

Normality of Meromorphic Functions Family and Shared Set by One-way

Yi Li

School of Science, Southwest University of Science and Technology, Mianyang, China, E-mail: liyi@swust.edu.cn Received March 16, 2011; revised April 5, 2011; accepted April 10, 2011

Abstract

We studied the normality criterion for families of meromorphic functions which related to One-way sharing set, and obtain two normal criterions, which improve the previous results.

Keywords: Meromorphic Function, Normality Criterion, Shared Values, Shared Set by One-way

1. Introduction

For Shared values, Schwick proved the following result [1]:

Theorem A Let F be a family of meromorphic functions in the domain D, a_1 , a_2 and a_3 be three finite complex numbers. If for every

$$f \in F, \overline{E}_{f'}(a_i) = \overline{E}_f(a_i)(i=1,2,3)$$

then F is normal in D.

In 2000, Pang Xue-cheng and Zalcman generalized the Schwick's result [2]:

Theorem B Let F be meromorphic functions family in the domain D, and a_1 , a_2 be two complex number. If for every

$$f \in F, \overline{E}_{f'}\left(a_i\right) = \overline{E}_f\left(a_i\right)\left(i = 1, 2\right)$$

then F is normal in D.

Definition For a,b are two distinct complex values, we have set $S = \{a,b\}$ and

$$\overline{E}_f(S) = \overline{E}_f(a,b)$$

$$= \{z : (f(z)-a)(f(z)-b) = 0, z \in D\}$$

If $\overline{E}_f(S) = \overline{E}_g(S)$, we call that f and g share S in D; If $\overline{E}_f(S) \subseteq \overline{E}_g(S)$, we call that f and g share S by One-way in D.

For shared set, W. H. Zhang obtained important results [3]:

Theorem C Let F be a family of meromorphic functions in the unit disc Δ , a and b be two distinct nonzero complex value, $S = \{a,b\}$, If for every $f \in F$, all of whose zeros is multiple, $\overline{E}_{f'}(S) = \overline{E}_f(S)$, then F is

normal on Δ .

W. H. Zhang continued considering the relation between normality and the shared set, and proved the next result [4]:

Theorem D Let F be meromorphic functions family in the unit disk Δ , a and b be two distinct nonzero complex values. If for every $f \in F$, all of whose zeros is multiplicity k+1 at least (k is a positive integer), $\overline{E}_{\varepsilon(k)}(S) = \overline{E}_f(S)$, then F is normal in Δ .

For shared set by One-way, Lv Feng-jiao got following theorem in [5]:

Theorem E Let F be a family of meromorphic function in the unit disk Δ , a and b is two distinct nonzero complex values, k is positive integer, $S = \{a,b\}$. If for every $f \in F$, all of whose zeros have multiplicity k+1 at least, $\overline{E}_{s(k)}(S) \subseteq \overline{E}_f(S)$, then F is normal in Δ .

In 2007, Pang Xue-cheng proved the following important results in [6]:

Theorem F Let F be meromorphic functions family in D, $S = \{a_1, a_2, a_3\}$. If for every $f \in F$ $\overline{E}_{f'}(S) = \overline{E}_f(S)$, then F is normal on D.

To promote the results of Pang Xue-cheng, we continue to discuss about normality theorem of meromorphic functions families concerning shared set and shared set by one-way, and obtain our main results as follow.

Theorem 1 Let F be meromorphic functions families in D, $S = \{a_1, a_2, a_3\}, a_4 \neq a_i \ (i = 1, 2, 3).$

If for every $f \in F$, $\overline{E}_{f'}(S) \subset \overline{E}_{f}(S)$, and $f' = a_4$ whenever $f = a_4$, then F is normal on D.

Theorem 2 Let F be meromorphic functions families in D, $S = \{a_1, a_2\}, a_3 \in C$. If for every $f \in F$, $\overline{E}_{f'}(S') = \overline{E}_f(S)$, and $f' = a_3$, whenever $f = a_3$, then

Copyright © 2011 SciRes.

