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Abstract 
 
This paper presents a new approach to find an approximate solution for the nonlinear path planning problem. 
In this approach, first by defining a new formulation in the calculus of variations, an optimal control problem, 
equivalent to the original problem, is obtained. Then, a metamorphosis is performed in the space of problem 
by defining an injection from the set of admissible trajectory-control pairs in this space into the space of 
positive Radon measures. Using properties of Radon measures, the problem is changed to a measure-theo- 
retical optimization problem. This problem is an infinite dimensional linear programming (LP), which is ap-
proximated by a finite dimensional LP. The solution of this LP is used to construct an approximate solution 
for the original path planning problem. Finally, a numerical example is included to verify the effectiveness of 
the proposed approach. 
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1. Introduction 
 
In the control theory, the path planning problem finds an 
admissible control for steering the control system from 
an initial state to a desired final state in a certain finite 
time interval. This problem has been developed initially 
by the aerospace industries for trajectory modification of 
aircrafts and space vehicles [1]. Moreover, it is one of the 
most applicable control problems, especially in robot 
industrial and etc [2-4]. However, the inherent nonlinear-
ity of practical systems presents a challenging path plan-
ning problem. For many systems, the conventional trial 
and error method can work quite well to find system 
schedules. But for more advanced ones, more accurate 
methodologies are needed. For instance, in [5] the prob-
lem of optimal path planning has been considered as a 
semi- infinite constrained optimization problem. 

In the filed of path planning, many different solution 
methods have been developed [6]. Most of the conven-
tional methods, such as road mapping [7] and potential 
field [8], have some weaknesses in common. In the road 
mapping method, which is probabilistic, the heuristic 
nature of path generation leads to the difficulty in char-
acterizing the algorithm in terms of performance, com-

plexity, and reliability [9]. Potential field path planning 
method has been appeared frequently in the literatures; 
however, it has been plagued with inherent limitations 
[10]. 

In [11] a chaotic genetic algorithm has been used to 
find the shortest path for a mobile robot to move in a 
static environment. Besides, in [12] a chaotic particle 
swarm optimization (PSO) algorithm with mutation op-
erator has been employed in the path planning. But, since 
the path planning is a complex NP-hard problem, general 
particle swarm optimizer is slow in convergence and is 
easy to be trapped in local optima, especially in complex 
multi-apex search problem. In [13] a variational ap-
proach has been proposed for path planning in three di-
mensions by defining an energy integral over the path, 
using gradient flow on the defined energy, and evolving 
the entire path until a locally optimal steady state is 
reached. A mixed integer linear programming (MILP) 
method has also been proposed in [14,15] which yields 
an optimization-based technique and performs quite well 
in specific instances. This method combines linear pro-
gramming (LP) problem with the ability of constraining 
some subset of the state variables to be integers. 

In the past few years, the idea of finding solutions of 
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some problems by converting them to a suitable optimal 
control problem has received growing attentions. In 
[16-18] you can see some applications of this idea for 
solving a number of ordinary and partial differential 
equations. The path planning problem can also be con-
verted to an optimal control problem by considering a 
suitable objective function. Therefore, optimal control 
concepts can be used which present a systematic ap-
proach to solve the problem. In [19], a new optimal con-
trol problem, equivalent to the path planning problem, 
has been obtained by defining a new formulation in the 
calculus of variations. Discretizing this new problem 
yields a nonlinear programming (NLP) which may have 
a large number of variables and a large number of con-
straints. To overcome this difficulty and reduce the 
computational complexity, an iterative algorithm has also 
been introduced in [19] in which a sequence of reduced 
order NLP’s is solved instead of directly solving the 
large NLP obtained through the discretization. However, 
solving NLP problems is much more difficult than solving 
LP ones. 

In [20] a suitable tool is introduced to obtain approxi-
mate solutions for optimal control problems using the 
concept of measure theory [21-23]. In this approach, to 
find an acceptable solution, only a LP problem should be 
solved. Therefore, the approach has the advantage that it 
sets aside completely the nonlinearity of the problem. 
Moreover, it does not depend on the convexity of objec-
tive function. Besides, it is practical for systems with too 
complicated nonlinear terms. 

In this paper, using the concept of measure theory, a 
novel practical approach is proposed to approximate the 
solution of nonlinear path planning problem. The pro-
posed approach in comparison with other numerical me-
thods works well; especially it is practical and accurate 
enough for systems with too complicated nonlinear terms. 
Moreover, as the obtained control function is piecewise 
constant, it is suitable for switching systems. Besides, 
error is completely controllable and accuracy can be im-
proved as fine as desired. 

