also useful because it is focused on general 
principles and concepts and this integration can be used 
for modeling systems after required reduction. Formal-
ization of some other concepts in algebraic automata is 
under progress and will appear soon. 
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