96 Y. LI

F is normal on D.

2. Lemmas

Lemma 1 [7] Let F be meromorphic functions families in the unit disk Δ , all of whose zeros have multiplicity k at least, and A > 0. If for every $f \in F$, $|f'(z)| \le A$ whenever f(z) = 0. If F is not normal in Δ , then for every $0 \le \alpha \le 1$, there exists

- 1) a positive number r, 0 < r < 1,
- 2) complex sequence $|z_n| |z_n| < r$,
- 3) Functions sequence $f_n \in F$,
- 4) and positive sequence $\rho_n \to 0^+$,

such that $g_n(\zeta) = \rho_n^{-\alpha} f_n(z_n + \rho_n \zeta)$ converges locally and uniformly to a noncontant meromorphic function $g(\zeta)$, and $g^{\#}(\zeta) \leq g^{\#}(0) = kA + 1$. Where

$$g^{\#}(\zeta) = \frac{\left|g'(\zeta)\right|}{1 + \left|g(\zeta)\right|^{2}}.$$

Lemma 2 [8] Let f be meromorphic function with finite order on the open plane C, and a_1, a_2, a_3 be three finite complex values. If f(z) have only finite zero, and

$$f(z) = 0 \Leftrightarrow f'(z) \in S = \{a_1, a_2, a_3\}$$

then f is a rational function.

3. Proof of Theorem 1

Suppose that F be not normal in Δ , then by Lemma 1 we have that there exists

$$f_n \in F, z_n \in \Delta \text{ and } \rho_n \to 0^+,$$

such that $g_n(\xi) = \rho_n^{-1} \{ f_n(z_n + \rho_n \xi) - a_4 \} \rightarrow g(\xi)$ converges locally and uniformly to a noncontant meromorphic function $g(\zeta)$. We claim that the following conclusions hold.

$$1^0$$
 $g(\xi) = 0 \Rightarrow g'(\xi) = a_4$;

$$2^{0}$$
 $g^{\#}(\xi) \leq g^{\#}(0) = |a_{4}| + 1$;

$$3^0 g'(\xi) \notin S$$
;

It is not difficult to prove claims $1^0, 2^0$, in what follow, we complete the proof of the claim 3^0 . Suppose that there exists $\xi_0 \in C$ such that $g'(\xi_0) = a_i$. Obviously, $g'(\xi) \not\equiv a_i$, in fact, if $g(\xi) = a_i \xi + c_0$, it is a contradictions for 1^0 . Thus from Hurwitz Theorem, we know that there exists a point sequence $\xi_n \to \xi_0$, such that $g'_n(\xi_n) - a_i = 0$, for sufficiently large n, that is

$$f_n'(z_n + \rho_n \xi_n) = a_i.$$

Obviously, $g_n(\xi_n) = \rho_n^{-1}(a_i - a_4) \to \infty$, as $n \to \infty$. Thus $g(\xi_0) = \infty$, this is a contradiction. Hence, claim 3^0 holds.

From claim 3^0 we have that

$$g'(\xi) \neq a_i (i = 1, 2, 3)$$

So $g'(\xi)$ is identical in nonconstant. Again because claim 1^0 , we know $g(\xi) = a_4(\xi - \xi_0)$ and

$$g^{\#}(0) = \frac{|a_4|}{1 + |a_4 \xi_0|^2} = \begin{cases} |a_4| & |\xi_0| < 1\\ \frac{1}{2} & |\xi_0| \ge 1 \end{cases}.$$

Clearly, this is a contradictions for claim 2^0 . Therefore, F is normal in D. The proof of Theorem 1 is completed.

4. Proof of Theorem 2

Suppose that F is not normal in Δ , by Lemma 1 there exists $f_n \in F, z_n \in \Delta$ and $\rho_n \to 0^+$, such that $g_n(\xi) = f_n(z_n + \rho_n \xi) \to g(\xi)$ converges locally and uniformly to a noncontant meromorphic function $g(\xi)$ with finite orders, there $g^\#(\xi) \le g^\#(0)$.