The paper is organized as follows. Section 2 defines 
the problem of path planning, and Section 3 proposes a 
new formulation for this problem. In Section 4, a meta-
morphosis is performed to convert the problem to an 
infinite-dimensional LP in measure space. Then, by in-
troducing two stage approximations in Section 5, a fi-
nite-dimensional LP is obtained. In Section 6, an illustra-
tive example is presented to verify the effectiveness of 
the proposed approach. Finally, conclusions are given in 
the last section. 
 
2. Definition 
 
Consider the following general form of nonlinear path 

planning problem: 

      

   
   

 

, ,
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, 

,  

a a b b

a b

x t g x t u t t

x t A u t U

x t x x t x

t J t t



 

 

 



            (1) 

where   : nx J R   is the state trajectory which is as-
sumed to be absolutely continuous on J  and be con-
strained to stay in the compact set nA R ,  
  :u J mR  is the control function which is a bounded 

measurable function on J  and takes its values in the 
compact set , mU R   :g V   is a continuous 
function where V  is a compact set and nR

A U J    , ax A  and bx A  are the initial and 
final states, respectively. In addition, it is assumed that 

( )x t  satisfies the differential equation of system, almost 
everywhere on J . Path planning problem is the problem 
of guiding control system from the known initial state ax  
at 0 at t  to the given final state  bx  at f b

Remark 1.1. Under the above-mentioned assumptions, 
the nonlinear system in (1) without the final condition 

t t . 

 b bx t x  has a unique solution  x t
 u t

 for every bound- 
ed measurable control function  [24]. In this situa-  

tion, under assumption that 
g

x




 be continuous on  ,  

the solution of system obtained from a piecewise con-
tinuous control function  u t  is piecewise  function, 
i.e. 

1C
 x t  is continuous piecewise differentiable and has 

piecewise continuous derivative [24]. 
 
3. New Formulation 
 
In [25], there is a new formulation for the path planning 
problem of linear time-varying systems. Here, that for-
mulation is extended for the nonlinear system in (1) by 
defining a function F  as follows: 

            

2 1:

( , , , ) , ,

n mF R R

F x t x t u t t x t g x t u t t

   


  
  (2) 

where   is a suitable continuous norm on  and nR
 0,R   . Now the following variational problem can 

be defined: 

      

   
   

min , , , d

s.t.

, 

, ,  

J

a a b b

F x t x t u t t t

x t A u t U

x t x x t x t J

 

  

 

        (3) 

where A , , and U J  are as before. 
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

 0

 0

Problem (3) is equivalent to the original problem (1) 
as the following theorem states: 

Theorem 3.1. Problem (1) has a solution if and only if 
problem (3) has an optimal solution with the corre-
sponding zero optimal objective value. 

Proof. The “only if” part is obvious. For the “if” part 
let  be the optimal solution of problem (3) 
with corresponding zero optimal objective value, that is  

    * *,x u 

      * * *, , , d
J

F x t x t u t t t   . Since the integrand is  

nonnegative real-valued function, we have  
      * * *, , ,F x t x t u t t   almost everywhere on J ,  

and so  almost everywhere       * *x t g x t u  0*, ,t t

on J , and  a
*

ax t x  and  b
*

bx t x . As  

     t
d

a
a t

x t x t x s     s  for t  and J  x t  is  

Lebesgue integrable,  x t

  * ,x u

  will be absolutely continu- 

ous and therefore  is a solution of problem   *  
(1). Thus, the proof is complete. 

Introducing slack variable    v t x t , problem (3) 
can be expressed as an optimal control problem as fol-
lows: 

      

   
     
   

min , , , d
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, ,  
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x t A u t U v t V
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

  

  



         (4) 

where A , , , and U V J  are as before. It is easy to 
show that problems (3) and (4) are equivalent. 

Consider  v t

 
 as a new control vector and define  

 
 
 

ˆ
u t

u t
v t

  

  . Therefore, problem (4) can be rewritten  

as: 
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        (5) 

where            ˆ ˆ, , , , ,F x t u t t F x t v t u t t
n mV R  

 and  
. Û U

Definition 3.1. The trajectory-control pair 
 in problem (5) is called admissible if the 

following conditions hold: 
    ˆ,w x u   

1)  x   is absolutely continuous on J  and satisfies 
  , x t A t J . 

2)  û   is bounded Lebesgue measurable on J  and 
takes its values in . Û

3) Boundary conditions  a ax t x  and  b bx t x  
are satisfied. 