We asserts that $g(\xi) \in S \Rightarrow g'(\xi) = 0$.

In fact, suppose that there exists $\xi_0 \in C$, such that $g(\xi_0) \in S$, thus there exists $a_i (i = 1, 2)$ such that $g(\xi_0) = a_i$.

From Hurwitz Theorem and $g\left(\xi\right)\not\equiv a_i$, we have there exists $\xi_n\to\xi_0$ such that $g_n\left(\xi_n\right)=a_i$, that is $g_n\left(\xi_n\right)=f_n\left(z_n+\rho_n\xi\right)=a_i$ for sufficiently large n. Thus in contrast with conditions of Theorem, we get $f_n'\left(z_n+\rho_n\xi\right)\in S$. Obviously, $\left|f_n'\left(z_n+\rho_n\xi_n\right)\right|\leq A$. So we get $g'\left(\xi_0\right)=0$.

Since $g(\xi)$ is a nonconstant entire function, without loss of generality, we assume that $g(\xi)-a_1$ have zero on C for a_1 , and consider function sequence $G_n(\xi)$:

$$G_n(\xi) = \frac{g_n(\xi) - a_1}{\rho_n} = \frac{f_n(z_n + \rho_n \xi) - a_1}{\rho_n}$$

Obviously, $\{G_n\}$ is not normal in zero of $g(\xi)-a_1$. In fact, if ξ_0 is zero of $g(\xi)-a_1$, then $G_n(\xi_0)=0 \Rightarrow f_n(z_n+\rho_n\xi_0)=0$. With conditions of Theorem, we get $\left|f_n'(z_n+\rho_n\xi_0)\right| \leq A$ and $\left|G_n'(\xi_0)\right| \leq A$. Therefore, $\{G_n\}$ is not normal in zero of $g(\xi)-a_1$. So there exists G_n , $\xi_n \in \Delta$ and $\eta_n \to 0^+$, such that

$$F_{n}(\zeta) = \eta_{n}^{-1}G_{n}(\xi_{n} + \eta_{n}\zeta)$$
$$= \eta_{n}^{-1} \left[g_{n}(\xi_{n} + \eta_{n}\zeta) - a_{1}\right] \rightarrow F(\zeta)$$

converges locally and uniformly to a noncontant and meromorphic function $F(\zeta)$ with finite order, and

1º the number of zeros of $F(\zeta)$ is finite,

Y. LI 97

$$2^0 \quad F(\zeta) = 0 \Rightarrow F'(\zeta) \in S \cup \{a_3\},$$

$$3^0 \quad F'(\zeta) \in S \Rightarrow F(\zeta) = 0$$
,

$$4^{0}$$
 $F(\zeta_{0}) = \infty \Rightarrow (1/F(\zeta))|_{\zeta=\zeta_{0}} = 0$

In fact, suppose that ξ_0 is the zero of $g(\xi)-a_1$ with order k. If there exists k+1 distinct $\zeta_1,\zeta_2...\zeta_{k+1}$ at least, such that $F(\zeta_j)=0, j=1,2,\cdots,k+1$.

By Hurwitz Theorem, it is certainly that there exist a positive integer N, such that $F_n(\zeta_{n_j})=0, j=1,2,\cdots,k+1$ as n>N. Thus,

$$g_n\left(\xi_n+\eta_n\zeta_{n_j}\right)-a_1=0.$$

Since $\xi_n + \eta_n \zeta_{n_j} \to \xi_0 (n \to \infty)$, j = 1, 2, ..., k+1, we deduce that ξ_0 is a zero of $g(\xi) - a_1$ with k+1 orders, this is a contradictions for suppose. Therefore zeros numbers of $F(\zeta)$ is finite.

zeros numbers of $F(\zeta)$ is finite. Suppose that ζ_0 is a zero of $F(\zeta_0) = 0$. For $F(\zeta) \not\equiv 0$ and Hurwitz theorem, we know that there exists sequence $\zeta_n \to \zeta_0$, such that

$$F_n(\zeta_n) = \frac{f_n \left[z_n + \rho_n \left(\xi_n + \eta_n \zeta_n \right) \right] - a_1}{\rho_n \eta_n} = 0,$$

$$f_n \left[z_n + \rho_n \left(\xi_n + \eta_n \zeta_n \right) \right] = a_1$$

Thus, we get $f_n' \Big[z_n + \rho_n \big(\xi_n + \eta_n \zeta_n \big) \Big] \in S \cup \{a_3\}$ and subsequence $f_n \in F$ such that

$$f'_n[z_n + \rho_n(\xi_n + \eta_n \zeta_n)] \rightarrow a_i,$$

thus $F'(\zeta_0) = \lim_{n \to \infty} f'_n[z_n + \rho_n(\xi_n + \eta_n \zeta_n)] \in S \cup \{a_3\}$, for $a_i \in S \cup \{a_3\}$.

If there exists ζ_0 such that $F'(\zeta_0) \in S$, that is, there exists $a_i \in S$ such that $F'(\zeta_0) = a_i$. Since $F'(\zeta) \not\equiv a_i$, by Hurwitz theorem, there exists $\zeta_n \to \zeta_0$ such that

$$F_n'\left(\zeta_n\right) = f_n'\left[z_n + \rho_n\left(\xi_n + \eta_n\zeta_n\right)\right] = a_i \; .$$

Hence, $f_n \Big[z_n + \rho_n \big(\xi_n + \eta_n \zeta_n \big) \Big] \in S$, $F' \big(\zeta_0 \big) \in S$. If there exists N such that

$$f_n \left[z_n + \rho_n \left(\xi_n + \eta_n \zeta_n \right) \right] \neq a_1 \text{ for } n > N,$$

we get

$$F\left(\zeta_{0}\right) = \lim_{n \to \infty} \frac{f_{n}\left[z_{n} + \rho_{n}\left(\xi_{n} + \eta_{n}\zeta_{n}\right)\right] - a_{1}}{\rho_{n}\eta_{n}} = \infty$$

This contradicts $F'(\zeta_0) = a_i$. Thus exists subsequence f_n , such that $f_n[z_n + \rho_n(\xi_n + \eta_n\zeta_n)] = a_1$ for every n. Therefore,

$$F\left(\zeta_{0}\right) = \lim_{n \to \infty} \frac{f_{n}\left[z_{n} + \rho_{n}\left(\xi_{n} + \eta_{n}\zeta_{n}\right)\right] - a_{1}}{\rho_{n}\eta_{n}} = 0$$

Now we prove that $F(\zeta_0) = \infty \Rightarrow \left(\frac{1}{F(\zeta)}\right)' \Big|_{\zeta = \zeta_0} = 0$.

Since

$$\frac{1}{F_n(\zeta)} - \frac{\eta_n}{a_3 - a_1} = \frac{\eta_n}{G_n(\xi_n + \eta_n \zeta)} - \frac{\eta_n}{a_3 - a_1}$$

$$= \frac{\eta_n}{g_n(\xi_n + \eta_n \zeta) - a_1} - \frac{\eta_n}{a_3 - a_1} \to 0$$

there exists $\zeta_n \to \zeta_0$, such that $\frac{1}{F_n(\zeta_n)} - \frac{\eta_n}{a_3 - a_1} = 0$,

we get

$$f_n \left[z_n + \rho_n \left(\xi_n + \eta_n \zeta_n \right) \right] = a_3$$

thus

$$f_n' \left[z_n + \rho_n \left(\xi_n + \eta_n \zeta_n \right) \right] = a_3,$$

that is, $F'_n(\zeta_n) = a_3$. Therefore,

$$\left(\frac{1}{F(\zeta)}\right)' \bigg|_{\zeta = \zeta_0} = -\frac{F'(\zeta)}{F^2(\zeta)}\bigg|_{\zeta = \zeta_0} = \lim_{\zeta \to \zeta_0} \left[-\frac{F'_n(\zeta_n)}{F_n^2(\zeta_n)} \right] = 0.$$

So far, we give complete proofs of all assertion. Next we will complete the proof of theorem 2 using assertion $1^0 \sim 4^0$.