4) The state equation      ˆ0 In m n nx t , u   t  is satis-
fied. 

Let  be the set of all admissible pairs. Then, prob-
lem (5) (and equivalently (1), (3) and (4)) has a solution 
when  is non-empty. 

W

W
Some characteristics of the admissible pairs are as fol-

lows. Let     ˆ,w x u  
R
 be an admissible pair, and 

 be an open ball in  containing B 1n  A J . Let 
( )C B  be the space of all real-valued functions that are 

uniformly continuous on  together with their first 
derivatives. Let 

B
 C B   and define function   as 

follows: 

            
      
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
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
  (6) 

where ˆA U J    . Also,   is in the space  C  , 
of real valued continuous functions defined on the com-
pact set  . Since     w x ˆ,u    is admissible pair, for 
all  C B   we have: 
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Note that it is necessary to introduce the set  and the 
space 

B
 C B  since A  may have an empty interior in 

. Now, consider nR  jx t  and  as the components 
of 

 jv t
 x t  and  v t , respectively. Let  be the 

space of infinitely differentiable real-valued functions 
with compact support in 

 D J

 ,a b J t t . Define: 
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Then, if     ˆ,w x u    is an admissible pair, for 
1,2, ,j n   and  D J    we have: 
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since the function   has compact support in J  , i.e. 

, and the trajectory and control func-
tions in an admissible pair satisfy the state equation in (5). 
    0a bt t  

Now, consider a special choice of function   in 
 which depends on the time variable only, i.e.  C B

  ,   x t t t
  ˆ, ,u t t


 x t

 . In the light of (6) we have  

   1t C    where  is a sub-   1C 

space of  comprised of those continuous functions 
which depend only on the time variable. In addition, (7) 
implies that: 

 C 

          

 1

ˆ, , d d b a
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x t u t t t t t t t
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



  



  

  

   



  (10) 

The set of Equalities (7), (9) and (10) are the properties 
of admissible pairs in the new but classical formulation of 
the path planning problem. In the next section, by suitable 
generalization, a transformation into another, non-clas- 
sical problem is introduced which has better properties in 
some aspects. 
 
4. Metamorphosis 
 
For each admissible pair     ˆ,w x u    consider the 
following well-defined mapping: 

      ˆ: ,w
J

, dH C H x t u t t t R       (11) 

This mapping is a bounded linear functional on  C   
which is also positive, i.e. w  assigns nonnegative val-
ues to the nonnegative continuous functions 


H  on  . 

Proposition 4.1. Let 
g

x




 be continuous on   and  

 u t  be piecewise continuous on J . The transformation 
 from W , the set of admissible pairs  

, into the space of bounded linear func-
tional on  is an injection. 

w

  
w 
w x  ˆ,u

 C 


Proof. It must be shown that if  
, then . 

Indeed, if 1 2 , then by relation (5), 1 2

         1 1 1 2 2 2ˆ ˆ, ,w x u w x u      
w w

1 2w w  
x x . Since 

1x  and 2x  are continuous, there is a subinterval 1J J  
such that    1 2 1, x t x t t J   . Now, a continuous 
function H  can be constructed such that it is equal zero 
for all  outside 1t J  and positive on the appropriate 
portion of the graph of  1x   and zero on that of  2x  . 
Then,    

1 2w wH H  


, and the proof is complete. 
Let  be a linear positive continuous functional on 

. By Riesz representation Theorem, there exists a 
unique positive Radon measure 
C 

  on  such that: 

     d , H H H H C 


           (12) 

It is said that   is a representing measure for  . Let 

 M    be the space of all positive Radon measure on 
 . Then, solving problem (5) is equivalent to seek a 
measure in  M   , denoted by * , which minimizes 
the functional: 

ˆ )( ) (M F R               (13) 

over the set wQ  of the measures  , corresponding to 
the admissible pairs     ˆ,w x u   , which satisfy: 

 
 
 

0,  

, 

j

ff a

 

 

   

 
 1

, 

1, 2, , ,

C B

j n D

f C

 



 

  

   

 J      (14) 

Existence of the optimal measure *  in the set  is 
equivalent to the controllability of problem (1). If  is 
compact, then existing of the optimal measure 

wQ

wQ
*  is  

guaranteed, as the map  ˆ , wF Q    , mapping  

w  into the real line, is continuous, where w  is con-
sidered to have relative topology induced by the topol-
ogy of 

Q Q

 M  . But in general w  may not be com-
pact. However, if we extend w  to the set  includ-
ing all measures in 

Q
Q Q

 M    which satisfy (14) (not 
necessarily those measures corresponding to the admis-
sible pairs), then the optimal measure *  in  exists 
which is shown by the following theorem:  

Q

Theorem 4.1. Let  be the set of all posi-
tive Radon measure on 

Q M  
  satisfying (14). There exists an 

optimal measure *  in the set  for which  Q

   ˆF̂ F  , for all Q  . 