By Lemma 2 and assertion 2^0 , we get that $F(\zeta)$ is a rational function. Again by assertion 4^0 , it is clear that the pole of F be multiple. If G_n is not normal at ξ_0 , thus ξ_0 be zero of $g(\xi)-a_1$. By the isolation of zero, we have that G_n are holomorphic functions at ξ_0 for sufficiently large n. We get that $F_n(\zeta)=\eta_n^{-1}G_n(\xi_n+\eta_n\zeta)$ are holomorphic functions in $|\zeta|< R$ for sufficiently large R, thus $F(\zeta)$ be nonconstant holomorphic functions in C. Therefore $F(\zeta)$ be a polynomial. Let it, s order is p(p>0). Thus,

$$T(r,F') = (p-1)(\ln r),$$

$$N(r,F) = p(\ln r)$$
 and $S(r,F') = O(1)$

Therefore, $2(p-1)(\ln r) \le p(\ln r) + O(1), r \to \infty$. We get 0 easily.

If p=1, thus $F(\zeta) = c_0 \zeta + c_1 (c_0 \neq 0)$, by 2^0 and 3^0 , we find that there exists a_i for every ζ , such that $F'(\zeta) = a_i$. Therefore ζ be an zero of $F(\zeta)$. But $F(\zeta)$ have only a zero, this is a contradiction.

If p = 2, thus

98 Y. LI

$$F(\zeta) = c_0(\zeta - \zeta_0)(\zeta - \zeta_1)(c_0 \neq 0, \zeta_0 \neq \zeta_1)$$

As a result, $F'(\zeta) = c_0 \left(2\zeta - \zeta_0 - \zeta_1\right)$. Obviously zeros of $F'(\zeta) - a_i$ are $\left(a_i + c_0\zeta_0 + c_0\zeta_1\right) / \left(2c_0\right)$. Hence we get that $F(\zeta)$ have three zeros, this still is a contradiction from

$$F(\zeta) = c_0 (\zeta - \zeta_0)(\zeta - \zeta_1)(c_0 \neq 0, \zeta_0 \neq \zeta_1)$$

and the proof of theorem 2 is completed.

5. References

- W. Schwick. "Sharing Values and Normality," Archiv der Mathematik, Vol. 59, No. 1, 1992, pp. 50-54. doi:10.1007/BF01199014
- [2] X. C. Pang and L. Zalcman, "Sharing Values and Normality," Arkiv för Matematik, Vol. 38, No. 1, 2000, pp. 171-182. doi:10.1007/BF02384496

- [3] W. H. Zhang. "The Normality of Meromorphic Functions," *Journal of Nanhua University*, Vol. 18, 2004, pp. 6-38.
- [4] W. H. Zhang, "The Normality of Meromorphic Functions," *Journal of Nanhua University*, Vol. 12, No. 6, 2004, pp. 709-711.
- [5] F. J. Lv and J. T. Li, "Normal Families Related to Shared sets," *Journal of Chongqing University*, Vol. 7, No. 2, 2008, pp. 155-157.
- [6] X. J. Liu and X. C. Pang, "Shared Values and Normal Families," *Acta Mathematica Sinica*, Vol. 50, No. 2, 2007, pp. 409-412.
- [7] X. C. Pang and L. Zalcman. "Normal Families and Shared Values," *Bulletin of the London Mathematical Society*, Vol. 32, No. 3, 2000, pp. 325-331. doi:10.1112/S002460939900644X
- [8] X. J. Liu and X. C. Pang, "Shared Values and Normal

Copyright © 2011 SciRes.