Proof. It is similar to the proof of Theorem II.1 in [20] 
and we neglect it. 

Notice that in this case, which the set w  is extended 
to the set , 

Q
Q *  is not necessarily a measure corre-

sponding to an admissible pair . w
Remark 4.1. Minimization of functional (13) subject to 

(14) is an infinite-dimensional LP. But it is possible to 
approximate the solution of this problem by the solution 
of a finite-dimensional LP of sufficiently large dimension 
which will be done in the next section. 
 
5. Approximation 
 
For the first step of approximation, we consider the 
measures in  M    satisfying a finite number of con-
straints in (14). To do this, let  and  1: 1,2, ,k M  k

 2, 2, ,: 1h Mh   be subsets of some total sets in  

 C B  and  D J  , respectively (A subset of  C  B   

or  D J   is total if the linear combinations of its ele-
ments be dense in that space). 

Theorem 5.1. Consider LP consisting of minimizing 
the function  F̂   over the set  1 2,Q M M  
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which is the set of all measures in  satisfying:  M  

1

2

2, ,

,

k M

h M





 
 

, 1,

0, 1,2,

k k

h

  

 

  

 
        (15) 

Then, as 1M  and 2M  tend to the infinity,  

 
   

1 2
1 2

,

ˆ, inf
Q M M

M M F


 


  tends to  

   * ˆ ˆinf
Q

F F


 


 . 

Proof. It is similar to the proof of Theorem III.1 in [20]. 
The above theorem provides the theoretical justifica-

tions to approximate the infinite number of constraints by 
a finite number of them. Now, consider the problem of 
minimizing (13) over 1 2 . By Theorem A.5 in 
[20], the optimal measure of this problem has the fol-
lowing form: 

 ,Q M M 

 
1 2

*

1

M M

j jz 
j




 



              (16) 

where , j , and 0j  z   z  is the unitary atomic 
measure characterized by: 

      z H H z H    , ,C z       (17) 

The above representation of   as a combination of 
unitary atomic measures changes the strange problem of 
finding a measure in the set  1 2, M

,  ,  1, 2,j 

Q M


 to a problem of  

finding .    1 2, : ,j j j jz R z M M       

If we could reduce this problem to the one in which 

1 21 2, , , M Mz z z  
  are fixed, and unknowns be the 

non-negative coefficients 
1 21 2, , , M M , then we 

would have a finite dimensional LP. This is the second 
stage of approximation. We can approximate the optimal 
measure with: 

   


 *

1

N

j j
j

α δ z 



                  (18) 

where 1 2  and N M M 1 2, , , Nz z


z

2

,  1,2, ,

, 2, ,

1, 2, , L

 





 are fixed in a 
countable dense subset of  [20]. Therefore, the fi-
nite-dimensional LP problem is: 

 

 

 

 

1

1
1

1

1

ˆmin 

. .

0 ,  1

 ,  

0 ,  1,2, ,

N

j j
j

N

j k j k
j

N

j h j
j

N

j s j s
j

j

F z

s t

z k

z h M

f z a s

j N





  

 













 

 

 

 










The function sf  in (19) depends on the time only and 
is chosen as piecewise constant function as follows: 

 
1     if 

     1,2, ,
0    otherwise

s
s

t J
f t s


 


 L    (20) 

where   1 ,s a aJ t s d t sd     and  

b at tt
d

L L


  . 

Remark 5.1. Note that sf  should be in  1C  , 
however in order to avoid the infeasibility of LP problem 
(19), we have chosen the Walsh functions instead, by the 
fact that that every continuous function in  1C   can be 
approximated by a linear combination of these functions. 
This is, in fact, another step of approximation. 

Now, by solving LP (19), optimal values of decision 
variables  1 2, , , N    are found. The procedure to 
construct a piecewise constant control function approxi-
mating the action of optimal measure is based on the 
analysis in [20]. Here, we proceed by this approach and 
construct  û t  and  u t  as piecewise constant func-
tions. The state trajectory  x t  is also obtained as the 
response of nonlinear system in (1) with a ax t x  to 
the control  u t . As it has been proved in [20], when 

, the obtaind  and ,N M   u t  x t

 a

 tend to the 
exact control function and state trajectory, respectively, in 
a way that the initial condition ax t  x  is always 
satisfied and the final condition is going to be satisfied, i.e. 
 b bx t  x ,N M  as . 
Remark 5.2. Referring to Theorem 3.1., the optimal 

value of objective function in (19) can be considered as a 
criterion for the total error. After solving (19) if the total 
error is more than desirable one, it can be improved by 
increasing the number of variables  or constraints M, 
of the LP problem (19). Therefore, in this approach the 
accuracy can be improved as fine as desired. 

N

 
6. Numerical Example 
 
In this section we present a numerical example to show 
the effectiveness of the proposed approach for solving 
nonlinear path planning problems with a systematic al-
gorithm. Thus, consider the following problem which has 
too complicated nonlinear term [19]: 

      

       
   
 

20.5 sin

s.t.

0,1 , 0,1

0 0, 1 0.5

0,1

x x t x t u t

x t u t

x x

J

 

 

 





        (21) 

M

     (19) 

Step 1. Let 310   as permitted error and divide 
each of J , A , , and U  into 10 parts. Thus, V
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410 10 10 10 10N     
2M  M

k

. 
Step 2. Let 1 , 2 ,  and determine 8 10L 

 , h , and sf  as follows: 

1
11,2, ,  , 1,

j
k ix

2, ,  , 1,2, ,
M

k M i

 



 
n j

n
  

  (22a) 

  1 , 1,2, ,k
k v t k M

x
 




 


            (22b) 

   

   

,1

,2

2

2π
sin

2π
1 cos 2π

1,2, ,  , 1 0 1
2

a
r

a
r

b a

r t t
t

t

r t t
t

t

M
r t t t

n





  
     

         

      


 

    (23a) 

       ,1 ,1

2 21, 2, , , 1,2, ,  ,  1, 2, ,
2 2

h j r j rx t t v t t

M M
h j n r

n

    



  



  
 (23b) 

       ,2 ,2

2 2
2

2

1, 2, ,
2 2

1, 2, ,  ,  

1, 2, ,
2

h j r j rx t t v t

M M
h M

j n

M
r

n

    

   




 










t

       (23c) 

1     

0    otherwise 

1
,  ,  1, 2, ,1

10 10

s
s

s

z J
f

s s
J s


 


   
 

 0

        (24) 

Thus,  for  as the integral of 0.1sa  1,2, ,10s  
sf  over sJ . 
Step 3. Solve the LP (19) with  variables and 

 constraints.  

410
20

N

1 2

Step 4. Calculate  and then apply  to the 
nonlinear system in (21) with  to obtain 

2 8 10M M M L      
 û t  u t

 0 0x   x t . 
Figures 1 and 2 illustrate the results. 

Simulation results show that the constraints  
   0,1x t   and    0,1u t   are satisfied, and the non-

linear control system is steered from the known initial 
state  to the desired final state  in 
the certain finite time interval 

 0x  0  1 0.5x 
 0,1J  . 

Step 5. Compare the total error with desirable one. In 
this example, after solving LP the total error would be 

 as the optimal value of objective func-
tion in LP. Since 

61.784 10e  
310e    it can be said that path 

planning problem has been solved approximately with the  

 

Figure 1. Control function u(t). 
 

 

Figure 2. State trajectory x(t). 
 
total error 61.784  10e   . 

Problem (21) has also been solved approximately in 
[19] by solving a sequence of NLP problems. The opti-
mal value of objective function has been obtained as 

54.6089 10 . Therefore, our proposed approach, in 
comparison with what has been proposed in [19], has 
more accuracy together with lower computational load. 
 
7. Conclusions 
 
In this paper, a new approach has been proposed to find 
an approximate solution for the nonlinear path planning 
problem. In this approach, first a new problem, equiva-
lent to the original problem, has been defined in the cal-
culus of variations. The new problem can be expressed 
as an optimal control problem by introducing slack vari-
able. Then, a measure theoretical approach and two stage 
approximations have been used to convert the optimal 
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control problem to a finite dimensional LP. The solution 
of this LP is used to construct an approximate solution 
for the original path planning problem. The proposed 
approach in comparison with other numerical methods 
works well; especially it is practical and accurate enough 
for systems with too complicated nonlinear terms. 
Moreover, error is completely controllable and accuracy 
can be improved as fine as desired. In addition, as the 
obtained control function is piecewise constant, it is 
suitable for switching systems. Effectiveness of the pro-
posed approach has been verified using a numerical ex-
ample. 
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